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1. INTRODUCTION

It has been documented by a number of empirical studies that the standard representative agent

(or complete markets) model fails to explain many phenomena observed in the data. This leads

to interest in models with heterogeneity and incomplete markets.1 One class of such models,

called the Bewley-style model, has drawn special attention. The typical environment of this

model features a continuum of consumers making consumption and savings decisions subject

to borrowing constraints and idiosyncratic labor endowment shocks. There is only one asset

(capital) serving as a buffer against individual shocks. Finally, a single firm makes production

decisions subject to aggregate productivity shocks.2

Two central open questions are addressed. The first is the existence of a sequential competitive

equilibrium. The second question is whether there is a recursive characterization of sequential

competitive equilibria. Krusell and Smith [29] and a number of later studies directly pose a

recursive equilibrium formulation (henceforth, KS-recursive equilibrium) and then proceed with

numerical solutions without studying its existence and the relation to sequential competitive

equilibrium.

As in Miao [32], this paper reformulates the Bewley-style model along the lines of Hildenbrand

[19] and Hart et al [17]. In particular, the dynamic economy is described by sequences of aggregate

distributions over consumers’ characteristics (individual asset holdings and the realization of

endowment shocks) across the population.3 These sequences of aggregate distributions contain

the relevant information for equilibrium analysis and they are the principal objects of study. In

particular, given exogenous shocks, aggregate distributions fully determine prices and aggregate

quantities such as aggregate capital. It turns out that this reformulation is the key to answering

the above questions.

The study of existence of competitive equilibrium begins with a detailed analysis of a typical

individual’s decision problem. After aggregating individual optimal behavior and deriving the

law of motion for aggregate distributions, the existence of a competitive equilibrium is proven by

applying the Brouwer-Schauder-Tychonoff Fixed-Point Theorem to a compact space of sequences

of aggregate distributions (Theorem 1). This result is established under standard assumptions

on preferences and technology and for fairly general individual and aggregate shock processes.

For example, these are assumed to satisfy the Feller property, but they need not be stationary or

Markovian. However, for technical reasons, I assume that the state space for aggregate shocks is

1See the survey by Heaton and Lucas [18].
2See [9, 11, 2, 21, 3, 22, 32] for Bewley-style models without aggregate shocks.
3Similar formulations are adopted in models of anonymous games [31, 23, 7, 25, 12].
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countable.4

After imposing the additional assumption that individual and aggregate shocks are time-

homogenous Markov processes, I turn to recursive characterizations of competitive equilibria. I

define a notion of recursive equilibrium with the state variables consisting of individual asset

holdings, the realization of individual shocks, the realization of aggregate shocks, the aggregate

distribution, and payoffs (expected discounted utilities). Including the first three as state vari-

ables is standard. It is also natural to include the aggregate distribution as a state variable

because with incomplete markets and heterogeneous consumers, equilibrium prices generally de-

pend on the distribution of assets across consumers.

Including payoffs as a state variable to make certain decision problems recursive is a technique

widely adopted in the literature on sequential games [13, 6, 8] and on dynamic contracts [34, 37, 1].

Here this state variable serves as a device for selecting ‘continuation’ equilibria when the economy

unfolds over time.

Theorem 2 demonstrates that given an initial state, the so defined recursive equilibrium gener-

ates a sequential competitive equilibrium. Theorem 3 demonstrates that a recursive equilibrium

exists. Moreover, for any sequential competitive equilibrium, there is a payoff equivalent com-

petitive equilibrium that is generated by a recursive equilibrium with the state space including

payoffs.

A natural but open question is whether there is a recursive equilibrium with a smaller state

space, for example, the KS-recursive equilibrium that excludes expected payoffs as a state vari-

able. In a corresponding model with finitely many agents, Kubler and Schmedders [30] give

counter-examples to existence, thus demonstrating that the wealth distribution or the portfolio

of asset holdings does not constitute a sufficient endogenous state. The intuition is that equilib-

rium decisions at any date must be consistent with expectations at the previous date, and that

these expectations cannot always be summarized in the wealth distribution. Similar intuition

seems relevant for the economy with the continuum of agents studied here. In particular, the

future sequences of aggregate distributions must be consistent with expectations in the previous

period. However, these expectations may not be summarized in the aggregate distribution if

there are multiple competitive equilibria. Under the strong condition that the competitive equi-

librium is globally unique for all possible initial values of aggregate distributions and aggregate

shocks, Theorem 4 establishes that a KS-recursive equilibrium exists.

The above analysis must surmount two difficulties. First, there is a difficulty associated with

4See Bergin and Bernhardt [8] for an analysis of anonymous games with uncountable state space for aggregate
shocks.
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the presence of aggregate shocks. When they are present, aggregate distributions are generally

random measures that may be correlated with individual shocks. As pointed out by Bergin and

Bernhardt [7] and illustrated by the example in section 3.2, this creates not only difficulties of

tractability but also conceptual problems associated with the meaning of perfect competition.

Thus, I follow Bergin and Bernhardt [7] and assume the conditional no aggregate uncertainty

condition. This requires that, conditional on the history of aggregate shocks, the aggregate

distribution at each date be a constant measure. Second, there are subtle technical problems,

pointed out by Judd [24], associated with an environment that has a continuum of agents, e.g.,

measurability and the law of large numbers. This paper deals with these problems in a manner

similar to Miao [32].

I now review briefly the related literature. There is a growing literature on numerical analysis

of Bewley-style models with aggregate shocks [28, 29, 16, 36]. None of these considers the

theoretical issues studied here. As mentioned earlier, this paper is related to the early general

equilibrium literature on large economies and also to the literature on anonymous games studied

by Schmeidler [33], Mas-Colell [31], Jovanovic and Rosenthal [23], Bergin and Bernhardt [7, 8],

and Karatzas et al [25]. The latter relation will be discussed in detail in the concluding section.

The paper is also related to Duffie et al [13], Becker and Zilcha [5], Chakrabarti [10], and Kubler

and Schmedders [30]. All these papers consider a finite number of heterogeneous consumers.

The remainder of the paper proceeds as follows. Section 2 sets up the model. Section 3

analyzes the existence of a competitive equilibrium. Section 4 studies recursive characterizations

of competitive equilibria. Section 5 concludes and discusses an extension of the model. Proofs

are relegated to an appendix.

2. THE MODEL

Consider an economy with a large number of infinitely-lived consumers subject to individual

endowment shocks and a single firm subject to aggregate productivity shocks. This economy is

similar to that studied by Krusell and Smith [29]. Time is discrete and denoted by t = 0, 1, 2, ....

Uncertainty is represented by a probability space (Ω×Z∞,F , P ) on which all stochastic processes
are defined. The state space Ω captures individual shocks, while the state space Z∞ captures

aggregate shocks. Let Z0 = Z, Zt+1 = Z0 × Zt, and denote by zt = (z0, z1, ..., zt) ∈ Zt an
aggregate shock history at time t. Finally, let z∞ = (z0, z1, z2, ...) ∈ Z∞ be the complete history

and z0 = z0 ∈ Z0 be a deterministic constant.

Notation. For any Euclidean subspace D, denote by C(D) the space of bounded and continuous
functions on D endowed with the sup-norm, by B(D) the Borel σ-algebra of D, and by P(D)
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the space of probability measures on B(D) endowed with the weak convergence topology. For
any Euclidean sets D and E, B(D) ⊗ B(E) denotes the product σ-algebra. Finally, any product
topological space is endowed with the product topology.

2.1. Consumers

Consumers are distributed on the interval I = [0, 1] according to the Lebesgue measure φ. Con-

sumers are ex ante identical in that they have the same preferences and their endowment shock

processes are drawn from the same distribution. However, consumers are ex post heterogeneous

in the sense that they experience idiosyncratic endowment shocks. The extension to the case of

ex ante heterogeneous consumers is outlined in the last section.

Information structure and endowments. Consumer i ∈ I is endowed with one unit of labor
at each date t and a deterministic asset level ai0 ∈ R++ at the beginning of time 0. Labor

endowment is subject to random shocks represented by a stochastic process (sit)t≥0 valued in
S ⊂ R+, where si0 is a deterministic constant. Let S0 = S, St+1 = S0 × St, s0i = si0, and denote
by sti = (si0, s

i
1, ..., s

i
t) ∈ St an individual shock history. Let the initial (probability) distribution

of asset holdings and endowment shocks be given by

λ0(A× S) = φ(i ∈ I : (ai0, si0) ∈ A× S), A× S ∈ B(R++)× B(S).

At the beginning of date t, consumer i observes his labor endowment shock sit and the ag-

gregate productivity shock zt. His information is represented by a σ-algebra F it generated by
past and current shocks {sin, zn}tn=0.5 The following assumptions on the shock processes are
maintained.

Assumption 1. Z ⊂ [z, z] ⊂ R++ is a bounded and countable set endowed with the discrete
topology; S ⊂ R+ is compact.

Assumption 2. For φ-a.e. i,

(a) given the history (sit, zt) = (st, zt), (sit+1, zt+1) is drawn from the distributionQt+1(·, st, zt);

(b) Qt+1(S × Z, ·) is measurable for all S × Z ∈ B(S)× B(Z);

(c) Qt+1 has the Feller property:
R
h(s0, z0)Qt+1(ds0, dz0, ·) is a continuous function on St×Zt

for any real-valued, bounded, and continuous function h on S× Z.
5Alternatively, one can consider the case where each consumer observes the aggregate shocks after he makes

choices so that F i
t is generated by {sin, zn−1}tn=0, z−1 is null.
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Remark 1. It merits emphasis that the state space of aggregate shocks is assumed to be count-

able, which avoids measurability problems that may arise in dynamic programming. See [8] for

the treatment when this space is uncountable.

Consumption Space. There is a single good. A consumption plan ci ≡ (cit)∞t=0 for consumer i
is a nonnegative real-valued process such that cit is F it -measurable.6 Denote by Ci the set of all
consumption plans for consumer i.

Budget and borrowing constraints. An asset accumulation plan (ait+1)t≥0 for consumer i is a
real-valued process such that ait+1 is F it -measurable.

In each period t, consumer i consumes cit and accumulates assets a
i
t+1 subject to the familiar

budget constraint:

cit + a
i
t+1 = (1 + rt)a

i
t + wts

i
t, a

i
0 given, (2.1)

where rt is the rental rate and wt is the wage rate. For simplicity, assume that all consumers

cannot borrow so that:7

ait+1 ≥ 0 for all i ∈ I. (2.2)

Finally, let A = [0,∞), and denote by Ai the set of all asset accumulation plans of consumer
i that satisfy the budget constraint (2.1) and the borrowing constraint (2.2). A consumption

plan c ∈ Ci corresponding to an asset accumulation plan a ∈ Ai is called (budget) feasible.

Preferences. Consumer i’s preferences are represented by an expected utility function defined on

Ci :
U(ci) = E

" ∞X
t=0

βtu(cit)

#
, (cit) ∈ Ci,

where β ∈ (0, 1) is the discount factor and u : R+ → R is the felicity function satisfying:

Assumption 3. The function u is bounded, continuous, and strictly concave.

Decision problem. Consumer i’s problem is given by:

sup
(cit,a

i
t+1)t≥0∈Ci×Ai

U(ci). (2.3)

6Because of this measurability, I may write the value of cit at state (ω, z
∞) for consumer i simply as cit(ω, z

t).
Similar notation applies to other adapted processes.

7The analysis also follows for any exogenous borrowing constraint.

6



The plans (cit)t≥0 and (ait+1)t≥0 are optimal if the above supremum is achieved by (cit, a
i
t+1)t≥0 ∈

Ci ×Ai.

Allocation. An allocation ((cit, a
i
t+1)t≥0)i∈I is a collection of consumption and asset accumulation

plans (cit, a
i
t+1)t≥0, i ∈ I. An allocation ((cit, ait+1)t≥0)i∈I is admissible if both cit = ct(i,ω, zt) and

ait+1 = at+1(i,ω, z
t) are B(I)⊗Ft-measurable where Ft is the smallest σ-algebra containing F it for

all i ∈ I, Ft = ∨i∈IF it , t ≥ 0. This measurability requirement ensures certain integrals are well
defined (see [12] for discussion of the difficulties that arise if it is violated). Since both cit and a

i
t+1

are F it -measurable for all fixed i ∈ I, they are also Ft-measurable. Thus, the essential content
of admissibility is that cit and a

i
t+1 must be B(I)-measurable for each fixed (ω, zt) ∈ Ω× Zt. To

ensure that admissible allocations exist, I assume:8

Assumption 4. For each t, st : I ×Ω× Z∞ → S is B(I)⊗ Ft-measurable.

2.2. The Firm

There is a single firm renting capital at (net) rate rt and hiring labor at wage wt at date t. It

produces output Yt with the constant-returns-to-scale technology F : R+ ×R+→ R+ :

Yt = ztF (Kt, Nt) + (1− δ)Kt,

where aggregate capital Kt is Ft−1-measurable, aggregate labor Nt is Ft-measurable, and δ ∈
(0, 1) is the depreciation rate. Capital is transformed from consumers’ accumulated assets and

aggregate labor supply Nt is given exogenously.

Assumption 5. (a) F is strictly increasing, strictly concave, and continuously differentiable, and

satisfies: F (0, ·) = F (·, 0) = 0, limK→0 F1(K, ·) = limN→0 F2(·, N) =∞, limK→∞ F1(K, ·) ≤ δ.

(b) Nt is uniformly bounded, 0 < Nt ≤ bN.
Remark 2. This assumption implies that there is a maximal sustainable capital stock bK which

is given by the unique solution to the equation zF (K, bN) = δK.

Finally, competitive profit maximization implies that for all t ≥ 0,
rt = ztF1(Kt,Nt)− δ, (2.4)

wt = ztF2(Kt,Nt). (2.5)

Note that prices rt and wt are Ft-measurable.
8The proof of the existence of admissible allocations follows from a similar argument in the proof of [32, Lemma

4.1]. So I omit it in the sequel.
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2.3. Competitive Equilibrium

I first define (sequential) competitive equilibrium in the standard way.

Definition 1. A (sequential) competitive equilibrium (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0) consists of

an admissible allocation ((ait+1, c
i
t)t≥0)i∈I and price processes (rt, wt)t≥0 such that: (i) Given

prices (wt, rt)t≥0, (ait+1, cit)t≥0 solves problem (2.3) for φ-a.e. i. (ii) Given prices (wt, rt)t≥0,
the firm maximizes profits so that (2.4) and (2.5) are satisfied for all t ≥ 0. (iii) Markets clear,
i.e., for all t ≥ 0, Z

I
sitφ(di) = Nt, (2.6)

Ct +Kt+1 = ztF (Kt, Nt) + (1− δ)Kt, (2.7)

where Ct =
R
I c
i
tφ(di) and Kt =

R
I a

i
tφ(di).

To analyze the existence and properties of equilibria, it is important to introduce the notion

of aggregate distribution. Such a distribution is defined over the individual states across the

population. An individual state is a pair of individual asset holdings and the history of individual

shocks. More formally, if individual asset holdings and the shock history at date t ≥ 0 are ait and
sti, respectively, i ∈ I, then the aggregate distribution, λt ∈ P(A× St), is defined by:

λt(A×B) = φ(i ∈ I : (at(i), st(i)) ∈ A×B), A×B ∈ B(A)×B(S)t+1. (2.8)

Thus, λt(A×B) is the measure of consumers whose asset holdings and shock histories at date t
lie in the set A×B. Note that λt is a random measure since ait = a

i
t(ω, z

t−1) and sit = sit(ω, zt)
are random variables.

Any aggregate variable can be written as an expectation with respect to the so defined

aggregate distribution; for example,

Kt =

Z
I
aitφ(di) =

Z
A×St

aλt(da, ds
t),

Nt =

Z
I
sitφ(di) =

Z
A×St

sλt(da, ds
t),

Ct =

Z
I
citφ(di) = (1 + rt)Kt + wtNt −Kt+1.

The last equation follows from integration of equation (2.1). It implies the resource constraint

(2.7) by the homogeneity of F and (2.4)-(2.5). Finally, equations (2.4)-(2.5) induce pricing

functions rt : P(A× St)× Z→ R and wt : P(A× St)× Z→ R+ as follows:

rt(λt, zt) = ztF1

µZ
A×St

aλt(da, ds
t),

Z
A×St

sλt(da, ds
t)

¶
− δ, (2.9)
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wt(λt, zt) = ztF2

µZ
A×St

aλt(da, ds
t),

Z
A×St

sλt(da, ds
t)

¶
. (2.10)

From the above discussion, conclude that aggregate distributions contain all the relevant

information for equilibrium analysis. Henceforth, they will be the focus of study.

3. EXISTENCE OF COMPETITIVE EQUILIBRIUM

I begin by analyzing a single consumer’s decision problem. I then discuss aggregation. Finally, I

present the existence result. Notice that the model reduces to the case without aggregate shocks

when Z contains only one element. Thus, all results to follow are valid for this case.9

3.1. The One-Person Decision Problem

Consider a single consumer’s decision problem, given a sequence of aggregate distributions µ =

{λt}t≥0. So the consumer index is suppressed.

In general, the aggregate distribution at date t is a measurable function of the individual-

relevant state ω and the history of aggregate shocks zt (see (2.8)). However, section 3.2 will

show that under some conditions, equilibrium aggregate distributions do not depend on the

individual-relevant state ω. Therefore, this subsection assumes that the aggregate distribution

λt is a function from the set of histories of aggregate shocks Zt to P(A× St). Let P(A× St)Zt
denote the set of such functions endowed with the product (or pointwise convergence) topology.

Let P∞(A× S) ≡ ×∞t=0P(A× St)Z
t
. Then µ is an element in P∞(A× S).

It is convenient to analyze an individual’s consumption and savings decisions by dynamic

programming. Let Vt(at, s
t, zt, µ) denote the maximized expected utility to the consumer at

date t, when his asset holdings is at and the sequence of aggregate distributions is µ, given the

individual shock history st and the aggregate shock history zt. Then, at date t ≥ 0, the consumer
solves the following dynamic programming problem:

Vt(at, s
t, zt, µ) = sup

at+1∈Γ(at,st,zt,λt(zt))
u((1 + rt(λt(z

t), zt))at + wt(λt(z
t), zt)st − at+1)

+β

Z
S×Z

Vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, s

t, zt), (3.1)

where

Γ(at, st, zt,λt(z
t)) = [0, (1 + rt(λt(z

t), zt))at + wt(λt(z
t), zt)st] 6= ∅.

9Aiyagari [2] and Miao [32] study stationary equilibria for economies without aggregate shocks.
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The associated policy correspondence is defined by gt+1 : A× St × Zt × P∞(A× S) → A, with
gt+1(at, s

t, zt, µ) ⊂ Γ(at, st, zt,λt(zt)). If gt+1 is single-valued, it is called a policy function. If
gt+1(at, s

t, zt, µ) is the set of maximizers of problem (3.1), it is called an optimal policy corre-

spondence.

To understand problem (3.1), consider an n-period truncation. At date n, the consumer

solves the following problem:

V nn (an, sn, z
n,λn(z

n)) = max
a0∈Γ(an,sn,zn,λn(zn))

u((1 + rn(λn(z
n), zn)an + wn(λn(z

n), zn)sn − a0).

At date n− 1, by the principle of optimally, the consumer solves the following problem:

V nn−1(an−1, s
n−1, zn−1,λn−1(zn−1),λn) =

max
a0∈Γ(an−1,sn−1,zn−1,λn−1(zn−1))

u((1 + rn−1(λn−1(zn−1), zn−1)an−1 + wn−1(λn−1(zn−1), zn−1)sn−1 − a0)

+β

Z
S×Z

V nn (a
0, sn, zn,λn(zn))Qn(dzn, dsn, sn−1, zn−1).

In general, at any date 0 ≤ t ≤ n, the consumer solves the problem:

V nt (at, s
t, zt,λt(z

t),λt+1, ...,λn)

= max
a0∈Γ(at,st,zt,λt(zt))

u((1 + rt(λt(z
t), zt)at + wt(λt(z

t), zt)st − a0)

+β

Z
S×Z

V nt+1(a
0, st+1, zt+1,λt+1(zt+1),λt+2, ...,λn)Qt+1(dzt+1, dst+1, st, zt)

Finally, problem (3.1) corresponds to the limiting case as n→∞.

More formally, let V denote the set of uniformly bounded and continuous real-valued functions
on A× St × Zt × P∞(A× S). Let V∞ denote the set of sequences v = (v0, v1, v2, ....) of such

functions. Note that V∞ is a complete metric space if endowed with the norm

||v|| = sup
(t,at,st,zt,µ)

¯̄
vt(at, s

t, zt, µ)
¯̄
.

Then an application of the Contraction Mapping Theorem yields:

Lemma 1. Given Assumptions 1-5, then there is a unique sequence of functions {Vt}t≥0 ∈ V∞
and a unique sequence of continuous policy functions {gt+1}t≥0 solving (3.1).
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3.2. Aggregation and the Law of Motion for Aggregate Distributions

This subsection studies the question of aggregation of individual behavior to form aggregate

behavior and derives the law of motion for the aggregate distributions induced by the sequences

of individual optimal policy functions {gt+1}t≥0 and individual shocks (sit)t≥0.

In perfectly competitive markets, each consumer has no influence over prices, and all con-

sumers together determine prices. The continuum formulation and a suitable ‘law of large num-

bers’ make this possible. To see this, recall that the aggregate distribution at date t, λt(ω, z
t),

is defined in (2.8). It is a random measure that depends on the state (ω, zt). In models without

aggregate shocks (e.g., [23], [2] and [32]), perfect competition implies that equilibrium aggregate

distributions must be deterministic. The latter can be achieved by assuming a no aggregate

uncertainty condition on the shock processes and the underlying probability spaces, introduced

in [7, Definition 1] for models of anonymous sequential games. Feldman and Gilles’ construction

[15, Proposition 2] shows that this condition is not vacuous and their construction is applied

directly by Miao [32] to a Bewley-style model without aggregate shocks.

Say that a process X = (Xt)t≥0, Xt : I × Ω → D, where D is a Euclidean space and Xt

is jointly measurable, satisfies no aggregate uncertainty if there exists a nonrandom measure ν

such that φ(i ∈ I : X(i,ω) ∈ D) = ν(D), D ∈ B(D), for P -a.e. ω.10 Note that whether or not
a process X has the no aggregate uncertainty property depends on the underlying probability

space. The implication of the no aggregate uncertainty condition is that φ(i ∈ I : X(i,ω) ∈
D) = P (ω ∈ Ω : X(i,ω) ∈ D) if each Xi is drawn from the same distribution. In this case, the

measure ν is in fact this common distribution. Thus, the empirical distribution of a sample of

random variables (Xi
t)i∈I is the same as the theoretical distribution from which all these random

variables are drawn.

To accommodate the case where aggregate shocks are present, I follow [7] and introduce a

notion of conditional no aggregate uncertainty. A process X = (Xt)t≥0, Xt : I × Ω× Z∞ → D,
satisfies the conditional no aggregate uncertainty condition if given the history of aggregate shocks

z∞ ∈ Z∞, X satisfies the no aggregate uncertainty condition. I now assume:

Assumption 6. The individual shock process (sit), st : I×Ω×Z∞ → S, satisfies the conditional
no aggregate uncertainty condition relative to the probability space (Ω× Z∞,F , P ).11

This assumption implies that given the history z∞,

φ(i ∈ I : s(i,ω, z∞) ∈ B) = Pz(ω ∈ Ω : si(ω, z∞) ∈ B), B ∈ B(S∞),
10Note that this definition is slightly different from [7, Definition 1].
11Krusell and Smith [29] make this assumption informally.
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where Pz is the conditional measure on Ω given z
∞. Thus, conditional on the history of aggregate

shocks zt, aggregate labor endowments satisfyZ
I
sitφ(di) =

Z
A×St

sλt(da, ds
t) =

Z
Ω
sit(ω, z

t)Pz(dω),∀t ≥ 0,∀i ∈ I,

which is deterministic. This property, along with the labor market clearing condition (2.6), puts

a restriction on aggregate labor supply Nt, namely, Nt must depend on z
t only.

To illustrate the potential difficulties involved and the importance of Assumption 6, consider

the following example. One might anticipate that consumer i is better off when drawing a good

labor endowment shock sit conditional on a history of aggregate shocks z
t. Due to the joint

measurability requirement, the family of random variables (sit)i∈I is correlated across i’s. If the
aggregate distribution of labor endowments conditional on zt were stochastic, then sit would be

correlated with it. Thus, given a high value of sit, the aggregate distribution may be more likely

to be concentrated on those consumers with high labor endowment shocks. This would cause

aggregate supply to increase and would then lead to a lower wage. Consequently, consumer i

could be worse off, contradicting the initial intuition.

Note that this difficulty is not due to cross-sectional correlation of individual shocks, but to

the randomness of the aggregate distribution and its correlation with individual shocks. If the

sequence of aggregate distributions is deterministic as in models without aggregate shocks, the

difficulty disappears. When aggregate shocks are present, it will not arise if aggregate distribu-

tions are nonstochastic conditional on the history of aggregate shocks, as assumed before.

Finally, Assumption 6 permits derivation of the law of motion for aggregate distributions,

as I now show. Because consumers are ex ante identical, they will choose the same optimal

asset accumulation policy. Thus, given the individual state (ait, s
ti), the history of aggregate

shocks zt, and the sequence of aggregate distributions µ, let the asset holdings next period be

ait+1 = gt+1(a
i
t, s

ti, zt, µ) for φ−a.e. i.

Fixing a history of shocks zt+1 and using (2.8) and Bayes’ Rule, one can derive that for

A×B ∈ B(A)×B(S)t+2,

λt+1(ω, z
t+1)(A×B) = φ(i ∈ I : (at+1(i), st+1(i)) ∈ A×B)

=

Z
A×St

φ(i ∈ I : (gt+1(ait, sti, zt, µ), st+1,i) ∈ A×B | (ait, sti) = (at, st))

·φ(i ∈ I : (ait, sti) ∈ dat × dst).

=

Z
A×St

φ(i ∈ I : (gt+1(at, st, zt, µ), st+1,i(zt+1)) ∈ A×B | sti = st)λt(dat, dst)
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=

Z
A×St

1A(g(a, s
t, zt, µ))φ(i ∈ I : st+1(i,ω, zt+1) ∈ B | sti = st)λt(dat, dst)

Finally, applying the conditional no aggregate uncertainty condition, one obtains:

λt+1(ω, z
t+1)(A×B)

=

Z
A×St

1A(gt+1(at, s
t, zt, µ))Pz(ω ∈ Ω : st+1,i(ω, zt+1) ∈ B | sti = st)λt(dat, dst)

=

Z
A×St

1A(gt+1(at, s
t, zt, µ))Qt+1(B, zt+1, s

t, zt)λt(dat, ds
t),

where I use the fact that

Qt+1(B, zt+1, s
t, zt) = Pz(ω ∈ Ω : st+1,i(ω, zt+1) ∈ B | sti = st, zt).

Note that, conditional on the history of aggregate shocks zt+1 and the history of individual

shocks st, Qt+1(B, zt+1, s
t, zt) does not depend on individual uncertainty. Therefore, if λ0 is

a nonrandom measure, then the conditional no aggregate uncertainty condition implies that

conditional on the histories of aggregate shocks the aggregate distribution at each date does not

depend on individual uncertainty. Thus, the date t aggregate distribution λt can be identified as

a mapping from Zt to P(A× St).

The above discussion is summarized in the following Lemma:

Lemma 2. Under the conditional no aggregate uncertainty condition Assumption 6, along a

history of aggregate shocks z∞ = (z0, z1, ...), the sequence of aggregate distributions µ = (λt)t≥0
evolves according to

λt+1(z
t+1)(A×B) =

Z
A×St

1A(gt+1(at, s
t, zt, µ))Qt+1(B, zt+1, s

t, zt)λt(dat, ds
t)(zt), t ≥ 0,

where λ0 is given and A×B ∈ B(A)×B(S)t+2.

3.3. The Existence Theorem

I now state one main result of the paper.

Theorem 1. Given Assumptions 1-6, there exists a sequential competitive equilibrium. More-

over, the set of equilibrium sequences of aggregate distributions are compact.

The idea of the proof can be described as follows. Consider a sequence of aggregate distribu-

tions µ = {λt(zt)}t≥0 ∈ P∞(A× S) along a history of aggregate shocks z∞. Denote by P0∞(A× S)
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the set of all such sequences satisfying the labor market clearing conditionZ
A×St

sλt(da, ds
t) = Nt, t ≥ 0.

A sequence of optimal asset accumulation policies {gt+1}t≥0 can be derived from Lemma 1.

Define a new sequence of aggregate distributions eµ = {eλt(zt)}t≥0 by: eλ0(z0) = λ0(z0),

eλt+1(zt+1)(A×B) = Z
A×St

1A(gt+1(at, s
t, zt, µ))Qt+1(B, zt+1, s

t, zt)λt(dat, ds
t), (3.2)

where A × B ∈ B(A)×B(S)t+2, t ≥ 0. Furthermore, define a map ψ : P0∞(A× S) → P0∞(A× S)
by ψ(µ) = eµ. Then the fixed point of ψ, µ∗ = (λ∗0,λ

∗
1,λ

∗
2, ...), induces a sequential competitive

equilibrium (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0). Specifically, for any histories of shocks (sit, zt), let

ait+1 = gt+1(a
i
t, s

i
t, zt, (λ

∗
τ )τ≥t), c

i
t = (1 + rt)a

i
t +ws

i
t − ait+1,

rt = ztF1(Kt,Nt)− δ, wt = ztF2(Kt,Nt),

Kt =

Z
A×St

aλ∗t (da, ds
t),

Z
A×St

sλ∗t (da, ds
t) = Nt,

where ai0, s
i
0, z0,λ

∗
0 = λ0 are given.

However, P0∞(A× S) is not a compact set since A is not compact. To apply the Brouwer-
Schauder-Tychonoff Fixed-Point Theorem [4, Corollary 16.52], one needs the domain of ψ to be

compact. Thus, I construct another compact set so that ψ is a self-map in this domain.

The set is constructed as follows. Because of Assumption 5 and the resource constraint,

one can restrict attention to the set of sequences of aggregate distributions {λt}t≥0’s such that
Kt =

R
A×St aλt(da, ds

t) ≤ bK. Then let
bP(A× St)(zt) = ½λ(zt) ∈ P(A× St) : Z

A×St
aλ(zt)(da, dst) ≤ bK, Z

A×St
sλ(zt)(da, dst) = Nt(z

t)

¾
,

bP∞(A× S) = ×∞t=0 ×zt∈Zt bP(A× St)(zt).
Lemma 3. bP∞(A× S) is a compact and convex subset of a locally convex Hausdorff space.

Finally, apply the Brouwer-Schauder-Tychonoff Fixed-Point Theorem to the map ψ : bP∞(A× S)→bP∞(A× S). Any fixed point induces a competitive equilibrium.
4. RECURSIVE CHARACTERIZATIONS

To permit a recursive characterization of sequential competitive equilibria, I make two station-

arity assumptions:

14



Assumption 7. Qt+1(S × Z, st, zt) = Q(S × Z, st, zt) for all t ≥ 0 and S × Z ∈ B(S)×B(Z).

Assumption 8. Aggregate labor endowments at any date t ≥ 0 is given by a measurable func-
tion N : Zt → (0, bN ].

Given these assumptions, the economy is the same as that studied by Krusell and Smith [29].

These two assumptions also implies that past histories of individual shocks do not affect current

decisions. Thus, the aggregate distribution of asset holdings and individual shocks at date t, λt,

can be defined by

λt(A×B) = φ(i ∈ I : (ait, sit) ∈ A×B), A×B ∈ B(A)× B(S). (4.1)

The set of all aggregate distributions is denoted by P∞(A× S) = ×∞t=0P(A× S)Z
t
.

Under Assumptions 1-8, the pricing functions (2.4)-(2.5) become r : P(A× S)×Z→ R, w :
P(A× S)×Z→ R+,

r(λ, z) = zF1

µZ
A×S

aλ(da, ds),

Z
A×S

sλ(da, ds)

¶
− δ, (4.2)

w(λ, z) = zF2

µZ
A×S

aλ(da, ds),

Z
A×S

sλ(da, ds)

¶
. (4.3)

Moreover, a typical consumer’s decision problem at date t (3.1) can be formulated by the following

dynamic programming:

V (at, st, zt, (λτ )τ≥t) = sup
a0∈Γ(at,st,zt,λt)

u((1 + r(λt, zt))at + w(λt, zt)st − a0) (4.4)

+β

Z
S×Z

V (a0, s0, z0, (λτ )τ≥t+1)Q(ds0, dz0, st, zt).

This problem is studied in Lemma 4 below.

To derive a recursive characterization, it is important to select state variables. A current state

must be a sufficient statistic for the future evolution of the system. With incomplete markets

and heterogeneous consumers, equilibrium prices generally depend on the distribution of assets

across the consumers. Thus, it is natural to include the aggregate distribution as a state variable.

The question is whether it constitutes a sufficient endogenous aggregate state. To answer this

question, I define a notion of equilibrium correspondence in the next subsection.

4.1. Equilibrium Correspondence

I first provide a lemma characterizing an equilibrium sequence of aggregate distributions.
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Lemma 4. Let Assumptions 1-8 hold. Then:

(i) There is a unique continuous and bounded function V : A× S×Z×P∞(A× S)→ R and
a unique continuous policy function g : A× S× Z×P∞(A× S)→ A solving problem (4.4).

(ii) Any equilibrium sequence of aggregate distributions (λt)t≥0 is characterized by the follow-
ing equations: for t ≥ 0, A×B ∈ B(A)× B(S),Z

A×S
sλt(z

t)(da, ds) = N(zt), (4.5)

λt+1(z
t+1)(A×B) =

Z
A×S

1A(g(at, st, zt, (λτ )τ≥t))Q(B, zt+1, st, zt)λt(zt)(dat, dst), (4.6)

where λ0 is given.

Equation (4.5) is the labor market clearing condition. Equation (4.6) says that the evolution of

(λt)t≥0 must be consistent with consumers’ optimal behavior. It embodies rational expectations.

I now define an equilibrium correspondence E : Z×P(A× S)→ P∞(A× S), where E(z,λ) is
the set of equilibrium sequences of aggregate distributions associated with an initial aggregate

state (z,λ). Theorem 1 shows that E(z,λ) is nonempty and compact so that the correspondence
E is well defined.

Lemma 5. Under Assumptions 1-8, the equilibrium correspondence E is upper hemicontinuous.

Because the equilibrium correspondence is generally not single-valued, there may be multiple

equilibrium trajectories that are consistent with a given initial aggregate distribution and a given

initial value of aggregate shock. This implies that the current aggregate distribution is typically

not a sufficient (endogenous) statistic for the future evolution of the aggregate distributions (or

prices). This motivates the need for additional state variables.

Before I turn to recursive characterizations in the next subsection, I define another corre-

spondence. Let

X = {(z,λ, v) ∈ Z×P(A× S)×C(A× S× Z×P(A× S)) :
∃µ ∈ E(z,λ), v(·, z,λ) = V (·, z, µ))}

Define a correspondence ϕ : X→ P∞(A× S) by

ϕ(z,λ, v) = {µ ∈ E(z,λ) : v(·, z,λ) = V (·, z, µ)}.
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Thus, the correspondence ϕ assigns to any point (z,λ, v) ∈ X the set of equilibrium sequences of

aggregate distributions µ with the property that the expected payoff to consumer i is v(a, s, z,λ)

when the initial state is (ai0, s
i
0, z0,λ0) = (a, s, z,λ).

Lemma 6. Under Assumptions 1-8, the correspondence ϕ is upper hemicontinuous.

4.2. Recursive Equilibria

Inspired by the literature on sequential games [13, 6, 8], I include the expected payoffs as an

additional endogenous state variable and define a recursive equilibrium as follows.

Definition 2. A recursive (competitive) equilibrium ((f, T v, G), (r, w)) consists of a measurable

policy function f : A× S×Z×P(A× S)×C(A× S× Z×P(A× S)) → A, a measurable map-
ping T v : Z×P(A× S)×C(A× S× Z×P(A× S))→ C(A× S× Z×P(A× S)), a measurable
mapping G : Z×P(A× S)× C(A× S× Z×P(A× S))× Z→ P(A× S), and measurable pricing
functions r : P(A× S)×Z→ R and w : P(A× S)×Z→ R+ such that:

(i) Given the pricing functions r and w, the policy function f solves the following problem

v(a, s, z,λ) = sup
a0∈Γ(a,s,z,λ)

u((1 + r(λ, z))a+ w(λ, z)s− a0) + β

Z
S×Z

v0(a0, s0, z0,λ0)Q(ds0, dz0, s, z),

where v ∈ C(A× S× Z×P(A× S)) and

v0(·) = T v(z,λ, v)(·) ∈ C(A× S× Z×P(A× S)) and λ0 = G(z,λ, v, z0).

(ii) The firm maximizes profits so that r and w satisfy (4.2)-(4.3).

(iii) The sequence of aggregate distributions induced by G is such that labor markets clear:R
A×S sλt(da, ds) = N(z

t), ∀zt ∈ Zt, where λt+1 = G(zt,λt, vt, zt+1) and λ0 is given.

(iv) The law of motion for aggregate distributions G is generated by the individual optimal

policy f, i.e., for all A×B ∈ B(A)× B(S),

G(z,λ, v, z0)(A×B) =
Z
A×S

1A(f(a, s, z,λ, v))Q(B, z
0, s, z)λ(da, ds).
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Remark 3. If individual shocks and aggregate shocks are independent, then Q(B, z0, s, z) does
not depend on z0 so that G does not depend on z0. In this case, λ0 = G(z,λ, v). Note that

requirement (iv) embodies rational expectations. It is justified by the analysis in section 3.2 and

Lemmas 2 and 4.

The following theorem shows that given an initial state, a recursive equilibrium generates a

sequential competitive equilibrium.

Theorem 2. Let Assumptions 1-8 hold. Given the initial state ((ai0, s
i
0)i∈I , z0,λ0, v0), a recursive

equilibrium ((f, T v,G), r, w) generates a sequential competitive equilibrium (((ait+1, c
i
t)t≥0)i∈I ,

(rt, wt)t≥0) in which consumer i’s expected discounted utilities are given by v0(ai0, si0, z0,λ0).

The dynamics of the sequential competitive equilibrium (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0) is de-

scribed as follows. Given the initial state ((ai0, s
i
0)i∈I , z0,λ0, v0), the interest rate and the wage

rate are given by r0 = r(λ0, z0) and w0 = w(λ0, z0), respectively. Consumer i accumulates as-

sets ai1 = f(ai0, s
i
0, z0,λ0, v0) and consumes the remaining wealth c

i
0 = (1 + r0)a

i
0 + w0s

i
0 − ai1.

At date 1, when the realizations of individual shocks and aggregate shocks are (si1)i∈I and z1,
the date 1 state ((ai1, s

i
1)i∈I , z1,λ1, v1) is determined by the mappings (f,G, T v). In particular,

λ1 = G(z0,λ0, v0, z1), v1 = T
v(z0,λ0, v0). Then the date 1 prices are given by r1 = r(λ1, z1) and

w1 = w(λ1, z1). Under these prices, consumer i accumulates assets a
i
2 = f(a

i
1, s

i
1, z1,λ1, v1) and

consumes the remaining wealth ci1 = (1+r1)a
i
1+w1s

i
1−ai2. The state then moves to date 2, and

so on. Finally, the expected payoff to consumer i in the equilibrium (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0)

is given by v0(a
i
0, s

i
0, z0,λ0).

Does a recursive equilibrium exist? Can any sequential competitive equilibrium be generated

by a recursive equilibrium? The following theorem answers these questions.

Theorem 3. Under Assumptions 1-8, for any competitive equilibrium (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0)

with the sequence of aggregate distributions µ∗, there exists a payoff equivalent competitive equi-
librium that is generated by a recursive equilibrium.

This theorem implies that a recursive equilibrium exists. Moreover, any payoff implied by a

sequential competitive equilibrium can be generated by a recursive equilibrium.

The key to the proof of the theorem is to construct an equilibrium sequence of aggregate

distributions µ = (λt)t≥0 such that its law of motion satisfies (iv) in Definition 2. This is

achieved by taking a measurable selection ξ from the correspondence ϕ. Then λt+1 is obtained
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as the second component of ξ(zt,λt, vt). The payoff vt+1(at+1, st+1, zt+1,λt+1) is obtained as

the continuation utility at date t+ 1, V (at+1, st+1, zt+1, ξ(zt,λt, vt)), implied by the equilibrium

sequence of aggregate distributions ξ(zt,λt, vt) when the economy starts at date t. This reflects

rational expectations formed at the previous date. Moreover, vt+1 serves as a device to select

the ‘continuation’ equilibrium ξ(zt+1,λt+1, vt+1) when the economy starts at date t+ 1. Finally,

since the dynamics of the constructed equilibrium is stationary, the mappings (f, T v, G) can be

constructed so that a recursive equilibrium is obtained.

Turn to another recursive characterization proposed by Krusell and Smith [29], which assumes

that the aggregate distribution does constitute a sufficient endogenous (aggregate) state.

Definition 3. A KS-recursive (competitive) equilibrium ((v, h,H), (r, w)) consists of a value

function v : A×S× Z×P(A× S)→ R, a measurable policy function h : A×S× Z×P(A× S)→ A,
a measurable mapping H : P(A× S)× Z2 → P(A× S), and measurable pricing functions r :
P(A× S)×Z→ R and w : P(A× S)×Z→ R+ such that:

(i) Given the function H and the pricing functions r and w, v and h solve the problem:

v(a, s, z,λ) = sup
a0∈Γ(a,s,z,λ)

u((1 + r(λ, z))a+ w(λ, z)s− a0) + β

Z
S×Z

v(a0, s0, z0,λ0)Q(ds0, dz0, s, z),

(4.7)

subject to λ0 = H(λ, z, z0).

(ii) The firm maximizes profits so that r and w satisfy (4.2)-(4.3).

(iii) The sequence of aggregate distributions induced by H is such that labor markets clear:R
A×S sλt(da, ds) = N(z

t), ∀zt ∈ Zt, where λt+1 = H(λt, zt, zt+1) and λ0 is given.

(iv) The law of motion for aggregate distributions H is generated by the individual optimal

policy h, i.e., for all A×B ∈ B(A)× B(S),

H(λ, z, z0)(A×B) =
Z
A×S

1A(h(a, s, z,λ))Q(B, z
0, s, z)λ(da, ds).12 (4.8)

It is straightforward to show that a KS-recursive equilibrium generates a sequential com-

petitive equilibrium. Does a KS-recursive equilibrium exist? One possible approach to prov-

ing the existence of a KS-recursive equilibrium is the following. Given an arbitrary mapping

H : P(A× S)× Z2 → P(A× S), let the optimal policy for (4.7) be given by a0 = eh(a, s, z,λ;H).
12This condition can be justified by a similar analysis to that in section 3.2.
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Then following similar arguments in section 3.2, one can derive a new law of motion for aggregate

distributions

eH(λ, z, z0)(A×B) = Z
A×S

1A(eh(a, s, z,λ;H))Q(B, z0, s, z)λ(da, ds),
where A × B ∈ B(A) × B(S). This induces a map Ψ on the space of all H functions defined by

Ψ(H) = eH. Finally, a fixed point of Ψ induces a recursive equilibrium.
Another approach is to start with a given function h : A× S× Z×P(A× S)→ A. Then the

next period aggregate distribution is given by

λ0(A×B) =
Z
A×S

1A(h(a, s, z,λ))Q(B, z
0, s, z)λ(da, ds).

Now substitute the above expression for λ0 into (4.7). Let the optimal policy be a0 = eh(a, s, z,λ;h).
This induces a map Φ on the space of all h functions defined by Φ(h) = eh.

The problem with both approaches is that it seems to be hard to find sufficient structure for

the space of functions H or h and the mapping Ψ or Φ so that a suitable fixed point theorem

can be applied.

However, if the competitive equilibrium is unique for any aggregate distribution and for any

realization of aggregate shocks, then a KS-recursive equilibrium exists.

Theorem 4. Under Assumptions 1-8, if the equilibrium correspondence is single-valued, then

there exists a KS-recursive equilibrium.

The condition that the competitive equilibrium is globally unique is very strong because it is

typically the case that there are multiple equilibria for an incomplete markets economy. It is an

open question whether a KS-recursive equilibrium exists without this condition.

5. CONCLUDING REMARKS

This paper has described the Bewley-style model with aggregate shocks in terms of sequence

of aggregate distributions. The existence of competitive equilibrium is proven and a recursive

characterization is established.

To conclude, I first discuss the implication for calibration of the no aggregate uncertainty

condition. I then analyze the relation with anonymous games, as promised in the introduction.

Finally, I outline an extension of the model.
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5.1. Implication for Calibration

The no aggregate uncertainty condition imposes a restriction on the shock processes. This re-

striction must be considered when calibrating the model. To illustrate, consider an environment

studied in Krusell and Smith [29].

Let the aggregate shock zt take two values zg and zb representing good technology and bad

technology respectively. Let the individual shock sit take two values 0 and 1 representing un-

employed status and employed status respectively. Thus, Z = {zg, zb} and S = {0, 1}. Assume
that individual shocks (sit) and aggregate shocks (zt) are correlated and that for φ-a.e. i, (s

i
t)

and (zt) follow jointly a Markov process with a transition matrix (πzsz0s0), where z, z
0 ∈ Z and

s, s0 ∈ S. The interpretation is that given the aggregate and individual shocks (z, s), πzsz0s0 is
the probability that the aggregate and individual shocks tomorrow take the value (z0, s0).

The aggregate distribution of employment shocks at date t, νt ∈ P(S), is defined by

νt(s) = φ(i ∈ I : sit = s), s = 0, 1.

Thus, νt(s) is the mass of consumers whose employment status is s = 0, 1. Furthermore, by the

labor market clearing condition one can derive that

N(zt) =

Z
I
sitφ(di) =

Z
S
sνt(ds) = νt(1).

Note that νt is the marginal distribution of the aggregate distribution λt defined in (4.1).

Under the conditional no aggregate uncertainty condition Assumption 6, it follows from Lemma

4 that given the history of aggregate shocks zt+1, (νt)t≥0 must satisfy:

νt+1(s)(z
t+1) = πzt0zt+1sνt(0)(z

t) + πzt1zt+1sνt(1)(z
t). (5.1)

This equation can also be rewritten in a recursive form:

ν0(s) = πz0z0sν(0) + πz1z0sν(1).

Equation (5.1) constitutes all the relevant restrictions under the conditional no aggregate uncer-

tainty condition Assumption 6. In particular, equation (5.1), together with the exogenously given

employment data, imposes a restriction on the transition matrix (πzsz0s0). Thus when parame-

terizing the model in order to solve it numerically, one must take this restriction into account.

5.2. Relation with Anonymous Games

The Bewley-style model with ex identical consumers can be described as an anonymous sequential

game. Let Assumptions 1-8 hold. The set of players is I = [0, 1]. A player’s characteristics are
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described by the individual states (ait, s
i
t). His action at date t is consumption choice c

i
t ∈ R+.

A distributional strategy at date t, τ t, is a measurable mapping from Zt to P(A× S×R+). The
interpretation is that given the history of aggregate shocks zt, the marginal distribution of τ t on

A× S gives the aggregate distribution λt, and the conditional distribution of τ t on R+ gives a
mixed strategy for individuals in state (a, s). Following [31, 23, 7, 8], the equilibrium notion is

defined in terms of distributional strategies. An equilibrium for the anonymous sequential game

is a distributional strategy τ = {τ t}t≥0 such that: (i) The aggregate distribution at date t + 1
(the marginal distribution of τ t+1) must be consistent with the date t distributional strategy τ t

and the transition of individual state,

λt+1(z
t+1)(A×B) = τ t+1(z

t+1)(A×B ×R+)
=

Z
A×S×R+

1A((1 + r(λt(z
t), zt))a+ w(λt(z

t), zt)s− c))Q(B, zt+1, s, zt)τ t(da, ds, dc)(zt),

where A×B ∈ B(A)×B(S). (ii) Almost all players optimizes under the measure τ t for all zt ∈ Zt
at each date t,

τ t ({(a, s, c) ∈ A× S×R+ : c ∈ Γ(at, st, zt, τ t), and for all ec ∈ Γ(at, st, zt, τ t),
u(c) + βE [W ((1 + r(λt, zt))at + w(λt, zt)st − c, st+1, zt+1, τ)|st, zt]
≥ u(ec) + βE [W ((1 + r(λt, zt))at + w(λt, zt)st − ec, st+1, zt+1, τ)|st, zt]}) = 1,

where W is given by the following dynamic programming problem:

W (at, st, zt, τ) = sup
ct∈Γ(at,st,zt,λt)

u(ct)

+β

Z
S×Z

W ((1 + r(λt, zt))at + w(λt, zt)st − ct, s0, z0, τ)Q(ds0, dz0, st, zt).

(iii) The aggregate distribution at each date t must satisfy the labor market clearing condition:Z
A×S

sλt(da, ds)(z
t) = N(zt), ∀zt ∈ Zt.

This equilibrium notion extends Jovanovic and Rosenthal [23] to allow for aggregate shocks.

Note that it does not fit into the framework studied by Bergin and Bernhardt [7, 8] where

intertemporal savings behavior is not considered. Thus, the existence and characterization results

in [7, 8] cannot be applied directly. However, I conjecture that similar results can be obtained

by modifying their analysis.

The more important point to be emphasized is that this equilibrium notion is different from

the competitive equilibrium studied here so that it admits different interpretations. In particular,

in anonymous games individual policies do not play any role; it is the fraction of consumers who
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take actions that matters. Moreover, prices do not play any role in anonymous games but they

are important objects of study in general equilibrium.13 Finally, anonymous games are usually

formulated for the case of ex ante identical agents. The existing anonymous game formulation

such as that given above is not suitable for the Bewley-style model with ex ante heterogeneous

agents.

My formulation follows from the early general equilibrium literature, notably Hildenbrand

[19] and Hart et al [17]; I extend the latter to dynamic economies. It is generally far from trivial

to deduce the logical relation between the competitive equilibrium and the equilibrium for the

anonymous game based on distributional strategies.14

5.3. Ex Ante Heterogeneous Consumers

So far, I have assumed that all consumers are ex ante identical. I now extend the analysis to the

case where consumers are ex ante heterogeneous. I will only outline key arguments and omit the

detailed proof.

Suppose that there are J types of ex ante identical consumers. Let I be partitioned into J dis-

joint measurable sets Ij such that I = ∪Jj=1Ij , qj = φ(Ij) > 0,
PJ
j=1 qj = 1, and let all consumers

in the set Ij be endowed with utility function u
j and discount factor βj . Furthermore, denote by

Qj the transition function of (sit, zt)t≥0 for type j consumers i ∈ Ij . Suppose Assumptions 1-8
are satisfied for each type of consumers.

Define the date t aggregate distribution for type j consumers as

λjt (A×B) = φ(i ∈ Ij : (ait, sit) ∈ A×B), A×B ∈ B(A)×B(S).

Then the economy-wide aggregate distribution at date t is given by

λt(A×B) = φ(i ∈ I : (ait, sit) ∈ A×B)

=
JX
j=1

φ(Ij)φ(i ∈ Ij : (ait, sit) ∈ A×B)

=
JX
j=1

qjλ
j
t (A×B).

Let
−→
λ t = (λ

1
t , ...,λ

J
t ) be the vector of aggregate distributions at date t, and let

−→µ = (
−→
λ t)t≥0 be

the sequence of these vectors.

13See [25] for a strategic market game model of competitive price formation.
14There is a parallel relation between Schmeidler’s [33] formulation and Mas-Collel’s [31] formulation. See [27]

for further discussions.
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Now consider a typical type j consumer’s decision problem. We can derive a dynamic pro-

gramming problem similar to (4.4). The difference is that the state variables are (at, st, zt, (
−→
λ τ )τ≥t),

instead of (at, st, zt, (λt)t≥τ ). Since all type j consumers are ex ante identical, they choose the
same policy function gj . One can apply a similar argument to that in section 3.2 to derive the

evolution of the aggregate distribution for type j consumers:

λjt+1(z
t+1)(A×B) =

Z
A×S

1A(g
j(at, st, zt, (

−→
λ τ )τ≥t))Qj(B, zt+1, st, zt)λt(dat, dst)(zt), t ≥ 0,

Given a sequence of the vectors of aggregate distributions (
−→
λ t)t≥0, define a new sequence of

the vectors of aggregate distributions (
f−→
λ t)t≥0 by: eλj0(z0) = λj0(z0),

eλjt+1(zt+1)(A×B) = Z
A×S

1A(g
j(at, st, zt, (

−→
λ τ )τ≥t))Qj(B, zt+1, st, zt)λjt (dat, dst)(z

t), (5.2)

for t ≥ 0 and j = 1, ..., J. Finally, define a mapping Θ : (
−→
λ t)t≥0 7→ (

f−→
λ t)t≥0. A fixed point

induces a sequential competitive equilibrium.

A recursive equilibrium can be derived as in section 4.2. The difference is that each state

variable must take into account the vector of all types of consumers; for example, the state

variable of assets a should be the vector (a1, ..., aJ).
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A. Appendix

Proof of Lemma 1:

Define an operator T on V∞ as follows. For v ∈ V∞, let tth component of Tv(at, st, zt, µ) be the
expression

(Tv)t(at, s
t, zt, µ) = max

at+1∈Γ(at,st,zt,λt(zt))
u((1 + rt(λt(z

t), zt))at + wt(λt(z
t), zt)st − at+1)

+β

Z
S×Z

vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, s

t, zt), (A.1)

I first show that Tv ∈ V∞. It is immediate that each (Tv)t is bounded. To show conti-

nuity of (Tv)t, I apply the Maximum Theorem. Consider a sequence (at+1, at, s
t, zt, µ)n →

(at+1, at, s
t, zt, µ). Since Z is countable, (zt)n = zt for all n large enough. By (2.9)-(2.10) and

the definition of weak convergence, rt(λ
n
t ((z

t)n), (zt)
n) → rt(λt(z

t), zt), wt(λ
n
t ((z

t)n), (zt)
n) →

wt(λt(z
t), zt). Thus, Γ is a continuous correspondence. Moreover, the first term on the right-

hand side of (A.1) is continuous in (at+1, at, s
t, zt, µ) since u is continuous.

Turn to continuity of the second term. For n sufficiently large,Z
S×Z

vt+1((at+1)
n, (st)n, st+1, (z

t)n, zt+1, µ
n)Qt+1(dst+1, dzt+1, (s

t)n, (zt)n)

=

Z
S×Z

vt+1((at+1)
n, (st)n, st+1, z

t+1, µn)Qt+1(dst+1, dzt+1, (s
t)n, zt).

Thus, it is sufficient to show that the following expression converges to zero:¯̄̄̄Z
S×Z

vt+1((at+1)
n, (st)n, st+1, z

t+1, µn)Qt+1(dst+1, dzt+1, (s
t)n, zt)

−
Z
S×Z

vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, s

t, zt)

¯̄̄̄

≤
¯̄̄̄Z
S×Z

vt+1((at+1)
n, (st)n, st+1, z

t+1, µn)Qt+1(dst+1, dzt+1, (s
t)n, zt) (A.2)

−
Z
S×Z

vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, (s

t)n, zt)

¯̄̄̄
+

¯̄̄̄Z
S×Z

vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, (s

t)n, zt)

−
Z
S×Z

vt+1(at+1, s
t+1, zt+1, µ)Qt+1(dst+1, dzt+1, s

t, zt)

¯̄̄̄
.

Since ((at+1)
n, (st)n, st+1, z

t+1, µn)→ (at+1, s
t+1, zt+1, µ), there is a compact set D ⊂ A× St+1×

Zt+1 × P∞(A× S) such that ((at+1)n, (st)n, st+1, zt+1, µn) ∈ D for all n large enough, and
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(at+1, s
t+1, zt+1, µ) ∈ D. Since vt+1 is continuous, it is uniformly continuous on D. Thus, for

every ε > 0, there exists N > 1 such that for all n > N, st+1 ∈ S, and zt+1 ∈ Zt+1,¯̄
vt+1((at+1)

n, (st)n, st+1, z
t+1, µn)− vt+1(at+1, st+1, zt+1, µ)

¯̄
< ε.

This implies that the first absolute value in (A.2) vanishes as n→∞. The second absolute value
also vanishes by the Feller property.

Next, T is a contraction by a straightforward application of the Blackwell Theorem adapted

to the space V∞ (see [14, Lamma A.1]). Finally, applying the Contraction Mapping Theorem

and the Maximum Theorem yields the desired results.

Proof of Lemma 3:

I first show bP(A× St) is compact. Then bP∞(A× St) is also compact under the product topology.
For any λ ∈ bP(A× St) and a0 > 0,

bK ≥ Z
A×St

aλ(da, dst) ≥
Z
[a0,∞]×St

aλ(da, dst) ≥ a0λ([a0,∞)× St).

This implies that for any ε > 0, there exists an a0 large enough such that λ([a0,∞) × St) < ε.

Thus, bP(A× St) is tight and hence relatively compact (see [4, Theorem 14.22]). Furthermore,bP(A× St) is closed with respect to the weak convergence topology. It follows that bP(A× St) is
compact.

Proof of Theorem 1:

I verify that the map ψ : bP∞(A× S)→ P∞(A× S) defined in section 3.3 satisfies the conditions
of the Brouwer-Schauder-Tychonoff Fixed Point Theorem ([4, Corollary 16.52]). I first show

that ψ maps from bP∞(A× S) into itself. Let µ = (λ0,λ1, ...) ∈ bP∞(A× S). Then ψ(µ) = eµ =
(eλ0, eλ1, ...) is defined as in (3.2). It follows from (3.2) and Assumption 5 thatZ

A×St
aeλt+1(da, dst+1) =

Z
A×St

gt+1(at, s
t, zt, µ)λt(dat, ds

t)

≤
Z
A×St

[(1 + rt(λt, zt))at + wt(λt, zt)st]λt(dat, ds
t)

= (1 + rt(λt, zt))Kt + wt(λt, zt)Nt

= (1− δ)Kt + ztF (Kt, Nt)

≤ (1− δ) bK + zF ( bK, bN) = bK.
Thus, ψ(µ) ∈ bP∞(A× S).
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Finally, I show that ψ is continuous. Fix a history of aggregate shocks z∞. Let the sequence
of aggregate shocks µk → µ (k → ∞), µk, µ ∈ bP∞(A× S). Obviously, eλk0 = λk0 → λ0 = eλ0. For
any t ≥ 0, it follows from (3.2) that for any bounded and continuous function h : A× St+1 → R,Z

A×St+1
h(at, s

t+1)eλkt+1(dat, dst+1)
=

Z
A×St

Z
St+1

h(gt+1(at, s
t, zt, µk), st+1)Qt+1(ds

t+1, zt+1, s
t, zt)λkt (dat, ds

t)

converges to Z
A×St

Z
St+1

h(gt+1(at, s
t, zt, µ), st+1)Qt+1(ds

t+1, zt+1, s
t, zt)λt(dat, ds

t)

=

Z
A×St+1

h(at, s
t+1)eλt+1(dat, dst+1),

where I have used the facts that λkt converges to λt weakly and that gt+1 is continuous in at, s
t,

and µk by Lemma 1.

Proof of Lemma 4:

(i) LetW denote the set of uniformly bounded and continuous real-valued functions on A× S×
Z × P∞(A× S), where P∞(A× S) = ×∞t=0P(A× S)Z

t
. Let W∞ denote the set of sequences

W = (W,W,W, ....) of such functions. Note that W∞ is a complete metric space if endowed with

the norm ¯̄¯̄
W
¯̄¯̄
= sup
(a,s,z,µ)

|W (a, s, z, µ)| .

Let the pricing functions r : P(A× S)×Z→ R and w : P(A× S)×Z→ R+ be defined as in

(4.2)-(4.3).

Next, let W = (W,W, ...) ∈ W∞. Given any sequence of aggregate distributions (λt)t≥0,
rewrite problem (A.1) as

(TW )t(at, st, zt, (λτ )τ≥t) = sup
at+1∈Γ(at,st,zt,λt)

u((1 + r(λt, zt))at +w(λt, zt)st − at+1)

+β

Z
S×Z

W (at+1, st+1, zt+1, (λτ )τ≥t+1)Q(dst+1, dzt+1, st, zt),

where I have applied Assumptions 7-8. Since the expression on the right side of the above equation

is a time invariant function of (at, st, zt, (λτ )τ≥t), the operator T maps a sequence of time invariant
function to another sequence of time invariant function. Thus, the fixed point of T is a sequence

of time invariant function, denoted by (V, V, ....) where V : A× S × Z × P∞(A× S) → R is

continuous. The corresponding sequence of optimal policies is also time invariant, denoted by
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(g, g, ...) where g : A× S × Z × P∞(A× S) → R. Moreover, g is continuous by the Maximum
Theorem.

Part (ii) follows from Theorem 1 and the surrounding discussions.

Proof of Lemma 5:

Using a similar argument surrounding Lemma 3, one can restrict the range of the correspondence

E to be a compact space. By Theorem 1, E is closed-valued. Thus, to show that E is upper
hemicontinuous, it suffices to show that E has a closed graph by the Closed Graph Theorem [4,

Theorem 16.12].

Let (z,λ)n be a sequence converging to (z,λ). Let ((λt)t≥0)n ∈ E(zn,λn) (λ0 = λ) be a

sequence of equilibrium sequence of aggregate distributions that converges to (λt)t≥0. Then for
any bounded and continuous function f on A× S,Z

A×S
f(a, s)λn1 (z

1)(da, ds) =

Z
A×S

Z
S
f(g(a0, s0, z

n, (λnτ )τ≥0), s
0)Q(ds0, z1, s0, z0)λn0 (da0, ds0)

converges to
R
A×S f(a, s)λ1(z

1)(da, ds). Since g is continuous, the expression on the RHS of the

above equation converges toZ
A×S

Z
S
f(g(a0, s0, z, (λτ )τ≥0), s0)Q(ds0, z1, s0, z0)λ0(da0, ds0).

Thus it equals
R
A×S f(a, s)λ1(z

1)(da, ds). This implies that

λ1(z
1)(A×B) =

Z
A×S

1A(g(a0, s0, z, (λτ )τ≥0)Q(B, z1, s0, z0)λ0(da0, ds0).

Similarly, one can derive that for any t ≥ 1,λt satisfies (4.6).

Finally, because V is continuous, (λt)t≥0 satisfies the dynamic programming equation (4.4).
Further, (λt)t≥0 clearly satisfies (4.5). Thus, by Lemma 4, (λt)t≥0 is an equilibrium sequence of

aggregate distributions, i.e., (λt)t≥0 ∈ E(z,λ).

Proof of Lemma 6:

By a similar argument to that in Lemma 5, it suffices to show that ϕ has a closed graph.

This follows immediately from its definition and the fact that V is continuous and E is upper
hemicontinuous established in Lemma 5.

Proof of Theorem 2:
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I show that the tuple (((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0) described below the statement of Theorem

2 in the main text constitutes a competitive equilibrium. First, it is clear that given prices (rt)

and (wt), the firm maximizes profits. Second, I verify the market clearing condition. Integrating

with respect to the measure φ yields:

Ct +Kt+1 =

Z
I
citφ(di) +

Z
I
ait+1φ(di)

= (1 + rt)

Z
I
aitφ(di) + wt

Z
I
sitφ(di)

= (1 + rt)Kt + wtNt

= ztF (Kt, Nt) + (1− δ)Kt,

where the last equality follows from the construction of rt and wt and the homogeneity of F.

Finally, given the constructed sequence of aggregate distributions (λt)t≥0, by part (i) in Definition
2 and the principle of optimality, one can show that for any consumer i, (ait+1, c

i
t)t≥0 is optimal.

Moreover, the implied expected discounted utilities are given by v0(a
i
0, s

i
0, z0,λ0).

Proof of Theorem 3:

By Lemma 4, there exists continuous functions V and g solving the dynamic programming prob-

lem (4.4). Moreover, the first period expected payoffs to consumer i implied by the equilibrium

(((ait+1, c
i
t)t≥0)i∈I , (rt, wt)t≥0) are given by V (ai0, si0, z0, µ∗).

Step 1. Since the correspondence ϕ is upper hemicontinuous by Lemma 6, it follows from

[19] that there exists a measurable selection ξ from ϕ. I use ξ to construct a recursive equilibrium

with the expanded state space. Let v0(a0, s0, z0,λ0) = V (a0, s0, z0, µ
∗).

Step 2. Let µ1 = (λ0, ξ(z1,λ1, v1)) where λ1 = ξ2(z0,λ0, v0), the second component of

sequence of distributions ξ(z0,λ0, v0), and v1(a1, s1, z1,λ1) = V (a1, s1, z1, ξ(z0,λ0, v0)). Claim

that µ1 is a sequence of aggregate distributions arising from an equilibrium with the expected

payoffs given by V (a0, s0, z0, µ
∗).

By construction, ξ(z1,λ1, v1) is an equilibrium sequence of aggregate distributions for an econ-

omy starting from date 1 with the initial data ((ai1, s
i
1)i∈I , z1,λ1). Moreover, the expected payoff

satisfies V (a1, s1, z1, µ
1) = V (a1, s1, z1, ξ(z1,λ1, v1)). By the definition of ξ, V (a1, s1, z1, ξ(z1,λ1, v1)) =

v1(a1, s1, z1,λ1). Thus, V (a1, s1, z1, µ
1) = V (a1, s1, z1, ξ(z0,λ0, v0)).

At date 0, given the sequence of aggregate distributions µ1 the consumer solves the dynamic

programming problem

V (a0, s0, z0, µ
1) = sup

a1∈Γ(a0,s0,z0,λ0)
u((1 + r(λ0, z0))a0 + w(λ0, z0)s0 − a1) (A.3)
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+β

Z
S×Z

V (a1, s1, z1, µ
1)Q(ds1, dz1, s0, z0).

The optimal policy g induces an aggregate distribution at date 1,

eλ1(z1)(A×B) = Z
A×S

1A(g(a0, s0, z0, µ
1))Q(B, z1, s0, z0)λ0(da0, ds0).

On the other hand, since V (a1, s1, z1, µ
1) = V (a1, s1, z1, ξ(z0,λ0, v0)), the date 0 dynamic pro-

gramming problem (A.3) is the same as that when the sequence of aggregate distributions is given

by ξ(z0,λ0, v0). In particular, V (a0, s0, z0, µ
1) = V (a0, s0, z0, ξ(z0,λ0, v0)) = v0(a0, s0, z0,λ0) =

V (a0, s0, z0, µ
∗). Since u is strictly concave, it follows from a standard argument that V is strictly

concave in a.Thus, the optimum in (A.3) is unique so that g(a0, s0, z0, µ
1) = g(a0, s0, z0, ξ(z0,λ0, v0)).

Finally, since ξ(z0,λ0, v0) is an equilibrium sequence of aggregate distributions, ξ2(z0,λ0, v0) must

be consistent with individual optimal behavior so that eλ1 = ξ2(z0,λ0, v0) = λ1. Thus, µ
1 is an

equilibrium sequence of aggregate distributions.

Step 3. Let µ2 = (λ0, ξ2(z0,λ0, v0), ξ(z2,λ2, v2)) where λ2 = ξ2(z1,λ1, v1) and v2(a2, s2, z2,λ2) =

V (a2, s2, z2, ξ(z1,λ1, v1)). Claim that µ2 is a sequence of aggregate distributions arising from an

equilibrium with expected payoffs given by V (a0, s0, z0, µ
∗).

By construction, ξ(z2,λ2, v2) is an equilibrium sequence of aggregate distributions for an econ-

omy starting from date 2 with the initial data ((ai2, s
i
2)i∈I , z2,λ2). Moreover, the expected payoff

satisfies V (a2, s2, z2, µ
2) = V (a2, s2, z2, ξ(z2,λ2, v2)). By the definition of ξ, V (a2, s2, z2, ξ(z2,λ2, v2)) =

v2(a2, s2, z2,λ2). Thus, V (a2, s2, z2, µ
2) = V (a2, s2, z2, ξ(z1,λ1, v1)).

At date 1, given the sequence of aggregate distributions µ2 the consumer solves the dynamic

programming problem

V (a1, s1, z1, µ
2) = sup

a2∈Γ(a1,s1,z1,λ1)
u((1 + r(λ1, z1))a1 + w(λ1, z1)s1 − a2) (A.4)

+β

Z
S×Z

V (a2, s2, z2, µ
2)Q(ds2, dz2, s1, z1).

The optimal policy induces an aggregate distribution:

eλ2(z2)(A×B) = Z
A×S

1A(g(a1, s1, z1, µ
2))Q(B, zt, s1, z1)λ1(da1, ds1).

Because V (a2, s2, z2, µ
2) = V (a2, s2, z2, ξ(z1,λ1, v1)), the dynamic programming problem (A.4) is

the same as that when the sequence of aggregate distributions is ξ(z1,λ1, v1). Thus, V (a1, s1, z1, µ
2) =

V (a1, s1, z1, ξ(z1,λ1, v1)). Moreover, following similar reasoning in step 2, g(a1, s1, z1, µ
2) =

g(a1, s1, z1, ξ(z1,λ1, v1)) and eλ2 = λ2 = ξ2(z1,λ1, v1).
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At date 0, the consumer solves the dynamic programming

V (a0, s0, z0, µ
2) = sup

a1∈Γ(a0,s0,z0,λ0)
u((1 + r(λ0, z0))a0 + w(λ0, z0)s0 − a1) (A.5)

+β

Z
S×Z

V (a1, s1, z1, µ
2)Q(ds1, dz1, s0, z0).

The optimal policy induces an aggregate distribution

λ1(z
1)(A×B) =

Z
A×S

1A(g(a0, s0, z0, µ
2))Q(B, z1, s0, z0)λ0(da0, ds0).

Because V (a1, s1, z1, µ
2) = V (a1, s1, z1, ξ(z1,λ1, v1)) = v1(a1, s1, z1,λ1) = V (a1, s1, z1, ξ(z0,λ0, v0)),

the dynamic programming problem (A.5) is the same as that when the sequence of aggre-

gate distribution is ξ(z0,λ0, v0). In particular, V (a0, s0, z0, µ
2) = V (a0, s0, z0, ξ(z0,λ0, v0)) =

v0(a0, s0, z0,λ0) = V (a0, s0, z0, µ
∗). Thus, following similar reasoning in Step 2, g(a0, s0, z0, µ2) =

g(a0, s0, z0, ξ(z0,λ0, v0)) and λ1 = λ1 = ξ2(z0,λ0, v0).

Step 4. Proceeding in this way, one can construct a sequence of sequences of aggregate

distributions (µn)n≥1, each of which arises from an equilibrium with expected payoffs given by

V (a0, s0, z0, µ
∗). This sequence (µn)n≥1 converges to a limit

µ = (λ0, ξ2(z0,λ0, v0), ξ2(z1,λ1, v1), ξ2(z2,λ2, v2), ...)

in E(z0,λ0) in the product topology. Thus, µ is an equilibrium sequence of aggregate distributions.
Moreover, it arises from an equilibrium with expected payoffs given by V (a0, s0, z0, µ

∗).

Define the mappings,

f(a, s, z,λ, v) = g(a, s, z, ξ(z,λ, v)),

G(z,λ, v, z0)(A×B) =

Z
A×S

1A(g(a, s, z, ξ(z,λ, v))Q(B, z
0, s, z)λ(da, ds),

and

T v(z,λ, v)(a0, s0, z0,λ0) = V (a0, s0, z0, ξ(z,λ, v)),

where λ0 is the second component of the sequence ξ(z,λ, v). Then ((f, T v, G), (r, w)) is a recursive
equilibrium. Finally, in the competitive equilibrium generated by this recursive equilibrium,

consumer i has the expected discounted utilities V (ai0, s
i
0, z0, µ

∗).

Proof of Theorem 4:

By Theorem 1, given the initial state (a, s, z,λ), there is an equilibrium sequence of aggregate

distributions µ∗ = (λ,λ∗1,λ
∗
2, ...). Since the equilibrium is unique, the equilibrium correspondence
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E is a single-valued mapping. I now use E to construct a KS-recursive equilibrium. Define

h(a, s, z,λ) = g(a, s, z, E(z,λ)), v(a, s, z,λ) = V (a, s, z, E(z,λ)),
H(λ, z, z0)(A×B) =

Z
A×S

1A(h(a, s, z,λ))Q(B, z
0, s, z)λ(da, ds),

To show such a construction ((v, h,H), (r, w)) constitutes a KS-recursive equilibrium, it suf-

fices to show that the evolution of aggregate distributions possesses stationarity so that (4.7)

holds. To this end, consider the economy that starts at date t = 1, given the initial aggre-

gate state (z1,λ
∗
1). Because of Assumptions 7-8, this economy is the same as that starting at

date 0 with the initial state (z1,λ
∗
1) replacing (z0,λ0). Thus, since the equilibrium is unique,

E(z1,λ∗1) = (λ∗1,λ
∗
2, ...) constitutes an equilibrium sequence of aggregate distributions for the

economy starting at date 1. Moreover, λ∗1 and λ∗0 = λ are linked by the relation:

λ∗1 = H(λ, z0, z1).

Finally, by the construction of ((v, h,H), (r, w)) and (4.4), one obtains (4.7) as desired.

32



References

[1] D. Abreu, D. Pearce, and E. Stacchetti, Toward a theory of discounted repeated games with

imperfect monitoring, Econometrica, 58 (1990) 1041-1063.

[2] S.R. Aiyagari, Uninsured idiosyncratic risk and aggregate saving, Quart. J. Econ. 109 (1994)

659-684.

[3] S.R. Aiyagari, Optimal capital income taxation with incomplete markets, borrowing con-

straints and constant discounting, J. Pol. Econ., 6 (1995) 1158-1175.

[4] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, 2nd Ed., Springer-Verlag

Berlin, 1999.

[5] R.A. Becker and I. Zilcha, Stationary Ramsey equilibria under uncertainty, J. Econ. Theory,

75 (1997) 122-140.

[6] J. Bergin, A characterization of sequential equilibrium strategies in infinitely repeated in-

complete information games, J. Econ. Theory, 47 (1989) 51-65.

[7] J. Bergin and D. Bernhardt, Anonymous sequential games with aggregate uncertainty, J.

Math. Econ., 21 (1992) 543-562.

[8] J. Bergin and D. Bernhardt, Anonymous sequential games: existence and characterization

of equilibria, Econ. Theory, 5 (1995) 461-489.

[9] T. Bewley, Stationary monetary equilibrium with a continuum of independently fluctuat-

ing consumers, in W. Hildenbrand and A. Mas-Colell ed., Contributions to Mathematical

Economics in Honor of Gerard Debreu, Amsterdam: North Holland, 1986.

[10] S.K. Chakrabarti, Equilibrium with heterogeneous agents in an intertemporal model of con-

sumption and savings, Working paper, Indiana University-Purdue University Indianapolis,

2001.

[11] R.H. Clarida, International lending and borrowing in a stochastic stationary equilibrium,

Inter. Econ. Rev. 31 (1990) 543-558.

[12] P. Dubey and L.S. Shapley, Noncooperative general exchange with a continuum of traders:

two models, J. Math. Econ., 23 (1994) 253-293.

[13] D. Duffie, J. Geanakoplos, A. Mas-Colell, and A. McLennan, Stationary Markov equilibria,

Econometrica, 62 (1994) 745-781.

33



[14] L.G. Epstein and T. Wang, Intertemporal asset pricing under Knightian uncertainty, Econo-

metrica, 62 (1994) 283-322.

[15] M. Feldman and C. Gilles, An expository note on individual risk without aggregate uncer-

tainty, J. Econ. Theory, 35 (1985) 26-32.

[16] P.O. Gourinchas, Precautionary saving, life cycle, and macroeconomics, Working paper,

Princeton University, 2000.

[17] S. Hart, W. Hildenbrand and E. Kohlberg, On equilibrium allocations as distributions on

the commodity space, J. Math. Econ., 1 (1974) 159-167.

[18] J. Heaton and D. Lucas, The importance of investor heterogeneity and financial market

imperfections for the behavior of asset prices, Carnegie-Rochester Conference Series on

Public Policy, 42 (1995) 1-32.

[19] W. Hildenbrand, Core and equilibria of a large economy, Princeton University Press, Prince-

ton, NJ, 1974.

[20] H.A. Hopenhayn and E.C. Prescott, Stochastic monotonicity and stationary distributions

for dynamic economies, Econometrica, 60 (1992) 1387-1462.

[21] M. Huggett, The risk-free rate in heterogeneous-agent incomplete-insurance economies, J.

Econ. Dyn. and Control., 17 (1993) 953-969.

[22] M. Huggett, The one-sector growth model with idiosyncratic shocks: steady states and

dynamics, J. Mon. Econ., 39 (1997) 385-403.

[23] B. Jovanovic and R.W. Rosenthal, Anonymous sequential games, J. Math. Econ., 17 (1988)

77-87.

[24] K.L. Judd, The law of large numbers with a continuum of IID random variables, J. Econ.

Theory, 35 (1985) 19-25,

[25] I. Karatzas, M. Shubik and W.D. Sudderth, Construction of stationary Markov equilibria

in a strategic market game, Math. Oper. Research, 19 (1994) 975-1005.

[26] M. Ali Khan and Y.N. Sun, Pure strategies in games with private information, J. Math.

Econ., 24 (1995) 633-653.

[27] M.A. Khan and Y.N. Sun, On large games with finite actions: a synthetic treatment, in T.

Maruyama and W. Takahashi, eds., Nonlinear and Convex Analysis in Economic Theory,

Springer-Verlag, Berlin, 1994.

34



[28] P. Krusell and A.A. Smith, Jr., Income and wealth heterogeneity, portfolio choice and equi-

librium asset returns, Macroeconomic dynamics, 1 (1997) 387-422.

[29] P. Krusell and A.A Smith, Jr., Income and wealth heterogeneity in the macroeconomy, J.

Pol. Econ., 105 (1998) 867-896.

[30] F. Kubler and K. Schmedders, Recursive equilibria in economies with incomplete markets,

Macroeconomic Dynamics, 6 (2002) 284-306.

[31] A. Mas-Colell, On a theorem of Schmeidler, J. Math. Econ., 13 (1984) 201-206.

[32] J. Miao, Stationary equilibria of economies with a continuum of consumers, Working paper,

University of Rochester, 2001.

[33] D. Schmeidler, Equilibrium points of non-atomic games, J. Stat. Physics, 7 (1973) 295-300.

[34] S.E. Spear and S. Srivastava, On repeated moral hazard with discounting, Rev. Econ. Studies

54 (1987) 599-617.

[35] N. Stokey and R.E. Lucas with E. Prescott, Recursive Methods in Economic Dynamics,

Harvard University Press, 1989.

[36] K. Storesletten, C. Telmer, A. Yaron, Asset pricing with idiosyncratic risks and overlapping

generation, Working paper, Carnegie Mellon University, 2001.

[37] J. Thomas and T. Worrall, Self enforcing wage contracts, Rev. Econ. Studies, 55 (1988)

541-554.

35


