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Abstract

The current literature offers two views on the nature of the income process. According to
the first view, which we call the “restricted income profiles” (RIP) model (MaCurdy, 1982),
individuals are subject to large and very persistent shocks, while facing similar life-cycle income
profiles (conditional on a few characteristics). According to the alternative view, which we call the
“heterogeneous income profiles” (HIP) model (Lillard and Weiss, 1979), individuals are subject
to income shocks with modest persistence, while facing individual-specific income profiles. While
labor income data does not seem to distinguish between the two hypotheses in a definitive way, the
RIP model is overwhelmingly used to specify the income process in economic models, because it
delivers implications consistent with certain features of consumption data. In this paper we study
the consumption-savings behavior under the HIP model, which so far has not been investigated.
In a life-cycle model, we assume that individuals enter the labor market with a prior belief
about their individual-specific profile and learn over time in a Bayesian fashion. We find that
learning is slow, and thus initial uncertainty affects decisions throughout the life-cycle allowing
us to estimate the prior uncertainty from consumption behavior later in life. This procedure
implies that 40 percent of variation in income growth rates is forecastable by individuals at time
zero. The resulting model is consistent with several features of consumption data including (i)
the substantial rise in within-cohort consumption inequality (Deaton and Paxson 1994), (ii) the
non-concave shape of the age-inequality profile (which the RIP model is not consistent with), and
(iii) the fact that consumption profiles are steeper for higher educated individuals (Carroll and
Summers 1991). These results bring new evidence from consumption data on the nature of labor
income risk.
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1 Introduction

When markets are incomplete, labor income risk plays a central role in many decisions that individu-

als make. Understanding the nature of income risk is thus an essential prerequisite for understanding

a wide range of economic questions, such as the determination of wealth inequality (Aiyagari (1994)),

the effectiveness of self-insurance (Deaton (1991)), the welfare costs of business cycles (Lucas (2003),

and the determination of asset prices (Constantinides and Duffie (1996)), among others.

The current literature offers two views on the nature of the income process. According to the

first view, which we call the “restricted income profiles” (RIP) model, individuals are subject to

large and very persistent shocks, while facing similar life-cycle income profiles (that only vary across

the population with a few observable characteristics). According to the alternative view, which

we call the “heterogeneous income profiles” (HIP) model, individuals are subject to shocks with

modest persistence, while facing life-cycle profiles that are individual-specific (and typically vary

significantly across the population). As we discuss below, while labor income data arguably provides

more support for the second view, it does not seem to distinguish between the two hypotheses in

a definitive way. The goal of this paper is to use the restrictions imposed on consumption data by

these income processes to distinguish between the two hypotheses.

It is useful to begin with a brief discussion of the empirical evidence from labor income data. For

concreteness, suppose that the log income of individual i with t years of labor market experience is

given by:1

yit = βit+ zit (1)

zit = ρzit−1 + ηit,

where βi is the individual-specific income growth rate with cross-sectional variance σ2β; and η
i
t is the

innovation to the AR(1) process.

The early papers on income dynamics estimated (versions of) the income process given in (1)

without imposing any restrictions on its parameters (Hause (1980); Lillard and Weiss (1979)). These

studies found: (i) both statistically and quantitatively significant heterogeneity in income growth

rates
³
σ2β > 0

´
, and (ii) the persistence of income shocks to be significantly less than a random

walk (0.5 < ρ < 0.8). As noted above, these two features define the HIP model. The human capital

model (Becker (1965), Ben-Porath (1967)) implies heterogeneity in income profiles, for example, if

individuals differ in their ability level, providing one theoretical motivation for the HIP model.

In an influential paper, MaCurdy (1982) cast doubt on these findings. He tested the simple

proposition that if individuals differed systematically in their income growth rates as the HIP model

1This income process is a substantially simplified version of the models estimated in the literature, but still captures
the components necessary for the present discussion.
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suggests, then income changes should be positively autocorrelated. Instead, he found them to be

close to zero, and in fact, slightly negative. Subsequent work by Abowd and Card (1989), Topel

(1990) and Topel and Ward (1992) tested the same implication using various longer panel data

sets only to confirm MaCurdy’s conclusion. Based on this work, most of the following literature

estimated versions of the income process (1), but now imposing σ2β ≡ 0 (the RIP model), and with
this restriction, found the persistence of income shocks to be extremely high (ρ > 0.95; among

others, Hubbard, Skinner and Zeldes (1994), Moffitt and Gottschalk (1995), and Storesletten et al.

(2004)). Finally, more recently some authors have extended the analysis of the early HIP literature

using more representative panel data sets and richer econometric specifications, and confirmed the

results of this early literature (Baker (1997), Haider (2001) and Guvenen (2005)).2

Although taken together, the described empirical evidence does not indicate an overwhelming

support for the RIP model (and could be interpreted as the opposite), this specification is over-

whelmingly used as the income process in economic models. Perhaps an important reason for this

preference is that the consumption-savings behavior generated in response to the RIP model is con-

sistent with important empirical facts. For example, Deaton and Paxson (1994) have documented

the significant rise in within-cohort consumption inequality over the life-cycle. As conjectured by

these authors (and later verified by Storesletten et al. (2003)) a life-cycle model is consistent with

this observation if idiosyncratic shocks are extremely persistent. Summarizing the existing empirical

evidence, Lucas (2003) states:

The fanning out over time of the earnings and consumption distributions within a

cohort that Angus Deaton and [Christina] Paxson (1994) document is striking evidence

of a sizeable, uninsurable random walk component in earnings.

A second empirical observation, documented by Carroll and Summers (1991), is that the average

life-cycle consumption profile is hump-shaped: it rises and falls together with labor income over the

life-cycle. Again, a life-cycle model can generate this pattern if income shocks are very persistent,

as implied by the RIP model (Carroll (1992) and Attanasio et al. (1999)).

These plausible implications of the RIP model for the consumption-savings behavior–together

with the fact that the fit of the RIP model to labor income data is not dramatically worse than that

of the HIP model–have made the former the preferred income process in economic analysis. Perhaps

surprisingly though, there exists no corresponding study of the consumption-savings behavior when

the income process is the HIP model, so the implications of such a model for consumption data are

largely unknown.3 The goal of this paper is to fill this gap.

2 It is then curious that the conclusion reached by MaCurdy’s test seems to contradict this direct estimation evidence.
Baker (1997) and Guvenen (2005) argue that the HIP model is in fact consistent with MaCurdy’s results.

3Nevertheless, there has been some suggestion in the literature that the implications of the HIP model are not
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To this end, we study the consumption-savings behavior in a life-cycle model with the HIP

process. Because individuals are ex ante heterogeneous in the HIP model, a key question is how

much individuals know about their own profile. Rather than imposing a certain amount of knowledge,

we assume that individuals enter the labor market with some uncertainty about their income profile,

and we infer the amount of this prior uncertainty from consumption data as described below. More

specifically, we assume that individuals form a prior belief over βi and αi (the intercept of the

income profile), which is updated in a Bayesian fashion with subsequent income realizations. We

cast the optimal learning process as a Kalman filtering problem, which allows us to conveniently

obtain recursive formulas for updating beliefs. In a related model, Wang (2004) obtains closed-form

solutions for optimal consumption choice when individuals cannot distinguish between two separate

persistent shocks. However, he abstracts from learning about profiles.

It is often the case with Bayesian learning that most of the uncertainty is resolved quickly,

sometimes with a handful of observations. Instead, in the present framework learning turns out to

be very gradual and its effects on consumption behavior extend throughout the life-cycle. The key

feature of our model responsible for this result is the presence of learning about the growth rate of

income. As we show in Section 2.4, Bayesian learning about a trend parameter (βi) has features

that are inherently different (and for our purposes more appealing) than the more standard learning

about a level parameter (such as αi).

We next compare the model to the U.S. consumption data. As a first step, we show that if

individuals have no private information about their own profile (i.e., the prior variances of αi and βi

equal the population variances), then the cross-sectional variance of log income increases by about

40 log-points over the life-cycle, significantly exceeding the roughly 25 log-points rise in the U.S.

data. Thus the HIP model is capable of generating substantial rise in consumption inequality. One

way to estimate the prior variance of βi is then to choose it such that the model generates a 25

log-points increase in inequality. This procedure yields a prior variance of βi equal to 0.6 × σ2β.

The interpretation is that the remaining 40 percent of the variability in income growth rates in the

population is forecastable by individuals by the time they enter the labor market.

Second, the empirical age-inequality profile of consumption has a non-concave shape. This fact

has been emphasized by Deaton and Paxson (1994) and Storesletten et al. (2003) because the RIP

model gives rise to a concave shape. The HIP model instead implies a non-concave age-inequality

profile–that results from learning about βi, as we show in Section 4.2–which also provides a fairly

good fit to its empirical counterpart.

likely to be consistent with certain consumption facts. For example, Storesletten et al. (2001) state: “Should in-
creasing income inequality be attributable to heterogeneity which is deterministic across households, many models of
consumption choice predict that consumption inequality will not increase with age (p. 416).”
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Third, Carroll and Summers (1991) also document that college graduates not only have steeper

income profiles than high-school graduates but also have steeper consumption profiles. In the RIP

model, the estimated persistence and innovation variance of income shocks are similar for different

education groups (Hubbard et al. (1994), Carroll and Samwick (1997)), resulting in consumption

profiles with similar slopes for both groups. On the other hand, when HIP is introduced, we find that

the estimated dispersion of βi among college graduates is more than twice that among high-school

graduates (Table 1). This larger dispersion generates more precautionary savings and consequently

a steeper consumption profile for college-graduates (unless these individuals are able to predict a

much larger fraction of this dispersion compared to high-school graduates). These last two examples

underscore the differences between the nature of labor income risk implied by the RIP model and

the HIP model with Bayesian learning.

Finally, we show that assuming a HIP process without the uncertainty and learning about βi

yields a number of counterfactual implications for the consumption-savings behavior. Furthermore,

if heterogeneity is introduced through a larger dispersion in αi, (instead of the dispersion in βi),

more than 80 percent of this uncertainty is resolved in the first three years of an individual’s life,

leaving little role for further learning. Thus, learning about income growth is an essential element

in this model.

As noted earlier, to our knowledge there is no previous work on the consumption-savings behavior

when the income process is the HIP model. The closest work is Huggett, Ventura and Yaron (2004)

who study a human capital model with ability heterogeneity and consider idiosyncratic shocks to

the human capital accumulation function. They find differences in income growth rates (induced

by ability heterogeneity) to be a key element in explaining the moments of the cross-sectional dis-

tribution of income and consumption. The difference is that in their framework, individuals know

their own ability (and hence their average income growth rate), so there is no learning over time.

In addition, they focus on the ability of the model to explain labor income data and study only

a subset of consumption facts examined in the present paper. In a different context, Cunha et

al. (2005) study students’ schooling choice, in a complete markets setting, to infer the amount of

earnings variability that is forecastable by the time students decide to go to college. They estimate

that about 60 percent of variability in returns to schooling is forecastable. Navarro (2004) extends

this analysis by introducing credit constraints and consumption choice, and finds that a significant

fraction of schooling returns remain forecastable.

The rest of the paper is organized as follows. In the next section we introduce the RIP and

HIP models and examine the properties of Bayesian learning about profiles in the latter model. In

Section 3 we present a life-cycle model of consumption-savings with optimal learning. In Section

4, we present the quantitative results of the model. Section 5 discusses possible extensions and

applications of the model and presents conclusions.
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2 Bayesian Learning About Income Profiles

We first specify the RIP and HIP models and discuss the specific parameterizations we use. Sec-

ond, because individuals are ex ante heterogeneous in the HIP model a key question is how much

individuals know, and how they learn, about their individual-specific income profiles. Thus, we

investigate the properties of optimal learning in this environment. The main result of this section

is that learning about income growth rate (or a “trend variable” in general) has some interesting

features not present when individuals learn about the level of income (or a “stationary variable” in

general). This distinction is crucial and plays a central role in the determination of consumption

and savings over the life-cycle.

2.1 Two stochastic processes for labor earnings

We first introduce the two income processes. The general process for log earnings, eyit, of individual
i who is t years old is given by

eyit = g
¡
θ0,Xi

t

¢
+ f

¡
θi,Xi

t

¢
+ zit + εit (2)

zit = ρzit−1 + ηit, zi0 = 0,

where the functions g and f denote two separate “life-cycle” components of earnings. The first

function captures the part of variation that is common to all individuals (hence the coefficient

vector θ0 is not individual-specific) and is assumed to be a quartic polynomial in experience, t.4

The second function, f, is the centerpiece of our analysis, and captures the component of life-

cycle earnings that is individual- or group-specific. For example, if the growth rate of earnings varies

with the ability of a worker, or is different across occupations, this variation will be reflected in an

individual- or occupation-specific slope coefficient in f. In the baseline case, we assume this function

to be linear in experience: f
¡
θi,Xi

t

¢
= αi+βit, where the random vector θi ≡

¡
αi, βi

¢
is distributed

across individuals with zero mean, variances of σ2α and σ2β, and covariance of σαβ.
5

The stochastic component of income is modeled as an AR(1) process plus a purely transitory

shock. This specification is fairly common in the literature and, despite its parsimonious structure,

4While it is also possible to include an education dummy into g, we do not pursue this strategy in the baseline
specification. Later in the paper, we will allow for a separate income process for each education group to fully control
for the effect of education on the life-cycle profiles as well as its effect on the persistence and variance of income shocks.

5The zero-mean assumption is a normalization since g already includes an intercept and a linear term. Moreover,
although it is straightforward to generalize f to allow for heterogeneity in higher order terms, Baker (1997, p. 373)
finds that this extension does not noticeably affect parameter estimates or improve the fit of the model. In addition,
each term introduced into this component will appear as an additional state variable in the dynamic programming
problem we solve later. In the baseline case, that problem already has five continuous state variables and certain
non-standard features described in the computational appendix, so we prefer to avoid any further complexity. Lillard
and Reville (1999) on the other hand, provide some evidence suggesting that the quadratic term may be important,
so this seems to be an extension worth considering in future work.
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it appears to provide a good description of income dynamics in the data (Topel (1990), Hubbard et

al. (1994), Moffitt and Gottschalk (1995), Storesletten et al. (2004)).6 The innovations ηit and εit

are assumed to be independent of each other and over time (and independent of αi and βi), with

zero mean, and variances of σ2η and σ2ε respectively.

The RIP and HIP models are distinguished by their assumptions about f . The HIP model refers

to the general (unrestricted) process given in equation (2). The RIP model, on the other hand, refers

to the same process estimated with the restriction βi ≡ 0 imposed.
To calibrate the model that we present in the next section, we use the parameter values displayed

in table 1 taken from Guvenen (2005). The first two rows display the estimates for the whole

population from the RIP and HIP models respectively. The HIP model implies a significantly lower

persistence for the AR(1) process (0.82 compared to 0.988) and a statistically (and as shown below,

quantitatively) significant heterogeneity in income growth rates (σ2β = 0.00038 with a t-value of 4.9).

For comparison, table 5 in Appendix A presents the estimates from the HIP model obtained in the

previous literature. Overall, the parameter values we use are consistent with this earlier work with

one exception: the variance of the fixed effect, σ2α, is much smaller in our estimates (0.02 compared

to 0.14 in Baker (1997) and 0.29 in Haider (2001). In Section 2.4 we show that using a value of

0.2 would have no appreciable effect on our results. Finally, the subsequent rows of table 1 display

the parameter estimates for college-educated and high school-educated individuals that is used in

Section 4.3. To our knowledge, the parameter estimates of the HIP model for each education group

is only available in Guvenen (2005).

2.2 Quantifying the heterogeneity in income profiles

While the point estimate of σ2β of 0.00038 may appear small, this value implies substantial hetero-

geneity in income growth rates. To see this, we first define the income residual, yit ≡ eyit − g, and

use the following equation (derived from eq. (2)) to decompose the within-cohort income inequality

into its components:

vari(y
i
t) =

¡
σ2α + σ2ε

¢
+

µ
1− ρ2t+1

1− ρ2
σ2η

¶
+
¡
2σαβt+ σ2βt

2
¢
.

The first parenthesis contains terms that do not depend on age (i.e., the intercept of the age-

inequality profile). The second parenthesis captures the rise in inequality due to the accumulated

effect of the autoregressive shock. Finally, the last parenthesis contains two terms that vary with

6Alternatively, it is possible to use an unrestricted ARMA (1,1) or (1,2) process (MaCurdy (1982), Abowd and
Card (1989), Moffitt and Gottschalk (1995)). Although this specification provides more flexibility, it also introduces
additional parameters that appear as state variables in dynamic decision problems (as the one we study in Section 3)
expanding the state space. Consequently, economic models that use individual income processes as inputs typically
opt for more parsimonious specifications similar to the one used here.

7



age, which are due to profile heterogeneity: a decreasing linear term in t (since σαβ < 0), and more

importantly, a quadratic term in t. It is easy to see that even when σ2β is very small, the effect

of profile heterogeneity on income inequality will grow rapidly with t2, as the cohort gets older.

Table 2 illustrates this point by displaying the value of terms in each parenthesis over the life-cycle.

As can be seen in column 4, the contribution of profile heterogeneity to income inequality is very

small early in the life-cycle. In fact, up to age 47 more than half of the cross-sectional variance

of income is generated by the fixed effect, and the transitory and persistent shocks. The effect of

profile heterogeneity continues to rise however, and accounts for almost 80 percent of inequality at

retirement age.

2.3 The Kalman Filtering Problem

The key feature of the HIP model is that individuals are ex ante different in their income profiles,

which–as the analysis above illustrates–accounts for a large fraction of the rise in within-cohort

income inequality. Hence, to embed the estimated income process into a life-cycle model, we need

to be specific about what the individual knows about
¡
αi, βi

¢
. A plausible scenario is one in which

an individual enters the labor market with some prior belief about his income growth prospects.

This prior could incorporate some relevant information unavailable to the econometrician as we

discuss below. Over time, a rational individual will refine these initial beliefs by incorporating the

information revealed by successive income realizations. We assume that this updating (“learning”)

process is carried out in an optimal (Bayesian) fashion.

In order to formally define the learning problem we need to specify which components of income

are observable. If the stochastic component, zt + εt, were observable in addition to yit, individual

income profiles
¡
αi, βi

¢
would be revealed in just two periods, leaving no role for further learning.

Although we could allow either zt or εt to be separately observable and still have non-trivial learning,

it seems difficult to make a compelling case for why one component would be observable while the

other is not. Thus as a benchmark case, we assume that individuals only observe total income, yit,

and not its components separately.

It is convenient to express the learning process as a Kalman filtering problem using the state-

space representation. In this framework, the “state equation” describes the evolution of the vector

of state variables that is unobserved by the decision maker:7

Sit+1 ≡

⎡⎢⎢⎣
αi

βi

zit+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 ρ

⎤⎥⎥⎦
⎡⎢⎢⎣

αi

βi

zit

⎤⎥⎥⎦+
⎡⎢⎢⎣

0

0

ηit+1

⎤⎥⎥⎦ = FSit + νit+1.

7Vectors and matrices are denoted by bold letters throughout the paper.
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Even though the parameters of the income profile have no dynamics, including them into the state

vector yields recursive updating formulas for beliefs using the Kalman filter. A second (observation)

equation expresses the observable variable(s) in the model–in this case, log income–as a linear

function of the underlying hidden state and a transitory shock:

yit =
h
1 t 1

i⎡⎢⎢⎣
αi

βi

zit

⎤⎥⎥⎦+ εit = H
0
tS

i
t + εit

We assume that both shocks have i.i.d Normal distributions and are independent of each other,

with Q and R denoting the covariance matrix of νit and the variance of ε
i
t respectively.

8 To capture

an individual’s initial uncertainty, we model his prior belief over (αi, βi, zi1) by a multivariate Normal

distribution with mean bSi1|0 ≡ (bαi1|0, bβi1|0, bzi1|0) and variance-covariance matrix:9

P1|0 =

⎡⎢⎢⎣
σ2α,0 σαβ,0 0

σαβ,0 σ2β,0 0

0 0 σ2z,0

⎤⎥⎥⎦ ,
where we use the short-hand notation σ2·,t to denote σ2·,t+1|t. After observing

¡
yit, y

i
t−1, ...y

i
1

¢
, an

individual’s belief about the unobserved vector Sit has a normal posterior distribution with a mean

vector bSit|t, and covariance matrix Pt|t. Similarly, let bSit+1|t and Pt+1|t denote the one-period-ahead

forecasts of these two variables respectively. These two variables play central roles in the rest of our

analysis. Their evolutions induced by optimal learning are given by:

bSit|t = bSit|t−1 +Pt|t−1Ht

£
H0

tPt|t−1Ht +R
¤−1 ³

yit −H0
t
bSit|t−1´ , (3)bSit+1|t = FbSit|t,

Pt|t = Pt|t−1 −Pt|t−1Ht

£
H0

tPt|t−1Ht +R
¤−1

H0
tPt|t−1, (4)

Pt+1|t = FPt|tF
0 +Q.

Notice that the covariance matrix evolves independently of the realization of yit, and is also

deterministic in this environment since Ht is deterministic. Moreover, one can show from equation

(4) that the posterior variances of αi and βi are monotonically decreasing over time, so with every

8The normality assumption is not necessary for the estimation of the parameters of the stochastic process (2), and
is not made in Guvenen (2005) to obtain the parameters in table 1.

9The notation Xh2|h1 denotes the forecast of (alternatively, belief about) Xh2 given the information available at
time h1 if h2 > h1 (if h2 = h1).
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new observation beliefs become more concentrated around the true values. (This is not necessarily

true for σ2z,t which may be non-monotonic depending on the parameterization.) Finally, log income

has a Normal distribution conditional on an individual’s beliefs:

yit+1|bSit|t ∼ N
³
H0

t+1
bSit+1|t,H0

t+1Pt+1|tHt+1 +R
´
. (5)

2.4 The speed of resolution of profile uncertainty

The results presented in Section 2.2 suggest that a substantial fraction of income differences over

the life-cycle is due to HIP. Consequently, the initial income risk perceived by an individual upon

entering the labor market can be substantial if the individual is sufficiently uncertain about his

income profile. However, since individuals learn their profile over time, the contribution of profile

uncertainty to perceived income risk later in the life-cycle depends on the speed of learning. It is

often the case with Bayesian learning that a large fraction of prior uncertainty is resolved quickly,

so it is essential to investigate this issue in the present framework.

As we quantify below, learning is very gradual in our model and its effects extend throughout

the life-cycle for two reasons. The first and main reason is that early in life the contribution of the

βit term to income is very small–most of the variation in income is due to shocks as can be seen in

Table 2–so income observations are not very informative about the growth rate of income, slowing

down learning. Second, later in life, when observations become potentially more informative, the

moderate persistence of shocks makes it difficult to disentangle them from the trend component,

again slowing down learning. In the rest of this section we make these points more rigorous.

We begin by defining a convenient measure of income uncertainty, the forecast variance–the

mean squared error (MSE) of the forecast–of future income:

MSEt+s|t ≡ Et

¡
yt+s − byt+s|t¢2 = H0

t+sPt+s|tHt+s +R, (6)

where Pt+s|t = FsPt|tF
0s +

s−1P
i=0
FiQF

0i. (7)

If individuals know their profile with certainty (i.e., σ2α,t = σ2β,t = 0), the forecast variance in

equation (6) reduces toMSEidiot+s|t = Et

¡
zt+s − bzt+s|t¢2+σ2ε, where the superscript idio indicates that

the only source of risk in this case is idiosyncratic shocks. Notice that an income process with RIP

is a special case of this, so the same expression characterizes the forecast variance for such processes.

In the more general case where individuals are uncertain about their profile (σ2α,t, σ
2
β,t > 0), the

forecast variance can be written as:

MSEtotal
t+s|t =MSEidiot+s|t +

nh
σ2α,t + 2σαβ,t (t+ s) + σ2β,t (t+ s)2

i
+ κt+s|t

o
, (8)

10



which is again obtained using equation (6). The first term captures the risk resulting from idiosyn-

cratic shocks as before. The remaining terms in parenthesis (call itMSEnet
t+s|t) is the net contribution

of profile uncertainty to income risk at different horizons (given by s) as perceived by an individual

at age t. For a given t, the terms in the square bracket imply that the forecast variance (due to

profile heterogeneity) is an increasing quadratic function of horizon (t+ s) . In addition, although zit
is independent of

¡
αi, βi

¢
, the joint updating of beliefs naturally induces a correlation between these

two components. The last term, κt+s|t, contains the corresponding covariances; it is an increasing

function of s for fixed t, but does not materially affect the shape of this profile.

In the left panel of figure 1 we plotMSEnet
t+s|t, s = 1, 2, ..., for an individual at ages t = 25, 35, 45,

and 55, who faces the HIP process estimated on row 2 of Table 1.10 The top curve (t = 25) shows that

the future income risk perceived by this individual upon entering the labor market is substantial, as

can be expected from the fact that HIP accounts for a large fraction of income inequality and the

individual does not initially know his true profile. As the individual gets older, the successive MSE

curves shift downward reflecting the resolution of profile uncertainty. The main point to notice in

this graph is that the resolution of uncertainty is slow: by the time the individual is 35 years old

(the second curve from the left) only 26 percent of income risk at retirement will have been resolved.

At age 45, the forecast variance of income at retirement is still about 0.22. For comparison, at the

same age, the forecast variance at retirement that is due to idiosyncratic shocks (MSEidio
65|45) is only

0.045.

The main reason for the slow learning is that individuals learn about a slope parameter, βi,

whose contribution to income is small when individuals are young, but grows monotonically with

age. Figure 2 illustrates the implications of this feature for the speed of learning. Specifically,

the vertical axes plot (log(1/σ2x,t+1|t)− log(1/σ2x,t|t−1)), for x = αi (left panel) and βi (right panel),

which can be interpreted as the percentage improvement in precision–or equivalently, the percentage

reduction in the posterior variance–at each age. In the left panel the resolution of uncertainty about

αi follows the familiar pattern: most of the learning takes place early on, and after the first five

or so years each subsequent observation brings little fresh information about the intercept term.

In contrast, in the right panel, the information provided about βi by each additional observation

increases over time, up to about age 50. Using the terminology of signal extraction problems, the

signal-to-noise ratio increases–resulting in faster learning–as the individual gets older. In fact this

can be seen in figure 1, where the MSE curves are shifting to the right faster as the individual gets

older.

It is useful to contrast the resolution of uncertainty above to the hypothetical case where the

10To calculate the MSE we need to specify the prior covariance matrix, P1|0. We discuss the specification of the
priors more fully below. As a simple benchmark, here we assume that the individual does not have more information
than the econometrician so that the prior variance of each variable is equal to its population value (that is, σ2α,0 = σ2α,
etc.)
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main source of uncertainty (and hence learning) is about the level of income, αi. This comparison

is also helpful because our baseline estimate of σ2α is around 0.02 whereas the corresponding point

estimate is 0.14 in Baker (1997) and 0.29 in Haider (2001) (see table 5). Figure 3 plots the change

in precision of beliefs about αi when σ2α (and correspondingly the prior variance) is set to 0.20.

The two lines plot the precision when the dispersion in βi is fixed at its baseline value (‘-^’), and

alternatively, when it is set to zero (‘- -’) (The two lines are almost indistinguishable in the first

four years). In both cases, the log precision improves by 130 log points with the first observation,

implying that the posterior variance of αi falls (by ≈ e1.3) from 0.20 to 0.054 after the first year,

and to below 0.04 after the third year. The reason for this fast learning is clear: since βit is very

small early in life, and the stochastic shocks have much smaller variances and lower persistence than

αi, the latter stands out (i.e., the signal-to-noise ratio is high) and is detected easily. Hence, even

when there is significantly more initial uncertainty about the level of income, it has little effect on

the behavior of individuals after the first few years, unlike the effect of learning about the growth

rate of income.

A second reason for the slow learning is the moderate persistence of income shocks. We illustrate

this point in the right panel of figure 1. The bottom curve plots the net forecast variance of income

at retirement by an individual who is 35 years old (MSEnet
65|35) as a function of the persistence of

zt, normalized by its value at ρ = 0. The two curves above that are constructed similarly for t = 45

and 55 respectively. When constructing these graphs, we adjust the innovation variance of zt as we

vary ρ to keep the unconditional variance of the AR(1) process unchanged.

One conclusion that is clear from this graph is that the speed of resolution is not a monotone

function of persistence: as ρ increases from zero up to about 0.85, the resolution of uncertainty slows

down (reflected in a larger forecast variance at retirement), but then speeds up again as persistence

increases further towards a unit root. In particular, learning is faster when income shocks follow a

random walk than for any other value of ρ.11 Interestingly, the values of ρ where learning is slowest

coincides with the empirical estimates of persistence reported in table 1 (although the figure also

makes clear that the resolution of uncertainty is not dramatically different for values of ρ roughly

between 0.7 and 0.9).

The second feature apparent in the right panel of figure 1 is that the impact of persistence on

the speed of learning increases with age. For example, at age 35, increasing the persistence from

zero to 0.8 results in a 30 percent rise in MSEnet
65|35. At age 55, the same experiment raises the

forecast variance by 180 percent. Thus, the relatively high persistence of income shocks in the data

is important for the slow resolution of uncertainty especially later in the life-cycle.

Before concluding this section, it should be noted that slow learning is also important for another

11Loosely speaking this is because when income shocks are random walk, income growth becomes very informative
about βi since ∆yit = βi + (ρ− 1) zt−1 + ηt +∆εt reduces to βi + ηt +∆εt in this case.
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reason: In the next section we infer the amount of prior uncertainty from the consumption-savings

behavior of individuals over the life-cycle. But if learning were quick, individuals’ behavior later in

life would contain little information about their prior uncertainty, making this setup unsuitable for

this exercise. In other words, life-cycle behavior is informative about prior uncertainty to the extent

that it is not resolved very quickly.

3 A Life-Cycle Model of Consumption and Savings

We now study the consumption-savings decision of an individual in an environment with HIP and

Bayesian learning as described in the previous section. We consider an individual who lives for T ∗

years and works for the first T years of his life, after which he retires. Individuals do not derive

utility from leisure and hence supply labor inelastically. While working the income process is given

by equation (2). Once retired the individual receives a pension equal to a fraction, Φ, of his income

at age T . Although this specification is admittedly much simpler than the Social Security system

in the U.S., it has the advantage of abstracting from the significant risk-sharing inherent in that

system, and consequently from its effects on the consumption-savings decision which may confound

the main focus of our analysis. Moreover, introducing a more realistic pension scheme where the

payments depend on the average earnings over the life-cycle would add an extra state variable to the

dynamic program. Thus, to avoid further complication we choose this simpler specification. In the

robustness analysis, we examine the effect of a redistributive pension system on our results. Finally,

there is a risk-free bond that sells at price P b (with a corresponding interest rate rf ≡ 1/P b − 1).
Individuals can also borrow at the same interest rate up to an age-specific borrowing constraint

W t+1, which will be specified below.

The relevant state variables for this dynamic problem are the asset level, ωt, the current income,

yt, and the last period’s forecast of the true state in the current period, bSt|t−1.12 In the follow-
ing equations we include the superscript i in individual-specific variables to distinguish them from

aggregate variables. Then, the dynamic problem can be written as

V i
t (ω

i
t, y

i
t, bSit|t−1) = max

cit,ω
i
t+1

n
U(cit) + δE

h
V i
t+1(ω

i
t+1, y

i
t+1, bSit+1|t)|bSit|t−1io

s.t

cit + P bωit+1 = ωit + yit (9)

ωit+1 ≥ W t+1 (10)

eq. (3, 4)

12Although given the last two variables one can obtain both St|t and St+1|t using equation (3) (which means that
the individual knows the latter two vectors at the time of decision) our current choice turns out to be more convenient
for computational reasons.
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for t = 1, ..., T − 1. The evolutions of the vector of beliefs and its covariance matrix are governed by
the Kalman recursions given in equations (3, 4). Moreover, given that the only state variable that is

random at the time of decision is next period’s income, the expectation is taken with respect to the

conditional distribution of yit+1 given by equation (5). After retirement, labor income is constant

and there is no other source of uncertainty or learning, so the problem simplifies significantly:

V i
t (ω

i
t, y

i) = max
cit,ω

i
t+1

£
U(cit) + δV i

t+1(ω
i
t+1, y

i)
¤

s.t yi = ΦyiT , and eqs. (9, 10)

for t = T, ...T ∗, where yi does not have a t subscript to emphasize that it is constant over time, and

VT∗+1 ≡ 0.

3.1 Baseline parameterization

There is no analytical solution to the dynamic optimization problem stated in the previous section,

so we resort to numerical methods. The numerical solution is complicated by the fact that there

are five continuous state variables and four of them (excluding ωit) depend on each other as a result

of learning. In particular, this inter-dependence makes the solution of the value function on a

rectangular grid impractical. We develop an algorithm to tackle these issues, which could be useful

for solving similar problems. Further discussions of computational issues as well as the details of

our algorithm are provided in the computational appendix.

A model period is one year of calendar time. Individuals enter the labor market (are born) at

age 25, retire at 65 and die at age 95. The period utility function is assumed to take the CRRA

form with a relative risk aversion coefficient, φ, equal to 2. The bond price, P b is set equal to

0.96 implying an annual interest rate of 4.16 percent. We set the pension replacement rate, Φ,

equal to 0.34 in the baseline case. This value is chosen so that the pension income of the average

individual in the model is equal to 50 percent of the average of his income over the life-cycle as in

the current U.S. Social Security system. Finally, we set the time preference rate, δ, to match the

average wealth-to-income ratio in the U.S. data. Budria-Rodriguez et al. (2002) calculate this ratio

both from the Survey of Consumer Finances data set and from the National Income and Products

Account data, and obtain values between 4.14 and 5.26. However, it is not immediately clear how

to treat housing in this calculation, which is included in their calculation but not explicitly modeled

in our framework. With this in mind, we target a wealth-to-income ratio of 3.5, somewhat lower

than these reported values. Moreover, because the amount of precautionary savings depends on the

amount of uncertainty, in the next section when we make comparisons across versions of the model,

we adjust δ to keep the wealth-to-income ratio on this target.

The parameters of the stochastic component of income are taken from Table 1. Although the
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estimation of the covariance matrix pins down the variances of α and β, it does not identify their

means. The intercept term, α, is a scaling parameter and has no effect on results, so it is normalized

to 1.5 for computational convenience. The mean of β is set to the mean growth of log income in the

PSID sample of Guvenen (2005): it is equal to 0.9 percent per year for the whole sample, and 0.7

percent and 1.2 percent for the group of low and high educated individuals respectively.

Determining the priors.–Empirical evidence is not particularly helpful for setting P1|0. The

difficulty is that the econometrician is only able to measure the population distribution of
¡
αi, βi

¢
conditional on a few observable characteristics. But it is conceivable that each individual could have

some information, unavailable to the econometrician that can provide a better prediction of their

income profile. Thus, rather than imposing a certain amount of prior knowledge on the individual,

we infer it from the observable actions over the life-cycle.

We begin by describing how an individual’s prior belief about βi is determined. Suppose that

the distribution of income growth rates in the population is generated as βi = βik+βiu, where β
i
k and

βiu are two random variables, independent of each other, with zero mean and variances of σ2βk and

σ2βu . Clearly then, σ
2
β = σ2βk + σ2βu . The key assumption is that individual i observes the realization

of βik, but not of β
i
u (hence the subscripts indicate known and unknown, respectively). Under this

assumption, the prior mean of individual i is bβi1|0 = βik, and the prior variance is σ
2
β,0 = σ2βu =

(1− λ)σ2β, where we define λ = 1− σ2βu/σ
2
β, as the fraction of variance known by individuals.

Two polar cases deserve special attention. If λ = 0, individuals do not have any private prior

information about their income growth rate (i.e., σ2β,0 = σ2β). This case provides a useful benchmark

(or an upper bound) to gauge how much mileage one can get by allowing uncertainty about individual

income profiles. On the other hand if λ = 1, each individual observes βi completely and faces no

prior uncertainty about its value. This case provides a useful comparison to illustrate how profile

uncertainty and learning alter individuals’ consumption-savings decision. Finally, as noted earlier,

the dispersion of αi is not large according to our parameterization and does not materially affect

the results of the model even when it is larger. For simplicity we assume that individuals have no

private prior information about their intercept so that σ2α,0 = σ2α. Then the prior covariance matrix

is:

P1|0 =

⎡⎢⎢⎣
σ2α

√
1− λσαβ 0.0

√
1− λσαβ (1− λ)σ2β 0.0

0.0 0.0 σ2η

⎤⎥⎥⎦ ,
We refer to this general framework as the “profile heterogeneity with uncertainty” (PHU(λ))

model, and to the special case with λ = 0 as the “profile heterogeneity with certainty” (PHC)

model. Notice of course that in both cases the income process is the HIP model.

As for the calibration of the borrowing constraint, we have a couple of considerations in mind.

First, it is desirable to impose a loose constraint so as not to confound the effects of profile uncertainty
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and learning–the primary focus of this paper–with those of borrowing frictions. The loosest

constraint is implied by the condition that an individual cannot have debt at the time of death. In

this case, in any given period an individual can borrow up to the point where he can still pay back

all of his debt even if he happens to face the lowest possible income realization for the rest of his

life. In our framework, this requirement implies that each individual face a different natural limit,

unlike in a standard life-cycle model with ex-ante identical individuals. However, in this case the

constraints themselves contain information about an individual’s profile which would then need to

be optimally incorporated into beliefs. This would further complicate the model probably without

providing much additional insight. Instead, we allow all individuals to borrow up to a common

borrowing limit determined as the natural limit of an individual based on public prior information

(that is, σ2β,0 = σ2β). In other words, this is the natural limit that credit institutions would enforce

on individuals when only time-0 public information is available. Notice that since yt is log-normally

distributed, the lowest income realization can be arbitrarily close to zero, so we truncate the Normal

distribution of income at 2.5 standard deviations to provide a proper lower bound. As we discuss

further below in our baseline specification this constraint is almost never binding.

To simulate the model we draw 1000 (α, β) combinations (one for each type of individual) from a

bivariate Normal distribution whose covariance matrix is taken from row 2 of Table 1 and simulate

100 paths for each type. The reported statistics are averages over these simulated data.

4 Quantitative Results

In this section, we investigate if the consumption behavior implied by the HIP model combined with

Bayesian learning about income profiles is consistent with empirical facts, and especially with certain

findings that have commonly been interpreted as evidence supporting the RIP model (Deaton and

Paxson (1994), Carroll and Summers (1991)).

4.1 The age-inequality profile of consumption

Deaton and Paxson (1994) document the striking rise in within-cohort consumption inequality (along

with income inequality) over time. In particular, the cross-sectional variance of log consumption (per

adult equivalent) increases by about 25 log points in the U.S. data–roughly corresponding to the

doubling of inequality–over a cohort’s life-cycle. For completeness, we replicate their finding as

closely as possible.13 The broken line in figure 4 displays the resulting age-inequality profile, which

13We use data on consumption expenditures from the Consumer Expenditure Survey (CE), obtained from Krueger
and Perri (2004). We choose our consumption measure and sample period following Deaton and Paxson (1994) to
make comparison easier. Thus, consumption refers to household non-durable expenditures during the last quarter. The
sample period is 1980-90, but unlike these authors who concentrate on urban households, we include all households
into our sample, which requires us to exclude the 1982-83 period since data on rural households is not available during

16



is very similar to the one presented by Deaton and Paxson.

While the mere existence of fanning-out in the consumption distribution is not surprising–as

it is implied for example by the permanent income theory–the large magnitude of the increase

is. Deaton and Paxson discuss several potential explanations and find the existence of persistent

(uninsurable) idiosyncratic shocks to be the most promising candidate. Recently, Storesletten et al.

(2003) have shown that a life-cycle model can quantitatively match the rise in inequality observed

in the data if income shocks are extremely persistent.

We now examine the evolution of within-cohort consumption inequality in the PHU(λ) model.

To provide a benchmark, we begin with the case where individuals have no private prior information

about βi (that is, λ = 0). The (top) solid line in Figure 4 plots the age-inequality profile in this case,

which shows a substantial rise in consumption inequality over the life-cycle–roughly 40 log points,

compared to 25 log points in the U.S. data.14 Thus, if anything, the model generates too much rise

in inequality unless individuals have more prior information than assumed in this case.

This observation suggests that one way to measure λ is to choose it to generate the same increase

in consumption inequality over the life-cycle observed in the data.15 This procedure yields λ∗ = 0.46.

The interpretation of this estimate is that 46 percent of the variability in income growth rates is

forecastable by individuals at the time they enter the labor market. Moreover, although λ is chosen

to match the total rise in inequality, the overall shape of the resulting age-inequality profile provides

a nice fit to its empirical counterpart. We return to this point in the next section.

There are several issues related to the interpretation of the estimate of λ. First, recall that in

equation (2) we did not include an education dummy into the common life-cycle profile g, so any

variation in income growth rates between education groups is also captured in σ2β. As a result λ

also contains any forecastability in βi that is due to differences in education level. It is possible

to quantify the amount of forecastability due to education, and the amount due to other (possibly

unobservable) variables known to the individual. To this end, we first solve the consumption-savings

problem for each education group separately under the assumption that individuals know the average

value of βi and its dispersion for their education group, but are not able to predict their own βi

this time. We use Census equivalence scale to convert household consumption into per-adult-equivalent units to make
comparable to income data from PSID which is used to estimated the income processes in table 1. See Krueger and
Perri (2004) for further details of sample selection and variable construction.
The differences in our data construction from Deaton and Paxson (1994) do not seem to make a noticeable difference

for the age-inequality profile we obtain, which is very similar to theirs. To obtain the graph in figure 4, we follow
Deaton and Paxson and regress raw variances for each age-year cell on a set of age and cohort dummies and report the
coefficients on the age dummies. To reduce the number of cohort dummies estimated, we group individuals between
25 and 29 as the first cohort, between 30 to 34 as the second cohort and so on. The age dummies are scaled so that
the average inequality matches that in the sample.
14Only a small fraction of this fanning-out is directly attributable to idiosyncratic shocks: if we eliminate profile

heterogeneity (and consequently learning) from this model, the rise in inequality would only be 8 log points.
15When we calibrate the parameters of different education groups separately as we do below, we keep δ identical

across these groups and adjust them by the same amount to keep the aggregate wealth-to-income ratio unchanged.
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beyond this information. In addition, individuals in each education group are now assumed to face

the idiosyncratic shock process corresponding to their group as reported on rows 4 and 6 of Table 1.

The dashed line in figure 4 plots the result. Now inequality rises by 32 log points, compared

to 40 log points when individuals do not condition on education. To translate this difference into

the fraction of forecastability due to education information, we choose λ in the benchmark model

above to generate an increase in inequality of 32 log points, which yields λ∗ = 0.27. The difference

between the two estimates of λ (0.46− 0.27 = 0.19) measures the fraction of forecastability due to
information other than education available to the individual.

Redistributive Social Security.–The U.S. retirement pension system features significant redis-

tribution, thereby providing risk-sharing within each cohort. The extent of risk-sharing in turn

is critical for the rise in consumption inequality over the life-cycle. For example, with complete

risk-sharing in the baseline model the age-inequality profile would be flat–consumption inequality

would be constant over the life-cycle–regardless of the amount of prior uncertainty about income

profiles. Therefore our estimate of λ partly depends on the assumed pension system. To examine

the sensitivity of the previous estimate, we next introduce a redistributive pension system which

captures the salient features of the U.S. Social Security system as described in Storesletten et al.

(2003). Specifically, the retirement replacement rate is a concave function of an individual’s income

at age T given by:

Φ (YT ) = 0.715×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.9YT for YT < 0.3Y T

0.27 + 0.32YT for YT ∈ (0.3Y T , 2Y T ]

0.81 + 0.15YT for YT ∈ (2Y T , 4.1Y T ]

1.1 for YT > 4.1Y T

where Y T is the average income at age T.16

With this modification to the pension system, consumption inequality would rise by 22 log

points over the life-cycle, if λ was kept at its baseline estimate of 0.46 (and δ was re-set to 0.957

to keep the wealth-to-income ratio unchanged). As predicted, the concave pension function reduces

the differences in life-time income compared to the baseline model thereby reducing consumption

inequality along with it. To match the increase of 0.25 log points as in the data, the value of λ

must be 0.37. The solid line in Figure 5 plots the age-inequality profile along with the one from the

baseline model for comparison. With this re-calibrated value of λ, the shape of the profile changes

16There is one difference between this specification and the one in Storesletten et al. (2002): Φ here is a function
of YT instead of the average income over an individual’s life-cycle (which would require us to track one more state
variable). However, because income shocks are not very persistent in our model, YT is highly correlated with an
individual’s average income (correlation: 0.89), so the difference may not be crucial. Moreover, because YT is 40
percent higher than average income over the life-cycle, we need to multiply our pension schedule by 1/1.40 ≈ 0.715 to
match the average level of benefits in their specification.
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little and the only noticeable change happens after age 55.

We conclude from these results that a model with HIP generates substantial rise in consumption

inequality–in fact, more than what is observed in the U.S. data–which suggests that some part of

the heterogeneity in income growth rates is known by individuals by the time they enter the labor

market. As our benchmark figure, we take the estimate from the model with Social Security, λ∗ =

0.37.

4.2 The non-concavity of the age-inequality profile of consumption

A second feature of the age-inequality profile emphasized by Deaton and Paxson is its non-concave

shape. Examining consumption data from three countries–U.S., U.K., and Taiwan–these authors

find that the age-inequality profile increases approximately linearly in the former and is convex in

the latter two countries. The same pattern also holds true in the PHU(λ) model with a slightly

convex rise early on, followed by a linear segment, which tapers off after age 55. Deaton and Paxson

stress this non-concavity because it seems hard to be reconciled with the existence of persistent

shocks. Specifically, using the certainty equivalent version of the permanent income model they show

that the inequality profile will be concave if the income process has a large persistent component.

Storesletten et al. (2003) later study a more general model with CRRA utility and a rich set of

realistic features and find concavity to be a robust feature of the life-cycle model with persistent

shocks. For completeness, the dashed line in figure 5 plots the age-inequality profile from the baseline

model studied by these authors where this concavity can be seen.

The effect of Bayesian learning on the shape of the age-inequality profile mainly depends on

whether learning is about the intercept or the slope of the income profile. The main intuition can be

conveyed in the certainty-equivalent version of the permanent income model (i.e., assuming quadratic

utility and δ
¡
1 + rf

¢
= 1, and no retirement). In this case optimal consumption choice implies:

∆ct =
1

ϕt

"
(1− γ)

T−tX
s=0

γs (Et −Et−1)Yt+s

#
(11)

where Yt+s ≡ exp (yt+s) is the level of income, γ = 1/
¡
1 + rf

¢
, and ϕt =

¡
1− γT−t+1

¢
is the

annuitization factor. To simplify the problem further, assume that income (instead of log income)

is a linear function of experience with i.i.d. innovations: Y i
t = αi + βit+ εit.

17

17These assumptions are rather innocuous in this context. First, the exponential function is increasing and convex,
so the Log-normal specification for income in the baseline model will only reinforce the mechanism described here.
In fact, we can obtain a closed-form solution for the consumption decision for the model described in this section
(including when income is specified as Log-normal). This explicit solution allows one to easily verify this assertion as
well as showing that the convexity result does not depend on the existence of borrowing constraints. These results
are available upon request. Second, even though income shocks are not i.i.d in our model, their persistence is small
enough that they do not create strong enough concavity to overturn this conclusion.
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First, consider the case where individuals learn about their intercept αi, but know their βi exactly.

It can easily be shown that (11) reduces to ∆ct = bαt|t− bαt−1|t−1. Because the right hand side of this
expression is shrinking with age due to learning, the age-inequality profile will be unambiguously

concave.

Now consider the opposite: individuals learn about βi, but know αi. When an individual up-

dates his beliefs in period t, the revision in expected future income is: (Et −Et−1)Yt+s = (bβt|t −bβt−1|t−1) (t+ s). Substituting this expression into (11) and after performing some algebra one can

show that:

∆ct =

∙µ
γ

1− γ

¶
+

t− (T + 1) γT−t+1
1− γT−t+1

¸³bβt|t − bβt−1|t−1´ . (12)

For a range of plausible values for rf and T , the term in the square bracket is an approximately

linear (and slightly convex) increasing function of t. Moreover, recall–from the graph in the right

panel of figure 2–that the speed of learning about βi increases over time so the absolute value of

(bβt|t− bβt−1|t−1) is getting larger on average up to about age 50.18 As a result, consumption changes
will be larger in absolute value as a cohort gets older implying a convex shape for the age-inequality

profile.

Although in the PHU(λ) model individuals learn about both the intercept and the slope of their

income profile, learning about αi happens very quickly (even when the prior variance is much larger

than what is assumed in the baseline calibration), and hence has no significant effect on the shape.

Instead, the shape is mainly determined by learning about βi, which gives it the non-concave form.

4.3 The co-movement of consumption and income over the life-cycle

A second well-documented empirical finding is that consumption tracks income over the life-cycle:

it first rises and then falls with income (Carroll and Summers (1991)). It is possible to generate this

behavior in a life-cycle model by assuming idiosyncratic shocks with high persistence, and a utility

function that induces precautionary savings behavior (such as CRRA.) In this case, individuals

reduce their consumption early in life to build a buffer stock wealth for self-insurance. As they

get older, persistent shocks have fewer periods left to affect income, effectively resulting in less

uncertainty. In response, individuals reduce their savings rate, allowing consumption to rise along

with income, generating the empirical co-movement (Carroll (1992), Attanasio et al. (1999).

However, another finding documented by Carroll and Summers poses a challenge to this basic

story. These authors found that consumption also tracks income within education groups: that is,

college-educated individuals not only have steeper income profiles, but also have steeper consumption

profiles than high-school educated individuals. For example, Krueger and Fernandez-Villaverde

18Although, more precisely figure 2 shows that the change in the logarithm of the belief about βi is increasing.over
time, a similar plot also holds true for the level of beliefs.
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(2004) show that over the life-cycle consumption (in per-adult equivalent units) rises by about

50 percent for the former group and by about 10 percent for the latter. For a model based on

precautionary savings alone to explain this observation, it would require the former group to face

income shocks that are either more persistent or more volatile than the latter group,19 neither of

which we seem to find in the data. For example, in rows 3 and 5 of table 1 which display the estimates

from the RIP model, there is little difference between the idiosyncratic shock process faced by each

group. To examine the consumption profiles that would be implied by these income processes, we

solve the life-cycle model described in Section 3 for each education group separately. For each group

we use the income process with RIP from rows 3 and 5 of Table 1. Figure 6 displays the results.

The left panel plots the average income profiles, and as expected, it is steeper for college-educated

individuals. However, the average consumption profile of this group (right panel) is not noticeably

steeper than that of the high school-educated group: it rises by 38 percent over the life-cycle for the

former group compared to 36 percent for the latter.

Next we solve the PHU(λ) model for each education group. As can be seen in rows 4 and 6 of

table 1, while the estimates of the idiosyncratic shock processes for each group remain similar to each

other when HIP is introduced, a major difference arises in the dispersion of βi: college graduates

face a much wider dispersion of income growth rates (σ2β = 0.00049) than lower educated individuals

(σ2β = 0.00020). To translate these numbers into the amount of prior uncertainty about βi, we

assume that λ is equal to 0.19 for both groups, which is the value we obtained in Section 4.1 after

conditioning on education information.20 Now the average consumption profile (right panel of Figure

7) rises twice as much (by 39 percent) for the college-educated compared to the high school-educated

(by 19 percent). More prior uncertainty about income profiles generates more precautionary savings

for the former group resulting in steeper rise in consumption.

Note finally that consumption would also track income (even without uncertainty about income

profiles) if there were frequently binding borrowing constraints. In the presence of HIP, however,

constrained individuals would typically be those with high income growth rates. Indeed, in the

PHC model (λ = 1), the average consumption of constrained individuals is higher throughout the

life-cycle and is almost double that of unconstrained ones at retirement. This comparison also shows

that profile uncertainty should be an integral part of a model with HIP, which otherwise (with a

very high λ) yields counterfactual implications.

19Clearly this is because without income shocks both groups should have the same slope of the income profiles
unless they differ systematically in some other respect. Attanasio et. al (1999) suggested that systematic differences in
demographics and preferences may generate the observed differences between education groups. For example, if more
highly educated individuals are more patient and tend to have larger families they would optimally choose steeper
consumption profiles compared to high school graduates.
20 It is not obvious however that λ should be the same for both groups. It seems possible to make a case for more or

less forecastability of income growth prospects for each education group, and these issues deserve further attention in
future work.
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4.4 The effect of profile uncertainty on life-cycle savings

The flip side of the consumption choice that we have focused upon so far is the savings decision,

and therefore, the wealth distribution also contains useful information that can shed light on the

nature of income risk faced by individuals. In particular, we focus on the relationship between an

individual’s wealth holdings and his labor income, which are positively correlated in the U.S. data.21

This positive correlation has implications for whether or not the heterogeneity in income growth rates

also represent uncertainty from the individuals’ point of view. For example, in a purely deterministic

world (and assuming αi ≡ 0 for simplicity), individuals with fast income growth will borrow more
(or save less) than those with slower income growth in order to smooth consumption over the life-

cycle. Consequently, in this simple model wealth holdings and income will be perfectly negatively

correlated. This negative relationship typically holds true even with sizeable income uncertainty,

and is present even when one only allows for a limited amount of heterogeneity in income profiles.

For example, when calibrating life-cycle models, researchers often allow βi to vary between education

groups, but restrict it to be the same within each group (among others, Hubbard, Skinner and Zeldes

(1994), Campbell et al. (2001), Davis, Kubler and Willen (2003)), resulting in the counterfactual

implication that wealth holdings fall with education level. More generally, such models will typically

predict that the income-rich will be the wealth-poor, inconsistent with empirical evidence.

Turning to the PHC model (i.e., λ = 1), the correlation between an individual’s wealth, ωit, and

the slope of this profile, βi, starts from −0.88 at age 25, and while it gradually increases over time,
it remains negative until age 60, with an average value of −0.58 (Table 4). As before, individuals
with high income growth rates have low wealth holdings in this model as well. Moreover, the

correlation of wealth with the level of the income profile, αi + βit, is also negative, averaging −0.40
over the life-cycle. In contrast, if one allows for uncertainty about income growth rates as in the

baseline PHU(λ = 0.37) model, the average correlation of ωit with βi becomes positive (0.26) , and

the correlation with the level of income profile is 0.39.

These results reiterate the conclusion of the previous section that a life-cycle model with HIP

yields counterfactual implications unless uncertainty about these profiles is also taken into account.

5 Conclusion

In this paper, we have studied the consumption-savings behavior when the labor income process is

the HIP model, and individuals learn about their profile in a Bayesian fashion. The first finding is

that profile uncertainty is resolved very gradually, mainly due to learning about the growth rate of

income, which starts slow and becomes faster over time. A second reason is the moderate persistence

21Budria-Rodriguez et al. (2002) calculate this correlation to be 0.47 using SCF data. Hurst et al. (1998) provide
regression evidence where income enters as a significant determinant of wealth with a very high t-statistic.
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of income shocks which results in slower learning compared to both i.i.d shocks as well as random

walk shocks. Because of slow learning consumption behavior over the life-cycle is informative about

initial uncertainty which we used to estimate the prior information individuals have about their

income growth rate.

The resulting life-cycle model displays plausible behavior and also shows how the nature of

income risk implied by the HIP model (combined with Bayesian learning) is different from that

implied by the RIP model. For example, the HIP model generates steeper consumption profiles

for college-educated individuals if the larger dispersion of income growth rates translate into higher

initial uncertainty and hence more precautionary savings for the former group. Instead, in the RIP

model one needs to also assume systematic differences across education groups in preferences and

demographics to explain these facts. Moreover, the HIP model generates an age-inequality profile

of consumption that is slightly convex, as documented by Deaton and Paxson (1994), as opposed to

the concave shape resulting in a life-cycle model with a RIP process.

Another conclusion that we draw from this analysis is that if individuals face the HIP process

without uncertainty about income growth rates, the resulting consumption behavior is counter-

factual: an individual’s income and wealth becomes negatively correlated; borrowing constrained

individuals are the income-rich and as a result, the average consumption of constrained individuals

is twice that of unconstrained individuals.

In addition, uncertainty about the level of income (αi), even when it is very large, does not

play a significant role in the consumption-savings behavior, because it is resolved very quickly.

Thus in future applications of this framework it seems reasonable to eliminate the heterogeneity

(or uncertainty) in αi and reduce the number of state variables by one, which will bring significant

computational gain.

An important question that has not been addressed in this paper concerns the origins of the

heterogeneity in income growth rates. One plausible framework that we suggested earlier is the

human capital model (Ben-Porath 1967) with heterogeneity in the ability to accumulate human

capital. One difference however is that in the basic human capital model individuals are assumed to

know their ability (and hence income growth) in contrast to our assumption of learning about the

growth rate. Fortunately, it is possible to obtain an analytical solution to the Ben-Porath model

with Bayesian learning about ability in the presence of i.i.d shocks (these results are available upon

request). The main finding from this exercise is that learning mainly affects the timing of the

dispersion in income growth rates: individuals invest in similar rates early on because they believe

they have similar ability levels. As a result, heterogeneity in income growth is small early in the

life-cycle, because it is only driven by ability differences. Over time, as individuals find out more

about their true ability, they also adjust their investment levels which increases the dispersion of

income growth rates further. In future research we intend to introduce a richer shock process, and
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study the properties of consumption decision in this model.

An appealing feature of the present framework with slow learning is that it could provide a

setup for estimating λ from a broader set of economic actions of individuals over the life-cycle. For

example, the discussion of equation 12 shows that the dynamic response of consumption to income

shocks contains useful information about the amount of profile uncertainty. Similarly, one could

augment the current model with other economic decisions, such as labor supply and/or portfolio

choice, to bring a wide range of evidence to bear on the estimation of λ. We intend to pursue these

issues in future research.
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A Appendix: Estimates of the HIP model in the Literature

Table 5 presents the estimates of the HIP model from the U.S. data in the previous literature. As can
be seen here, the estimates of σ2β range from 0.00018 in Lillard and Weiss (1979) to 0.00041 in Haider
(2001). The former paper estimates a separate income process for each finely defined occupation category
(such as chemists, psychologists, etc.), which could be partly responsible for the smaller estimate of profile
heterogeneity. However, all the estimates of σ2β are statistically significant, and the latter two papers point
estimates are rather close to each other. Baker also report estimates as high as 0.00082; his lowest estimate
is 0.00031. Second, the persistence parameter in these studies are around 0.6 to 0.7, indicating significantly
lower persistence than a unit root.

B Appendix: Computational Algorithm
This appendix describes the algorithm used to solve the consumption-savings problem described in Section 3.
The first point to observe is that since the value function does not explicitly depend on the type of individual
we need to solve for only one value function for all individuals. The true type only determines the probability
distribution of income (induced by the probability distributions of η and ε for a given

¡
αi, βi

¢
) which then

determines the probability distribution of the belief vector, bSit|t−1, for a given agent. In turn, this determines
which region of the state space will be most visited for a given individual. To solve the model for a large
number of types we need to get a good approximation of the value function for the union of the supports for
these different types, which is the challenging part.

We first describe the algorithm for λ = 0 so that all individuals begin life with the same prior information.
A slight modification then will solve the model for different λ values. The critical part of the algorithm is
the construction of a convenient grid over which the dynamic problem is solved. Once this is accomplished,
solving the model is straightforward.

Step 0: Grid construction

1. Draw I types
©¡
αi, βi

¢
, i = 1, .., I

ª
from a Normal distribution with second moments (σ2α, σ

2
β , σαβ)

reported in Table 1. In the baseline case, we chose I = 1000

2. For each i, simulate J income paths
neyijt , t = 1, .., T ; j = 1, .., Jo using equation (2) to obtain an

empirical approximation to the distribution of eyit. We chose J = 100.
3. For each of the N ≡ I × J income paths, use equation (3) to obtain a sequence of bSijt|t−1 for t = 1, .., T.
Thus, for each t, we have N = 100, 000 points distributed over the 3-dimensional space of beliefs,

(bαit|t−1, bβit|t−1, bzit|t−1). Instead of choosing independent grids in bαit|t−1, , bβit|t−1 and bzt|t−1 directions and
taking the Cartesian product of these intervals, we directly choose points in this 3-dimensional space as
follows. We divide the space [bαmin, bαmax]× [bβmin, bβmax]× [bzmin, bzmax] (with appropriately chosen lower
and upper bounds) into cubes by taking 21 points in each direction (and get 20× 20× 20 cubes). For
every t, if there are any points (among the 100,000 realizations of bSijt|t−1) that fall into a cube, we assign
a grid point to the center of that cube (and eliminate all empty cubes). This procedure picks a subset
of the 3-dimensional space that contains state points that have a non-negligible probability of being
realized when we simulate the model. (It is important to emphasize that we do not do this for efficiency
reasons. Our experience is that attempts at solving for the value function over a Cartesian state spaces
runs into a number of difficulties and this is one approach we found to work). We enumerate these
triplets {eSqt = (bα, bβ, bz)q, q = 1, .., Qt}, where Qt is the total number of non-empty cubes and hence grid
points at age t (From this point on, we drop the reference to t and describe the grid construction for a
given age. The same procedure is repeated for each t.)

4. The grid for eyij needs to be consistent with the probability distribution implied by the type of individual,
otherwise one runs into a number of problems.22 However, since

¡
αi, βi

¢
is not a state variable it is

22For example, if we attempt to solve the dynamic problem with a yhit that is much larger than what would be
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not possible to literally have the grid for eyij depend on the type. Instead then, we choose a different
grid for each possible belief vector, eSq, defined as yqgrid = [yqmin, y

q
max] where the bounds are defined

as: exp(HeSq ± 3σ(eyq)); HeSq is the mean income and σ(eyq) is the standard deviation given in equation
(5). In other words, these bounds define a three standard deviation confidence interval for income
through equation (5) given beliefs eSq. We take 8 equally spaced points for each income grid. (Using 20
points did not make a noticeable difference in results.) We repeat the same steps for each t.

5. Unlike the other 4 state variables, wealth does not affect and is not affected by the learning process.
Thus, we take a fixed wealth grid–that is, one that does not depend on beliefs or income–with 12
points, more densely spaced near the borrowing constraint, (Using 20 points did not make a noticeable
difference in results.) At a given age, the final grid is the Cartesian product of this wealth grid and the
(4-dimensional) grid (yqgrid, eSq). So the problem is solved on (12× 8×Qt) grid points, where Qt ranges
from 240 to 1100 over the life-cycle and averages 830.

Step 1: Solving the Dynamic Problem

1. The dynamic problem is solved using the Bellman equation approach. We solve the problem for each
point on the random grid at age t.

2. The non-Cartesian structure of the state space rules out a number of multi-dimensional interpolation
methods such as splines, Chebyshev polynomials that typically require Cartesian grids in more than
one dimension. Instead, we approximate the value function with a combination of polynomial functions
(up to the 4th power) and other functions (such as logs and fractional powers) of the state variables
including various interaction terms between them (a total of 162 terms used in the baseline model).
After solving the Bellman equation at age t, we regress the values of the value function at the grid
points on these functions of the state variables. These coefficients are then used for the interpolations
necessary to evaluate the expectation when solving the period t− 1 problem.

3. After the model is solved, we simulate the decision rules for a large number of individuals. For simplicity
we used the same I types drawn above and theN simulated income paths to obtain consumption-savings
paths.

implied by the individual’s αi, βi , the Bayesian updating results in next period’s beliefs that are substantially away
from next period’s grid for Sqt+1, because the latter is constructed based on income realizations that are going to be
observed in the actual solution. As a result, one needs to extrapolate next period’s value function which often yields
extremely inaccurate results (despite the fact that these far-off points have low probability). Considering a yhit that is
much smaller than what is consistent with the type, results in similar problems as well as creating further problems
with infeasible borrowing constraints.
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Table 1: Parameter estimates of the labor income process from Guvenen (2005)

Group Model ρ σ2α σ2β σαβ σ2η σ2ε
(1) A RIP .988 .058 – – .015 .061

(.024) (.011) (.007) (.010)
(2) A HIP .821 .022 .00038 −.0020 .029 .047

(.030) (.074) (.00008) (.0032) (.008) (.007)
(3) C RIP .979 .031 – – .0099 .047

(.055) (.021) (.013) (.020)
(4) C HIP .805 .023 .00049 −.0024 .025 .032

(.061) (.112) (.00014) (.0039) (.015) (.017)
(5) H RIP .972 .053 – – .011 .052

(.023) (.015) (.007) (.008)
(6) H HIP .829 .038 .00020 −.0007 .022 .034

(.029) (.081) (.00009) (.0012) (.008) (.007)

Notes: Standard errors are in parentheses. In the second column, A = all individuals, C = college-educated group,
and H = high school educated group. Time effects in the variances of persistent and transitory shocks are included
in the estimation in all rows, but are not reported to save space. The reported variances are averages over the
sample period. These parameter estimates are taken from Guvenen (2005)

Table 2: Decomposing Within-Cohort Income Inequality

(1) (2) (3) (4)
Age σ2α + σ2ε

1−ρ2t+1
1−ρ2 σ2η 2σαβt+ σ2βt

2 (3)
(1)+(2)+(3)

30 .069 .082 .005 .03
35 .069 .088 .030 .16
45 .069 .089 .135 .46
55 .069 .089 .315 .67
65 .069 .089 .568 .79
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Table 3: Baseline Parameterization

Annual model
Parameter Value

δ Time discount rate∗ 0.962
P f Price of risk-free bond 0.96
φ Relative risk aversion 2
β Avg. inc. growth for all households 0.009

β
C

Avg. inc. growth for college educ. 0.012

β
H

Avg. inc. growth for high school educ. 0.007
T Retirement age 65
T ∗ Age of death 95
Φ Replacement rate 0.34
P1|0 The variance of prior beliefs See text

Note: The parameters of the income process are taken from corresponding rows of Table 1. ∗The time discount
rate is adjusted in each experiment to generate a wealth-to-income ratio of 3.5. The value reported in the table is
for baseline PHU model with λ = 0. See text for details

Table 4: Income-Wealth Correlation Over the Life-Cycle

The average correlation of wealth with:
βi αi + βit

PHC (λ = 1.00) −0.58 −0.40
PHU (λ = 0.37) 0.26 0.39

Table 5: Alternative Estimates of the HIP Model

Paper ρ σ2α σ2β σαβ Stochastic Time effects

Process in variances?
Lillard and .707 .0305 .00018 .00076 AR(1) +i.i.d No
Weiss (1979) (.073) (.0015) (.00004) (.0001)
Baker (1997) .674 .139 .00039 −.004 ARMA(1,2) Y es

(.050) (.069) (.00013) (.003)
Haider (2001) .639 .295 .00041 −.00827 ARMA(1,1) Y es

(.077) (.137) (.00012) (.0036)

Notes: Lillard and Weiss’s data is biannual from the National Science Foundation’s Register of Scientific and
Technical Personnel covering 1960-70. The reported estimates are from table 7 of their paper, which has the most
similar specification to ours. Baker uses PSID data 1967-86, and this result is from Table 4, row 6, which has the
best overall fit. Haider’s data is also from PSID covering 1967-1992, and the results are from table 4.
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Figure 1: The Speed of Resolution of Income Uncertainty Through Bayesian Learning
about Profiles

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

Persistence (ρ)

M
SE

65
|t

ne
t

25 35 45 55 65
0

0.1

0.2

0.3

0.4

0.5

Age (t+s)

M
SE

t+
s|

t
ne

t

t = 35

t = 45

t = 55Top curve: MSE
t+s|t=25

, s=1, 2, ...

Others are for t = 35,  45 and 55

32



Figure 2: The Change in the Precision of Beliefs about α and β
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Figure 3: The Change in the Precision of Beliefs about α When σ2α,0 is Set to 10 times
Its Baseline Value
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Figure 4: The age-inequality Profile of consumption in the U.S. data and in the PHU
model
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Figure 5: The Age-Inequality Profile of Consumption: Comparisons
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Figure 6: The average income and consumption profiles by education groups in a
Lifeycle model with RIP
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Figure 7: The average income and consumption profiles by education groups in the
PHU model
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