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Abstract

The market value of U.S. corporations was nearly halved following

the Oil Crisis of October 1973. Real energy prices more than doubled

by the end of the decade, increasing energy costs and spurring inno-

vation in energy-saving technologies by corporations. This paper uses

a neo-classical growth model to quantify the impact of the increase in

energy prices on the market value of U.S. corporations. In the model,

corporations adopt energy-saving technologies as a response to the en-

ergy price shock and the price of installed capital falls due to investment

irreversibility. The model calibrated to match the subsequent decline

in energy consumption in the U.S. generates a 25% decline in market

valuation; accounting for more than half of what is observed in the

data.
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1 Introduction

The market value of U.S. corporations, relative to the replacement cost of

their tangible assets, was nearly halved during 1973-74 (See Figure 1). This

ratio, also known as the Tobin�s (average) q, averaged 1.06 over the 1962-72

period, fell sharply during 1973-74, and stagnated for the following decade.

Over 1974-1984, Tobin�s q for U.S. corporations averaged only 0.56, 49%

less relative to the decade prior to 1973. This decline in market valuations

was highly persistent as they recovered to their pre-1973 levels only by the

late 90�s.

Figure 1: Tobin�s average q: Market value relative to replacement value of

tangible assets of U.S. corporations

This abrupt decline in corporate market valuations coincides exactly with

the oil crisis initiated by the OPEC embargo announced in early October of

1973. The largest drop in market values occurred in the 4th quarter of 1973

and throughout 1974 (See Figure 2).
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Figure 2: Market Value of U.S. corporations relative to GDP

The oil crisis translated into a 38% percent increase in real energy prices

over 1973-74. Energy prices continued to rise for the rest of the decade,

especially during 1979-80 due to the events in Iran (See Figure 3). By 1981,

real energy prices were 2.2 times higher than what they were in 1972. Since

1982, energy prices have been declining. However they have yet to come

back to their pre-1973 levels after 30 years.

Figure 3: Energy prices relative to GDP de�ator (1972 = 1)

The links between the increase in energy prices and the fall in market

valuations seem intuitive and straightforward: First, the sharp and persis-

tent increase in energy costs must have squeezed both current and expected
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future dividends causing the market value of us corporations to go down.

Second, as the increase in energy costs was highly persistent, corporations

started adopting and investing in new technologies that were more energy-

e¢ cient. This spur in energy-saving technologies resulted in capital obso-

lescence for the old energy-ine¢ cient technologies driving their value down

(cf. Baily [3]). Although these links are intuitive and the timing of the

two events is suggestive, the energy explanation has had di¢ culties both

empirically and theoretically and has led many authors to entertain other

explanations for the stock market crash of 1973-74.

The main empirical criticism regarding the energy explanation is that

there is not a high enough correlation between the drop in market values

and the pre-1973 cost share of energy for corporations (cf. Wei [45] and

Greenwood & Jovanovic [14]). For the manufacturing sectors at the level of

2-digit SIC code, the correlation is only 0.09. On the theoretical side it has

been di¢ cult to construct models where energy prices have a quantitatively

signi�cant impact on corporate market values primarily because the share

of energy in total costs of businesses is small. In particular, Wei [45] uses a

putty-clay model to �nd that energy increases can account for only 2% of

the decline in market valuation.

The �rst criticism would be especially strong if rising energy costs were

the main channel through which energy a¤ected market values and Tobin�s

q. However, this cannot be the case. In fact there is no reason to expect a

drop in Tobin�s q due to an increase in energy prices as long as the price of

installed capital does not deviate from potential replacements. If capital is

homogeneous (i.e. the replacement capital is exactly the same as installed

capital in terms of energy e¢ ciency and other respects), then Tobin�s q which

measures market value (or value of installed capital) relative to replacement

value will not be altered regardless of the cost share of energy. In this respect,

the introduction of new energy-e¢ cient technologies and the obsolescence of

old technologies appears to be a better explanation for the drop in Tobin�s

q. We would expect to see a higher drop in Tobin�s q in an industry that can

reduce energy costs through the adoption of new technologies even when its

initial cost share of energy is smaller than another industry which cannot
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adopt new technologies. For manufacturing industries at the 2-digit SIC

code level, the correlation between the drop in market value and the drop

in energy costs following the energy crisis is 0.41. The latter �gure is much

higher than the correlation of the drop in market value with the initial cost

share of energy.

On regards to the second criticism, we should �rst note that the energy

costs in the business sector is not that small, it amounted to almost 7.5-8%

of the value of output produced by the business sector prior to the 73 crisis

instead of the 4% cited by Wei [45]. The relevant price index to look at is the

energy consumption and not production prices as businesses are consumers

of energy. Second, even though the putty-clay model is intended to capture

price induced savings in energy by allowing substitution in new vintages

of capital, it counterfactually predicts that real energy-output ratio starts

going up as energy prices start to decline in the 80�s and 90�s. As shown in

Figure 4, real energy use (as a share of output) declined monotonically after

1973-74 even when energy prices were going down in the 80�s. This fact

is consistent with a technology that is characterized by increasingly lower

energy requirements per unit of production (i.e. energy-saving technological

change) and not consistent with a putty-clay model.

Figure 4: Energy expenditure (nominal) and energy use (real) of the

business sector as a share of business GDP
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In this paper we use neo-classical growth theory to address whether

and if so how much of the decline in corporate market valuations can be

accounted for by the observed changes in energy prices. The model is a

dynamic general equilibrium model with technology-speci�c capital and in-

vestment irreversibility. These assumptions are standard in the literature

(cf. Sargent [39], Dixit and Pyndick [9]), and allow for Tobin�s q to fall

below 1, as in the data. In the model economy, �rms adopt energy-saving

technologies as a response to the energy price shock and the price of in-

stalled capital falls due to investment irreversibility. Firms do not adopt

these energy-saving technologies prior to the energy shock since there is a

minimum investment requirement similar to Boldrin & Levine [4] before the

�rms can operate these new technologies. With low energy prices, �rms

forego this cost. However, with sharp increases in energy prices it pays for

them to do so. We calibrate the parameters of the model to match certain

features of the U.S. economy, in particular we set the energy-e¢ ciency of the

new technologies to match the decline in real energy output ratios. Given

this feature, our model suggests energy prices can account for at least half

of the drop in Tobin�s q, and partially for its stagnation throughout the 70�s

and 80�s.

Other explanations put forward for the stock market crash of 1973-74

are the IT revolution (cf. Greenwood & Jovanovic [14])and investment sub-

sidies provided by the government to businesses (cf. McGrattan & Prescott

[29]). The IT explanation is similar to our explanation in spirit, whereby

the innovation of information technologies drive down the price of installed

capital. Peralta-Alva [33] uses a neoclassical growth model with capital ac-

cumulation to test this idea and �nds that the quality of new technologies

that will generate the observed drop in Tobin�s q would also generate a two-

fold increase in investment, sharply in contrast with the data. McGrattan

& Prescott [29] argue that the investment subsidies drive a wedge between

the price of installed capital and replacement capital and can account for

one third of the decline in market valuations observed in the 70�s. Our

model is not inconsistent with this explanation, since part of the reason for

investment subsidies was to encourage �rms to adopt new energy-e¢ cient
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technologies. We nevertheless abstract from subsidies in our model, and

concentrate on the e¤ects of the oil crisis and energy-saving technological

change in isolation from the government response.

Section 2 o¤ers evidence on innovation of energy-saving technologies by

�rms after the oil crisis. Section 3 lays out the model. Section 4 discusses

calibration, computation and �ndings. Section 5 concludes.

2 Innovation in Energy-Saving Technologies after

1974

The fundamental assumption in our analysis is that capital embodies a par-

ticular technology. Such an assumption is familiar from Robert M. Solow

(1960) and �ts particularly well with inventions that transform the whole

economy. In our model, the introduction of a new type of capital gives birth

to a new aggregate production function characterized by its energy-saving

properties. In what follows, we provide empirical support for this hypothesis.

As is well-known in the environmental economics literature, energy-saving

technologies transformed U.S. production methods. In particular, the U.S.

energy intensity - the ratio of BTUS of energy use to output - halved over the

1974-2000 period. First, we give some examples of the energy-saving tech-

nologies behind the decline in the U.S. energy intensity. Then, we provide

additional evidence that suggests energy-saving methods were developed and

adopted as a result of the energy crisis of 1973-74.

One of the most important changes in the manufacturing sector dur-

ing the 1975-1995 period was the increased use of Advanced Manufacturing

Technologies. Examples of this include computer aided design and manufac-

turing, numerically-controlled machines, and information networks. These

improvements constitute a form of embodied technological change. It is

new capital, including both hardware and software, that incorporates the

advancements in technology. Doms and Dunne [11] use establishment-level

data to determine changes in energy and electricity intensity arising from dif-

ferences in plant characterisitics and energy prices. Their two main �ndings
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are �rst, plants that utilize higher numbers of advanced technologies are less

energy intensive and rely more on electricity as fuel source. In particular,

plants based on advanced manufacturing technologies consume less energy

per unit of output, but consume a higher proportion of electricity. Sec-

ond, plants constructed during the period of high energy prices, 1973-1983,

are generally more energy e¢ cient than plants built during other periods.

Hence, the adoption of advanced manufacturing technologies is key to un-

derstanding both; the steady decline in energy intensity and the increase in

electricity�s share of total energy consumption that started around 1974.

Schiper [40] documents that most of the decline in energy intensity of the

us economy can be attributed to improved energy e¢ cency and not to the

level and structure of sectoral activity1. As we discussed before, one impor-

tant reason why the manufacturing sector improved its energy e¢ cency was

the introduction of advanced manufacturing technologies. Another develop-

ment that lowered the energy intensity of all sectors was the introduction

of energy-e¢ cient buildings. U.S. residential and commercial buildings con-

sume 40% of all U.S. energy and are therefore key to understand the trends

in energy intensity. Rosenfeld (1990) �nds that most of the e¢ ciency gains

in the heating and cooling of buildings took place during the period of high

energy prices, 1973-1983. During those years, technological improvements

in the heating, lighting and cooling systems2 allowed for a decrease of 1.2

million barrels of oil per day (an amount equal to two-thirds of the daily

output of the Alaskan pipeline) despite the fact that 20 million new homes

were built, and commercial �oor space increased by 40 percent. A sector that

also experienced dramatic energy-saving changes after 1974 was the plastics

industry. This industry is interesting because its major technological leap in

energy-saving, and in overall productivity, involved major restructuring of

the plants producing plastics. Joyce [23] documents that the Union Carbide

1One important example of changes in the structure of sectoral activity is the decline
of manufacturing - an energy intensive sector - and the rise of the service sector - a less
energy intensive one - measured as a share of GDP.

2Mainly, the adoption of central heating and air-conditioning systems, the development
of compact �uorescent lamps, and the adoption of urban shade-trees and light-colored
surfaces.
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Unipol Process, introduced in the mid 1970s, required a plant much smaller,

produced twice as much product, and lowered the energy e¢ cency of poly-

ethylene production from 8400 BTUS per pound to 1500 BTUS per pound3.

Based on the above discussion we conclude that the assumption of energy

saving technological change being endogenous is a reasonable one and, more

importantly, that the development of the technologies behind the observed

decline in energy intensity coincides with the energy crisis of 1973-1974.

Other authors have suggested a causal link between the energy crisis

and the introduction of energy saving technologies. For example, Schurr

[41] �nds that the energy intensity of the U.S. economy started its long-run

decline by the end of World War I and stabilized (actually had a small pos-

itive growth rate) during 1950-1973. He �nds that energy intensity declined

at a faster speed between 1973-1983 than any other period in the 20th cen-

tury. He concludes that the introduction of energy-saving technologies re-

sulting from the oil crisis is the main culprit for this faster decline. Popp

(2002) uses patent data to analyze the impact of energy prices on energy-

saving innovation. He �nds that the number of successful patent applica-

tions of energy-saving technologies jumped up during the mid 1970�s. The

main conclusion of the author, based on econometric analyses, is that en-

ergy prices have a strong, positive impact on the number of energy-saving

technologies.

The sections that follow present a theoretical model with an explicit

causal link between energy prices and the introduction of energy-saving tech-

nologies. We calibrate the model so that it matches the main features of

energy consumption of the U.S. economy. We then test for the asset pric-

ing implications of the energy crisis and the energy-saving innovation that

followed.
3The list of energy saving technologies is long. The interested reader can �nd many

more examples in Tester, Wood and Ferrari (1990).
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3 The Model Economy

In this section we present a general equilibrium asset pricing model with

capital accumulation. Production is undertaken by corporations which are

in turn owned by in�nitely-lived households. Energy, an input in production,

is imported from abroad and there is trade balance each period. There

are two types of capital-embodying technologies which di¤er only in energy

intensities. As such, capital is technology speci�c and investment decisions

are irreversible.

Prior to 1974, agents assume that energy prices are going to stay at the

pre-crisis level forever. The energy crisis takes place in the beginning of

1974 and takes the agents in the model by surprise. After 1974, the model

is deterministic and the agents have perfect foresight on energy prices.

The Stand-in household
The population in period t is denoted by Nt and � is the constant growth

factor of population, so Nt+1 = �Nt: The stand-in household�s preferences

are described by the following utility function

1X
t=0

�tu (ct)Nt

where c is per-capita consumption, and u(:) is given by

u (c) =

(
c1��

1�� for � 6= 1
log (c) for � = 1

where 1=� is the constant intertemporal elasticity of substitution. Each

member of the household is endowed with a unit of time each period which

it supplies inelastically to the labor market. The household participates in a

market for shares of the corporations. Owning a fraction st of the perfectly

divisible share entitles the shareholder to the same fraction of the dividends

paid by the �rm. The stand-in household�s period zero budget constraint
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given by
1X
t=0

pt [Ntct + Vt (st+1 � st)] =
1X
t=0

pt [wtNt + dtst]

where V is the price and d is the dividends per share of the �rm.

The household�s problem is to choose sequences of consumption fctg and
asset holdings fstg that maximize utility subject to the period zero budget
constraint.

Corporations
There is a unit measure of identical corporate �rms, which operate two

constant returns to scale technologies indexed by 1 and 2. Both these tech-

nologies use capital k, labor n and energy e as inputs to produce an identical

output good y = y1 + y2 where

y1 = [minfk1t; �e1tg]� (Atn1t)1�� and y2 = [minfk2t; �te2tg]� (Btn2t)1��

� and f�tg are parameters governing the energy-e¢ ciency of each of the
available technologies.4 There is a minimum level of capital ki requirement

for each technology before that technology is operational and can be used

to produce output [c.f. [4]]:

yit = 0 if kit < ki for i = 1; 2

At and Bt are the levels of labor-augmenting productivity at period t for type

1 and type 2 technologies correspondingly. Before each type of technology

is adopted (i.e. when ki < ki for i = 1; 2), there�s uncertainty regarding the

initial level of productivity which prevails once the technology is operational.

Let � i be the �rst period with ki > ki. Then A� i can take two values; A
g
0 with

probability � and Ab0 with probability (1� �). Similarly B� i can take two
values; Bg0 with probability � and B

b
0 with probability (1� �) There is no

further uncertainty; once a technology is adopted, it grows at an exogeneous

4Note that the energy-e¢ ciency of the second technology is time-dependent and will
increase over time. We need this feature to match the observed decline in energy-output
ratios.
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factor 
 (i.e. At+1 = 
At and Bt+1 = 
Bt).

The law of motion for capital accumulation for each type of capital is

given by

kit+1 = (1� �) kit + xit for i = 1; 2 (1)

where xi is investment in capital type i and � is the depreciation rate. Note

that capital is technology speci�c, and investment decisions are irreversible

in the sense that once investment is decided on a certain type of capital,

that capital cannot be transformed into the other type of capital.

The corporations hire labor services and import energy from abroad,

but they own their capital and in turn pay dividends d to their shareholders.

Shareholders are the residual claimants on the income of corporations, hence

dividends are equal to �rm income less payments for wages, energy and new

investments:

dt = yt � wt (n1t + n2t)� pet (e1t + e2t)� x1t � x2t

where pe is the relative price of energy. The objective of the corporations

is to choose sequences of investment fxitg, labor fnitgand energy feitg for
i = 1; 2 so as to maximize the present value of dividends:

1X
t=0

ptdt

Feasibility
The economy�s resource constraint is now given by

Ntct + x1t + x2t + p
e
t (e1t + e2t) = yt; for all t: (2)

Note that the above speci�cation dictates a trade balance each period, where

energy imports from abroad are paid o¤ fully, and there is no foreign bor-

rowing or lending. The market clearing in the labor market is given by

Nt = n1t + n2t
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Finally, there is a market clearing condition for market for shares, which

requires st = 1 for all t:

3.1 Tobin�s (average) q

Tobin�s average q is de�ned as the ratio of market value to the replacement

cost of capital. In the model described above, market value corresponds

to Vt. Furthermore, constraints (1) and (2) force the relative price of new

capital to equal one, and thus the replacement cost of capital (at the end of

period t) is k1t+1 + k2t+1. Hence, Tobin�s average q in this model is

qt =
Vt

k1t+1 + k2t+1
:

As is well known, a necessary condition for q to fall below one is that at

least one of the irreversibility constraints binds. Intuitively, the amount

of energy-ine¢ cient capital (type 1) becomes "too big" with the increase

in energy prices. In a world where investment decisions are reversible or

capital is not technology speci�c, agents would transform this extra capital

into consumption or would utilize it in the energy-e¢ cient technology. Since

they are not allowed to do either, the price of installed capital of type 1 falls.

The magnitude of the fall is dependent on how much these constraints bind.

4 Calibration and Results

In this section we discuss how the model was calibrated and computed. Also

we lay out the �ndings from the model and compare them with the data.

4.1 Calibration

To calibrate the parameters of the model, we follow Cooley & Prescott [8]

and match certain features of the us economy in the pre-crisis period of

1962-1972 to the balanced growth path of the model. We set � equal to 1:01

to match the 1% average growth rate of population, and 
 equal to 1.02 to

match the average per capita growth rate of U.S. corporate output which

13



is 2%. � is calibrated to match one minus the labor share of income in the

corporate sector, obtaining a value for � of 0.33. � governs the intertemporal

elasticity of substitution and we take this number from Prescott [35], and

let � = 2. We set � equal to 0:998 to match a steady state real interest

rate of 5% and � equal to 0:06 to match an investment-output ratio of 20%

and capital-output ratio of 1.5.

We have assumed that the oil crisis was completely unexpected and

prior to the crisis, agents expected energy prices to remain constant in theri

1972 levels. Prior to the crisis, corporations were endowed with only type

one capital, and they had not made any investment in type two capital.

We choose the minimum investment requirements and also the initial pro-

ductivity parameters and probabilities such that given the expectations on

energy prices5, agents would choose not to adopt the second technology and

only operate the �rst technology prior to the crisis, but they adopt the sec-

ond, more energy-e¢ cient technology once the oil shock occurs. With these

considerations, we set k1 equal to zero, and k2 to 0:20 which is 10% of the

total capital stock. Since the �rst technology has already been adopted, the

initial level of productivity for technology 1 is irrelevant. We set the initial

level of productivity of technology 2 in the good state equal to technology

1�s level of productivity (i.e. Bg�2 = A�2) and in the bad state 10% lower. �

is set equal to 0:45.

Finally, we set � so that the model�s energy use to output ratio matches

the 1962-72 U.S. average, and compute the sequence f�tg2001t=1973 that min-

imizes the distance between the equilibrium energy output ratio from the

model, and the associated data series. The resulting sequence is plotted in

Figure 5:

5Note again that prior to 1974, agents believe the energy prices are going to stay at
their pre-crises level forever. Once the energy crises occurs, they have perfect foresight on
energy prices.
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Figure 5: The parameters regulating energy-intensity of the two

technologies

4.2 Findings

As previously described, the energy-saving properties of the new technol-

ogy are such that the model matches the observed energy output ratio: in

spite of the sharp decrease in energy prices in the 80�s, energy use declines

monotonically, as in the data. The energy output ratio from the model and

of the U.S. corporate sector are shown in Figure 6 below:

Figure 6: Energy-output ratio: model vs. data

The observed changes in energy prices, coupled with the availability of a

new technology with energy saving factor f�g, translate into a 25% drop in
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market valuations, about 1/2 of what is observed in the data. The model�s

predictions for q, and its U.S. data counter part are plotted in Figure 7

below:

Figure 7: Tobin�s q : model vs. data

The increase in energy prices generates a modest slowdown in output as

shown in the following graph:

Figure 8: Output: model vs. data

It also generates a strong contraction in investment. We believe the latter

is due to the simplicity of our model. We have abstracted from changes in
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investment tax credits, from the impact of the productivity slowdown, and

from the increasing importance of information technologies. All of those

changes are known to make investment increase and, more importantly, to

generate sudden drops in market valuations (cf. McGrattan and Prescott

[29], Boldrin and Peralta-Alva [5], and Peralta-Alva [33]).

Figure 9: Investment-output ratio: model vs. data

5 Conclusion

This paper employs a calibrated dynamic general equilibrium model to eval-

uate how much of the stock market crash of 1973-74 can be accounted for

by changes in energy prices. In a world where capital is technology speci�c,

and investment decisions irreversible, we �nd that the observed changes in

energy prices, together with the energy-saving technologies derived from the

energy use series data, translate into a 25% drop in Tobin�s average q. This

corresponds almost half of the observed drop in q of the mid-70�s . Our

model is qualitatively consistent not only with the data patterns in equity

prices, but also with the economic slowdown of the mid-70�s.

The basic economic mechanism we considered is the following: A sudden

increase in energy prices renders old capital obsolete, and causes its mar-

ket valuation to collapse. Old technologies are abandoned and gradually

replaced by energy saving ones, better suited for the new economic condi-

tions. Old capital is left to depreciate, and labor �ows from the old to the
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new type of technology. The replacement process is gradual, and market

values recover in a smooth fashion.

In our model, the possibility of adoption of a new energy-saving technol-

ogy is always available, but costly, hence agents do not introduce it unless the

economic conditions demand it. We believe that the energy price increase

of 1973-74 gave agents enough incentives to pay the cost, and to innovate in

such energy saving technologies.

Our analysis indicates that changes in energy prices should be part of

any theory of the stock market collapse of 1973-74.

6 Data Appendix

Here we outline how the major series used in the �gures were constructed.

Figure 1. Ratio of Market Value to Replacement Cost of Tangible Assets
for Corporations

Market value of corporations was constructed using data from the Flow of

Funds Accounts of the United States (FOF) issued by the Board of Governors

of the Federal Reserve System (FRB).6 In the FOF, domestic corporations

are divided into non�nancial and �nancial corporate business. Financial

corporations are further divided to the following categories as listed in Ta-

ble F.213: Commercial banking, life insurance companies, other insurance

companies, closed-end funds, exchange-traded funds, real estate investment

trusts (REITs) and brokers and dealers.

Our measure of market value re�ects both equity value and debt of all

domestic corporations, and all direct or indirect (through mutual funds)

intercorporate holdings of corporate equity and debt has been netted out. To

that e¤ect market value of domestic corporations (MV) has been constructed

as follows:

MV = Corporate equity issued by non�nancial and �nancial corporate

businesses + Net �nancial liabilities (i.e. Total liabilities - total �nancial as-

sets) of nonfarm non�nancial corporate businesses,commercial banks, life in-

6This data can be downloaded from the FRB website at
http://www.federalreserve.gov/releases/z1/current/data.htm.
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surance companies, other insurance companies, closed-end funds, exchange-

traded funds, REITs, and security brokers and dealers.

Replacement cost of tangible assets of corporations was constructed us-

ing data from the Fixed Assets Tables (FA) reported by the Bureau of Eco-

nomic Analysis (BEA)7 and also from the FOF. Our measure of tangible

assets include all nonresidential and residential �xed assets, plus invento-

ries. Corporate �xed assets are the sum of corporate nonresidential �xed

assets and corporate residential �xed assets. Stock of inventories held by

nonfarm non�nancial corporations is from the FOF. We assume �nancial

corporations hold no inventories as their inventory investment is zero in the

product account, and we neglect inventories hold by farm corporations since

they are negligibly small.

Figure 2. Energy Prices relative to the GDP De�ator
We follow the methodology outlined in Atkeson & Kehoe [2] and con-

struct an energy price de�ator from a weighted average of coal, natural gas,

petroleum and electricity consumed in the commercial, industrial and the

transportations sectors. This excludes residential consumption as we focus

only on the business sector and also energy consumed by the electric power

sector as in our model all energy is imported. We use quantity and price

data reported in the Annual Energy Review (AER) 2001.8 The quantity of

each type of energy (measured in units of Btu) consumed in the commer-

cial, industrial and the transportation sectors are from Tables 2.1c, 2.1d,

2.1e respectively. For prices we use consumer price estimates of energy (as

businesses are consumers of energy) reported in Table 3.3 and we label the

price of energy for each type as Pi. For each type of energy i, we add the

consumption of that energy type in all sectors and call that Qi. Then, total

energy expenditure is simply
P
iQitPit. We calculate real energy use using

1972 prices as the base year. Hence real energy use equals to
P
iQitPi1972:

The energy price de�ator Pt is simply the ratio of the total energy expendi-

7This data can be downloaded from the BEA website at
http://www.bea.doc.gov/bea/dn/faweb/AllFATables.asp.

8This data can be downloaded from the EIA website at
http://www.eia.doe.gov/emeu/aer/contents.html.
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ture to total energy use:

Pt =

P
iQitPitP

iQitPi1972

The GDP de�ator is constructed in the usual way from nominal and real

GDP series reported in BEA�s NIPA Tables 1.1 and 1.2.

Figure 3. Energy Expenditure and use in the Business Sector
Total energy expenditures of the business sector was calculated as in

Figure 2 and then was divided by the nominal GDP of the business sector

(from NIPA). The total real energy use of the business sector (expenditure

using 1972 prices) was calculated as explained for Figure 2. This number

was divided by the real GDP of the business sector in 1972 prices. Real

GDP of the business sector data is from BEA�s NIPA Table 1.8. These

numbers are reported in 1996 dollars. We �rst construct a price de�ator

using nominal and real GDP of the business sector, readjust the level of the

de�ator such that 1972 = 1 rather than 1996. Then we multiply this number

with nominal GDP of business to get real GDP of business in 1972 dollars.
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