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Abstract 
Our aim in this paper is to test the robustness of the relation between total factor productivity 
growth and inflation to the specification of the model adopted for its identification. In doing so 
we estimate a generalized Box-Box cost function using data from the two-digit Standard 
Industrial Classification of manufacturing industries in Greece during the period 1964-1980. The 
results confirm that the acceleration of inflation from 1964-1972 to 1973-1980 reduced total 
factor productivity growth in a way that was both statistically significant and sizeable. In 
addition, they reveal that, even when the effect of inflation is separated from the effects of 
technical change and economies of scale, the choice of functional form is most crucial. The 
reason being that cost functions such as the translog, the generalized Leontief, and the 
generalized square root quadratic are not general enough to account for the sensitivity of 
estimates to model specification. On these grounds then we conclude that, for a precise 
estimation of the adverse impact of inflation on total factor productivity growth, it is imperative 
both to sort out the three effects involved and do so by adopting the most general flexible 
functional form available for the cost function.   
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I. Introduction 

The efforts by a long list of investigators in the last two decades to shed light on the relation 

between total factor productivity growth and inflation have focused on two tasks. To establish its 

analytical form, and to characterise its significance and robustness to changes in the data and the 

research methodologies used. The literature that has accumulated shows that the results have been 

quite disparate. More specifically, while on the one hand the evidence indicates beyond reasonable 

doubt that total factor productivity growth is inversely related to inflation, on the other hand, the 

significance and robustness of the estimated relation remain uncertain.  

For an example in this respect, consider the findings by Buck and Fitzroy (1988), Grimes 

(1991), Barro (1991), Cozier and Selody (1992), Fischer (1993), Smyth (1995), Clark (1997) and 

Motley (1998) more recently. Even though they employ different sets of data and research 

approaches, all of them find that the relation between total factor productivity growth and inflation 

is negative. But with regard to its significance, some detect negligible effects of inflation on total 

factor productivity growth, whereas others come up with sizeable influences. Barro (1991), for 

instance, finds that, if a country reduced its inflation from, say, 7% to 2%, it would see its growth 

rate rise by only a little more than .01%. This implies that the government of that country would not 

need to strive to reduce inflation, because its gains in terms of total factor productivity growth 

would be marginal. On the contrary, Motley (1998) obtains a strikingly different result. According 

to this, a reduction in inflation by 5% would increase the growth rate of real Gross Domestic 

Product (GDP) per capita at least 0.1 percentage point. Hence the government would have a strong 

incentive to adopt anti-inflationary policies. 

 In view of this uncertainty researchers turned their attention to the reasons that might be 

responsible. From their endeavours it emerged that the main problem had to do with the 

specification of the models employed in the estimations. Two characteristic examples in this 

regard are the studies by Levine and Renelt (1992) and Clark (1997), which find that “…the 

estimates of the relationship suffer robustness problems that plague a variety of model 

specifications”. So when in Bitros and Panas (1998) we visited the same issue, we were aware of 

the particular shortcomings that had to be overcome in order to advance the evidence beyond the 

state it had reached at the time.  

  Our view then was that previous efforts had failed to pin down the relation because 

researchers had not managed to distinguish the effect of inflation on total factor productivity 
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growth from the effects of technical change and scale economies. This realisation implied two 

consequences. First, that researchers attributed to inflation an effect that could very well be due to some 

extent to these sources; and, second, that it was natural for the effect of inflation to be very sensitive to 

model specification, because the models used in the estimations had not been targeted to account for the 

variability of technical change and scale economies. For this reason, in Bitros and Panas (1998), we 

adopted a translog cost function approach that enabled us to sort out these three effects. 

However, while occupied with the aforementioned paper, we had not realised that by 

following Appelbaum (1979) and Berndt and Khaled (1979) we could have generalized our model 

even further. For, if instead of the translog we had adopted a generalized Box-Cox cost function, we 

could have tested far more strenuously the sensitivity of our estimates to model specification, since 

this function includes the translog, the generalized Leontief, and the generalized square root quadratic 

cost functions as special cases. This is exactly the objective we have set in this paper. Namely, our 

aim here is to estimate a generalized Box-Cox cost function using the same data as before, and to test 

the robustness of the results to the new specification of the model.  

The estimates we obtain confirm that, on the average, the acceleration of inflation in Greece 

from 1964-1972 to 1973-1980 reduced total factor productivity growth in the two-digit Standard 

Industrial Classification manufacturing industries, in a way that was both statistically significant and 

sizeable. Moreover, they reveal that, even when the effect of inflation is separated from the effects of 

technical change and economies of scale, the choice of functional form is most crucial. For these 

reasons we conclude that, for a precise estimation of the adverse impact of inflation on total factor 

productivity growth, it is imperative both to sort out the three effects involved and to do so by 

adopting for the cost function the most general flexible functional form available.   

The remainder of the paper is organised as follows.  The next Section presents the model 

we use to assess the impact of inflation on total factor productivity growth. Section III describes 

the sources of our data as well as the definition and the construction of the variables that enter the 

estimations. Section IV presents and comments on the empirical results, and, finally, in Section V 

we summarise our conclusions. 

 
II. The econometric model 

Economic theory suggests that there is a function  y),p ...., ,p ,p(CC n21= , where C 

denotes the total cost,  are the observed prices of the 1 inputs and y is the n21 p ...., ,p ,p n ...., 2, ,
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output produced. But economic theory is silent regarding the form of this cost function. For this 

reason, in most cases, researchers have approximated it by a flexible functional form.  

Diewert (1974) has defined a flexible functional form as one that can provide a second-

order approximation to an arbitrary twice-differentiable function. The most popular flexible 

functional forms in this class have been the translog function1 and the generalized Leontief 

function.2 Their basic merit being that they do not constrain the partial elasticities of substitution 

or their ratios to a given constant. 

The present paper adopts the generalized Box-Cox approximation to the cost function. 

Berndt and Khaled (1979) introduced it because of its superior advantages over the above-

mentioned flexible functional forms. In particular, the generalized Box-Cox cost function: 

•  Includes the translog, the generalized Leontief and the generalized square root quadratic 

functions as special cases.  

•  Imposes a priori restrictions neither on the partial elasticities of substitution or their 

ratios nor on the returns to scale or the bias of technical change, and  

•  Facilitates considerably the introduction of certain simplifications by recourse to the 

theory of duality. 

To highlight the last advantage, recall, say, from Varian (1978) that, given a cost function 

that is non-decreasing, homogeneous, concave, and continuous in prices, there exists a production 

function of which that cost function is a representation. More specifically, let  

 
)t,E,L,K(fy =                                                       (1) 

 

be a production function where y is output, K is capital, L is labour, E is energy, and t is time, 

serving as a proxy for technical change. If we assume that the producer minimises the cost of 

production subject to a given level of output, then (1), may be represented by the following dual 

cost function which summarises the underlying production process:    

 

)t,y,p,p,p(C 321Φ=                                                        (2) 
 

where C is total cost and p1, p2, p3 are respectively the input prices of K, L, and E. 

                                                 
1    See Christensen, Jorgenson and Lau (1971, 1973, and 1975).  
2    See also Diewert (1971). 
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So this study begins by assuming that the production technology of firms is represented 

by the generalized Box-Cox cost function: 

 
                                                       (3) ),p,y(./1 y)]p(G1[C πβλλ+=

where 
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For (3) to exist as a well behaved cost function it must satisfy several conditions. First, in 

order for it to be dual to a production function, it must meet the condition of linear homogeneity 

with regard to input prices. According to Berndt and Khaled (1979), this entails that:       
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Second, the system of input demand equations resulting from (3) must satisfy the 

condition of integrability. The reason being that only then these functions will integrate into an 

aggregate cost function characterized by the properties of monotonicity and concavity. In this 

respect, Hurwicz (1971) and Hurwicz and Uzawa (1971) have shown that a system of demand 

equations is integrable, if and only if, its Hessian matrix is symmetric. Thus, under cost 

minimization, for a well-behaved aggregate cost function, and hence for a well behaved 

production function to exist, it must hold that:  

 
            j).(i   ,jiij ≠γ=γ                                                            (7) 

 
Next, in order to introduce disembodied technical change (see, Berndt and Khaled (1979)), (3) is 

modified as follows: 
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When conditions (6) -(7) and (9)-(10) are imposed, (7) transforms into: 

 
,ey})pp()/2{(C ),p,t(),p,y(/12/

jiij∑∑ πΤπβλλγλ=                             (11) 
 

where β(y, p, π) is defined in (5) and T(t, p, π) is defined in (9). From (11) it is easy to verify that: 

a) when λ=1, (11) is equivalent to the generalized Leontief cost function, b) when λ=2, (11) is 

equivalent to the generalized square root quadratic, and c) when λ→0, (11) is equivalent to the 

translog. Therefore, (11) is indeed more flexible than all these functions  

In addition, (11) is non-homothetic with exponential non-neutral technical change. The 

parameters  are the non-homotheticity coefficients. These parameters indicate the presence of 

scale economies with respect to the individual inputs. For instance, if φ

iϕ

i=0 for all i, the production 

structure is homothetic. If in addition θ=0 the production is homogeneous of degree 1/β. The 

parameter θ(=∂2lnC/∂lny2) carries information regarding the slope of the cost curve of the industry. 

When θ>0 the minimum point of the average cost curve is reached as output increases. 

Hicks-neutral technical change may be imposed by constraining the non-neutrality 

parameters ri=0 ∀ i,  E. L,,Ki =  If this condition is not imposed, technical change is factor i-

saving, if , or factor i-using, if     0ri < .0ri >

According to Diewert (1974), given a generalized Box-Cox cost function that is: a) 

positive for positive values of y, an b) homogeneous of degree one, increasing and concave in p1, 

p2, and p3, it is possible to obtain the conditional factor demands by applying Shephard’s lemma. 

The expression in (11) is such a cost function. Therefore, differentiating it with respect to the 

input prices, the conditional factor demand functions that result are given by: 
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These equations are the equations that are used in estimating the coefficients of the generalized 

Box-Cox cost function for each manufacturing industry. 

The Allen partial elasticities of substitution, ijσ , are defined by the relationship: 

  
 E, L,K,ji,for     ,CC/CC j

.
iij

.
ij ==σ                                              (15) 

 
where the subscripts refer to first and second order derivatives with respect to input prices. Using 

(15) these partial elasticities can be computed from the generalized Box-Cox cost function as 

follows: 
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where the ji S  and S  refer to the cost share of i or j input.  

The Allen partial elasticities of substitution are related to input demand elasticities by:  
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From (17) follows that, if , the inputs  are substitutes, thus implying that 0ij >σ ji x ndax 0ij >ε . 

Conversely, if , the inputs x are complements, thus implying ε . 0ij <σ ji x and 0ij <

In addition, the generalized Box-Cox cost function provides the growth rate of total factor 

productivity. Following Denny, Fuss and Waverman (1981), and Baltagi and Griffin (1988), the 

rate of total productivity growth (henceforth ) is given by: PFT
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Equation (18) decomposes the total factor productivity growth,  into three components: (i) the 

scale effect, which depends on  and , (ii) the effect of technological change, , and (iii) the 

effect of inflation . This expression will be especially useful in looking at the effect of 

increased inflation on total factor productivity growth. 

,PFT

cyε y ctε

πε πc

 

II. Data, definitions and measurement of variables 

Our data comprise observations from the two-digit Standard Industrial Classification of 

manufacturing industries in Greece and span the period from 1964 to 1980. Aside from the fact 

that we wished to compare our results with those reported earlier in Bitros and Panas (2001), the 

observation period had to be limited to 1980 for three reasons. The first of them was that the data 

provided by the National Statistical Service of Greece in its Annual Industrial Survey after 1980 

are not compatible with those before 1980. Up to 1980 the National Statistical Service of Greece 

reported employment in manufacturing enterprises with an average employment of at least 10 

persons. But after 1980 it started reporting employment by all manufacturing enterprises with an 

average employment of at least 20 persons and manufacturing establishments with an average 

employment of 10 to 19 persons.  

The second reason emanated from the lack of capital stock series at the two-digit level after 

1980. Due to the aforementioned incompatibility in the available data, even if we had the resources to 

construct capital stock series beyond 1980, they would not be internally consistent. Thus, we were 

compelled to use the capital stock series computed by Kintis (1986). 

 Finally, the third reason was that, if we had to choose between the period before and the 

period after 1980, we would have opted for the former. This is because the period 1964-1980 

consists of two sub-periods: one of low inflation (1964-1972) and another of high inflation 

(1973-1980). Hence, it is more suitable for our study than the period since 1980. 

Unless indicated otherwise, all data come from two publications of the National Statistical 

Service of Greece. These are the Annual Industrial Survey and the Statistical Yearbook of 

Greece. All variables are measured in 1975 prices and are defined as follows: 

C =  sum of input costs. 

y  =  value-added. 

L  =  man-hours per year. 

E  =  kilowatt-hours of energy consumption.  
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K  =  capital stock as indicated above.  

Lp  = real wage rate. This was calculated with data from the Annual Industrial Survey as the 

ratio of the deflated wage bill to man-hours worked. 

Kp  = user cost of capital. This variable was constructed as q )r(K δ+ , where is the 

investment deflator, r = the interest rate, and δ = depreciation rate of the capital 

stock. 

Kq

Ep = real price of energy obtained by dividing the deflated nominal energy expenditure by 

the energy consumption in physical units.  

 π  =  relative change in output price. 

The investment deflator for the construction of was the implicit price deflator for gross 

investment in manufacturing and was extracted from the National Income Accounts of Greece. 

The interest rate came from the Monthly Statistical Bulletin of the Bank of Greece. And δ was 

calculated as the ratio of depreciation reserves over the value of undepreciated physical assets, 

excluding the value of land. 

Kp

 
IV.  Results  

To estimate the parameter of interest, we conceived of (12), (13) and (14) as comprising a 

three-equation system. Also, following Berndt and Khaled (1979), we added to each equation a 

stochastic term to account for the errors that occur in cost minimisation. So the general form of the 

non-linear system that resulted was: 
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where   i, j = K, L, E and t = 1, 2, ..., 17 and  

                  itξ  =  observed input-output value; 

 Ct   = observed unit cost; 

  = error term which is assumed to be distributed as . itu )N(0,~u 2
it σ
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All the parameters of the generalized Box-Cox cost function (11) are contained in (22). Spitzer 

(1981) has shown that it is possible to employ non-linear least-squares procedures to obtain the 

parameter estimates of a non-linear system. In this study we use the non-linear three-stage least-

squares method. From (22) it follows that the number of parameters to be estimated is very large in 

relation to the number of observations (problem of degrees of freedom). However, according to 

Amemiya (1977) and Gallant (1977), the non-linear three-stage least-squares technique permits using 

instrumental variables. So, to overcome the problem of degrees of freedom we adopted this 

estimating technique.3Table 1 presents the estimates of the generalised Box-Cox cost functions for 

the twenty two-digit manufacturing industries. These were obtained in the following manner. In 

order to apply the non-linear three-stage-least-squares estimator it was necessary to provide 

starting values for each and every parameter in (22). Initially, the starting values chosen were the 

parameter estimates that we obtained in Bitros and Panas (1998) using the same data set in 

conjunction with a translog cost function. However, convergence failed in all industries and we 

had to adopt an indirect approach. If (22) satisfied the condition of integrability, the Hessian 

would be symmetric. So to reduce the number of estimable parameters we fixed the values of 

332211  and , , γγγ to the values shown in the table and went ahead with the estimation. This 

appeared to improve convergence but not totally. For this reason we then fixed the values of 13γ  

to the ones shown and achieved convergence in all industries.  

 
Please insert Table 1 here 

Moreover, since we had fixed the values of parameters 332211  and , , γγγ to achieve 

convergence, from 6(ii) it is clear that we had imposed the condition of linear homogeneity of 

degree one on the cost function, with respect to input prices. So the remaining question was 

whether the estimates satisfied the conditions of monotonicity and concavity. 

       With regards to the former, this required that:  

 
                                                 
3 In addition to the time trend and the constant, the instrumental variables included: the number of establishments, the 

average annual employment, the numbers of working proprietors, salaried employees and wage earners, the gross value 
of production, the amounts paid in salaries and wages, and the values of gross investment in machinery, buildings and 
transport equipment. 
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 E. L,K,i allfor      0 =>
∂
∂

ip
C                                                     (23) 

 
By using the parameter estimates in Table 1 and substituting each observation, it was found that 

all predicted values for all industries are non-negative. Thus, the monotonicity condition was 

satisfied for all data points. 

As to the concavity of the cost functions, this would be satisfied if the Hessian matrix 

 turned out to be negative semi-definite at each observation. The estimates 

in Table 1 confirmed the negative semi-definiteness of the Hessian matrix. So, given that the 

symmetry conditions are satisfied a priori, the estimated conditional demand functions (11), (12), 

and (13) are integrable, and hence the generalized Box-Cox cost function is well behaved for the 

observed data.  

j,i, allfor   ,pp/C ji
2 ∂∂

Now let us look closer at the estimates in Table 1. Clearly, the overwhelming majority of 

coefficients are significantly different from zero. The parameters of main interest in this table are 

the estimates of λ because they indicate how close the generalized Box-Cox specification comes 

to one of the three special cases. That is, the estimates of λ permit statistical tests for the cases of 

translog, generalized Leontief, and generalized square-root quadratic. For example, in industry 

21, using the estimate for λ of 1.4431, with asymptotic t-statistic of 5.48, it is clear that the 

translog and generalized square-root quadratic cases are rejected, while the generalized Leontief 

is not rejected at any conventional level of significance. Out of a total of twenty estimates for λ, eight 

–i.e., for industries 21, 25, 26, 32, 34, 36, 37, and 39- are statistically different from one at the 5% 

level. Therefore, the generalized Leontief specification is not rejected in 40% of the cases. The 

generalized square-root quadratic model is not rejected in 10% of the cases, i.e. industries 27 and 30. 

And, finally, the estimates for λ are different from zero, one, or two in ten industries or 50% of the 

cases. As a result, in 50% of the industries investigated none of these three flexible functional forms 

is supported by the data. In view of these findings it is clear that, if any of the less general functional 

forms had been used to represent the cost function, the estimates would be biased in unknown 

directions and magnitudes.  

To highlight the nature of biases that would result from a misspecification of the 

functional form of the cost function, it suffices to contrast the values of certain crucial 

parameters under the Box-Cox and the translog specifications. Recall from above that the 
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non-homotheticity coefficients  3 2  and ϕϕ

2

measure the existence of input i-using or input i-

saving scale economies accordingly as .0,or  0, 323 <ϕϕ>ϕϕ  Therefore, given from Table 1 

that  are generally positive and statistically different from zero, all two-digit 

industries experienced labour and energy-using scale economies. So the question arose as to 

what might have happened if, instead of the Box-Cox specification, we had used the translog. 

The results from Bitros and Panas (1998), are quite revealing. In those industries in which the 

proper specification was another functional form, the adoption of a translog cost function led 

to significantly different estimates of the bias in scale economies. For an example, consider 

industry 21 in which the adoption of a translog specification was inappropriate. According to 

our earlier results, industry 21 experienced labour and energy-saving scale economies, and 

hence the bias was exactly opposite to that from Table 1. And, of course, similar 

inconsistencies with regard to the bias of scale economies would arise in all those industries 

in which none other generalised flexible functional form than the Box-Cox was appropriate.  

 3 2  and ϕϕ

Next consider the parameters , which indicate the nature of technical change. 

From Table 1 we see that all estimates of r

32 r and r

2 are negative and statistically significant. This 

confirms that technical change was labour saving in all industries. By contrast, our earlier results 

using a translog specification of the cost function showed that industry 24 experienced labour-

using technical change and that the inconsistencies were even wider with regard to . For, as the 

results from Table 1 indicate, technical change was energy saving in 14 out of 20 industries, 

whereas by our earlier results, energy-saving bias prevailed only in 10 out of 20 industries and, 

indeed, not the same ones.  

3r

Finally, it should be pointed out that the adverse effects on the estimates from the 

misspecification of the cost function were not limited to the sign reversals just mentioned, 

because in many cases that the parameters preserved their signs, the misspecification 

distorted their values significantly. Two characteristic examples in this respect are 

represented by industries 27 and 29. From Table 1 we see that the coefficients of, say, 

technical change are: (27) 00166.0  r,03344.0r 32 −=−= and (29) 00145.0  r,01711.0r 32 =−= . 

But the same coefficients from our earlier study using the translog specification turned out to be 

the following: (27) 053.0  r,012 3.0r2 −= r2−= and (29) 002.0  r,028.0 3 =−= . Therefore, while the 

misspecification did not affect the signs of the coefficients, it did distort their magnitudes by leading, 
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in both industries, to serious underestimation or overestimation of the input bias in technical change.  

In the light of the above findings we surmised that the estimates in our earlier study 

regarding the relation between inflation and total factor productivity growth needed revision. To 

this effect we divided the data again into two sub-periods, characterised by low (1964-1972) and 

high inflation (1973-1980) respectively, and calculated for each the three components in equation 

(18) at the mean values of the variables. Table 2 below gives the results from these calculations. 

In comparison to those reported in our earlier study, several interesting differences have emerged. 

For one, observe that the acceleration of inflation from the one period to the other accelerated the 

slowdown of total factor productivity growth in all industries. On the contrary, according to our 

earlier results only in 8 out of 20 two-digit industries the acceleration of inflation between the two 

periods led to acceleration in total factor productivity growth. So the importance of adopting the most 

general flexible functional form available for representing the cost function should be obvious.  

 
Please insert Table 2 here 

 Another interesting finding is that there was not a single industry where, from the one 

period to the other, the acceleration of inflation did not accelerate the slowdown of total factor 

productivity significantly. To obtain an estimate of this relationship at the overall manufacturing 

level, we used (18) to compute the following expression  

 

PF̂T

ˆ
)ˆ(

PF̂T

ˆPFT
ˆc

ˆc π
ε+π

π∂
ε∂

−=
π

π∂
∂

=η π
π                                       (24) 

 
where  is the elasticity of total factor productivity growth with respect to inflation and the hat 

over a variable denotes its sample mean value during the period 1964-1972. The results of the 

calculations gave  and this meant that a 10% increase in inflation, ceteris paribus, 

would reduce total factor productivity growth in this sector by 10.2%. Clearly, this is a 

noteworthy finding because it indicates that the losses in total factor productivity growth may 

increase (decrease) faster than the rate by which inflation increases (decreases).  

η

1,02−≈η

 Lastly, it may not be superfluous to point out that a misspecification of the cost function 

leads to overestimation or underestimation of total factor productivity growth. This is so because 
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the biases introduced in the estimation of the components in the right-hand side of equation (18) will 

cancel out only by chance. In the present case, the estimates of total factor productivity growth that 

are exhibited in Table 2 differ significantly from those that we reported in our earlier study. 

 

IV. Conclusions 

The primary purpose in this paper was to test the robustness of the relation between 

inflation and total factor productivity growth to the specification of the model adopted for its 

investigation.  To do so we estimated a generalized Box-Cox cost function and compared the 

results with those from Bitros and Panas (1998) where we used the same set of data but in 

conjunction with a translog specification of the cost function. The results showed that the 

adoption of the wrong functional form leads to substantial biases. More specifically, using the 

translog specification of the cost function in industries, where a generalised Box-Cox would be 

appropriate, caused sign reversals for several key parameters, whereas for those that retained their 

signs, it led to serious over or under estimations. For this reason, in future research efforts in this 

area it is advisable to adopt the most general flexible functional form available.  

In addition, the results confirmed that for a precise estimation of the relation under 

investigation the effect of inflation on total factor productivity growth must be separated from those 

of scale economies and technical change. The reason for this being that otherwise there is the risk of 

attributing to inflation effects that may be due to these sources.  

Finally, our revised estimates showed that a 10% increase in inflation, ceteris paribus, 

could reduce total factor productivity growth by as much as 10.2%. This finding established 

firmly the importance of the relationship under investigation and left no doubt about the 

substantial gains associated with the controlling of inflation.  
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Parameters 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

λ 0,5849 1,4431 1,5956 2,1575 0,6501 0,8842 1,0129 2,7487 2,2547 0,4554 1,6647 3,4564 0,789 7,4583 0,8794 1,5796 0,7762 1,1255 0,5859 0,8078
(4,4) (-5,5) (-8,5) (-10,8) (-5,3) (-3,5) (-2,4) (-3,2) (-7,8) (-2,8) (-5,6) (-5,1) (-6,5) (-13,3) (-7,9) (-11,2) (-4,3) (-5,7) (-5,2) (-7,0)

γ11 2,043 2,9927 2,6117 1,7632 2,4395 3,0789 37.769 0,9193 1,2353 1,8085 1,688 1,6689 2,1779 2,3787 2,0119 2,1197 3,1801 4,6775 2,7531 2,9022

γ12 0,0168 0,0126 0,0284 0,013 -0,0056 0,014 0,0013 0,035 -0,0038 0,0131 0,0197 0,0666 -0,015 0,0219 0,0754 0,0128 -0,0005 -0,0041 0,0096 -0,0332
(-8,6) (-3,6) (-10,6) (-7,2) (-4,6) (-4,0) (-0,6) (-13,9) (-1,8) (-4,1) (-2,7) (-2,4) (-0,2) (-8,5) (-7,0) (-8,3) (-0,3) (-1,4) (-7,6) (-1,1)

γ13 0,5135 0,6877 0,6649 0,7176 1,2361 1,6542 0,5399 6,1524 6,6331 5,7982 5,8556 5,7917 8,0179 6,1407 6,2875 6,3399 5,7016 5,9022 5,9941 6,2542

γ22 6,1055 5,9172 5,4541 5,9829 5,3664 5,7136 5,4474 6,0249 5,2714 6,9472 5,6908 5,6644 4,8672 5,4711 6,1055 5,7376 5,9019 5,7298 5,456 5,5314

γ23 0,1724 0,1901 0,053 0,1636 0,148 0,1134 0,113 0,0939 0,1399 0,092 0,2961 -0,2245 1,1516 0,1217 0,1628 0,1738 0,2349 0,212 0,1132 0,4784
(-9,3) (-6,4) (-1,9) (-8,1) (-14,9) (-4,4) (5,3) (-3,6) (-4,1) (-3,6) (-3,8) (-0,7) (-0,7) (-4,5) (-1,7) (-10,8) (-15,6) (-5,9) (-9,7) (-2,21)

γ33 7,0384 6,6971 5,8971 6,051 6,7764 5,7744 5,8913 5,5985 6,7956 5,8411 6,4541 6,5439 5,1149 6,3882 5,607 6,0325 6,3965 6,378 6,5954 6,21438

α2π -0,1434 -0,1168 -0,045 -0,1328 -0,1499 -0,0205 -0,0676 -0,0536 -0,0422 -0,129 -0,2221 0,1594 0,0198 -0,0778 0,0515 -0,137 -0,1822 -0,0961 -0,0895 -0,2925
(-8,2) (-5,2) (-1,9) (-5,7) (-9,0) (-1,6) (-6,1) (-3,1) (-1,3) (-7,5) (-2,3) (-1,3) (-0,0) (-4,7) (-1,6) (-7,8) (-10,3) (-3,7) (-7,2) (-6,2)

α3π 0,0209 0,0088 0,002 0,002 0,012 -0,0056 0,0052 0,0439 0,001 0,0023 -0,0284 0,0036 0,0392 -0,001 -0,0319 -0,0016 0,0026 0,008 -0,0012 -0,0051
(-8,3) (-3,4) (-1,4) (-0,3) (-7,5) (-0,6) (-4,9) (-1,8) (-0,3) (-0,5) (-0,6) (-0,1) (-1,2) (-0,1) (-0,7) (-0,3) (-1,2) (-2,1) (-0,4) (-0,3)

αyπ 0,0015 3,3852 0,8929 0,6312 0,9887 1,1954 3,8315 1,5951 0,5404 3,316 4,5011 1,2548 0,6449 2,386 1,4665 2,2975 2,6798 1,074 1,4201 3,4946
(-2,0) (-2,8) (-2,6) (-3,3) (-1,9) (-3,5) (-5,3) (-4,6) (-2,6) (-4,6) (-5,3) (-3,2) (-5,5) (-4,9) (-4,6) (-4,6) (-4,3) (-5,8) (-6,3) (-2,6)

απ 0,1268 0,1459 0,158 0,185 0,0991 0,7373 0,6023 0,1856 0,1271 1,2009 1,4841 0,5292 1,0067 0,6463 0,6787 1,0832 0,7553 0,5121 0,7477 0,4509
(-3,5) (-4,1) (-2,2) (-3,6) (-2,5) (-4,6) (-3,0) (-2,5) (-2,2) (-4,7) (-2,6) (-1,9) (-2,7) (-1,7) (-1,5) (-3,1) (-2,1) (-3,6) (-3,9) (-1,8)

αt 0,0053 0,0094 0,0227 0,0084 0,004 0,0161 0,0128 0,0105 0,0091 0099 -0,0123 0,0302 0,0986 0,0119 -0,0246 0,0053 0,00001 0,009 0,0087 -0,0204
(-2,6) (-2,8) (-8,1) (-3,8) (-5,1) (-3,9) (-5,4) (-2,6) (-2,0) (-4,4) (-1,7) (-1,3) (-0,5) (-4,4) (-2,9) (-3,2) (-0,9) (-2,3) (-3,6) (-1,2)

β 0,4571 0,8632 0,8769 0,7465 0,8698 0,7558 0,7923 0,8933 0,9782 0,8753 0,9421 0,9339 0,853 0,7666 0,963 0,5157 0,7517 0,9784 0,7639 0,8263
(-5,1) (-6,4) (-4,7) (-6,6) (-1,8) (-3,7) (-5,3) (-2,8) (-1,6) (-3,7) (-3,3) (-1,5) (-4,9) (-2,6) (-2,1) (-2,8) (-2,6) (-1,2) (-3,8) (-4,1)

θ -0,3609 2,2573 -1,5886 4,6259 -0,3835 2,185 2,5331 1,4866 -0,1526 1,2321 1,6635 -0,0961 0,5083 0,5999 4,5211 3,3773 3,0182 -0,8519 0,7121 0,4946
(-1,3) (-3,6) (-1,4) (-5,92) (-1,11) (-5,8) (-3,8) (-2,5) (-1,6) (-3,3) (-3,9) (-1,1) (-4,2) (-3,8) (-8,9) (-4,1) (-6,7) (-1,0) (-2,9) (-2,6)

φ2 0,1018 0,1342 0,1119 0,1045 0,1672 0,1533 0,1731 0,1056 0,1488 0,1667 0,1235 0,0711 0,1172 0,0942 0,0549 0,01243 0,1563 0,1377 0,1344 0,2034
(-55,0) (-46,3) (-49,9) (-52,1) (-87,7) (-69,2) (-71,4) (-42,5) (-63,9) (-79,4) (-15,1) (-7,0) (-3,2) (-56,3) (-16,5) (-72,9) (-84,0) (-62,1) (-46,6) (-35,2)

φ3 0,0097 0,0072 0,0019 0,0071 0,0026 0,0052 0,0016 0,0201 0,0021 0,0033 0,0122 0,0152 0,0124 0,0188 0,0209 0,0067 0,0033 0,0041 0,0017 0,0005
(-35) (-26,8) (-13,6) (-10,8) (-11,4) (-2,8) (-4,2) (-3,6) (-4,0) (-5,1) (-6,3) (-8,2) (-3,4) (-12,6) (-4,6) (-11,9) (-11,5) (-9,2) (-2,5) (-2,4)

r2 -0,017 -0,0313 -0,0263 -0,0234 -0,0276 -0,0494 -0,0334 -0,0241 -0,0305 -0,0171 -0,0104 -0,0448 0,0521 -0,0265 -0,0264 -0,023 -0,0183 -0,0327 -0,0266 -0,0128
(-6,6) (-9,5) (-9,1) (-7,4) (-14,6) (-17,6) (-12,8) (-6,8) (-5,6) (-8,2) (-1,0) (-3,9) (-0,6) (-11,7) (-7,6) (-9,9) (-7,4) (-9,2) (-6,9) (-2,6)

r3 -0,0056 -0,0025 -4E-05 -0,0001 -0,0008 -0,0033 -0,0017 -0,0101 0,0008 0,0014 0,0026 -0,0028 -0,0084 -0,0018 0,0063 -0,2876 -0,0001 -0,001 0,0009 0,003
(-13,4) (-8,1) (-3,2) (-0,1) (-2,8) (-4,1) (-5,1) (-2,7) (-1,0) (-1,9) (-0,4) (-3,1) (-3,4) (-2,9) (-0,9) (-2,4) (-2,2) (-2,7) (-0,7) (-1,3)

R1
2 0,6491 0,8035 0,825 0,4097 0,4382 0,8847 0,8546 0,8376 0,8514 0,5691 0,3885 0,4429 0,1718 0,4706 0,9482 0,5095 0,7727 0,9233 0,9200 0,0175

R2
2 0,9656 0,9413 0,9772 0,9717 0,9928 0,9796 0,9457 0,9151 0,9718 0,9898 0,9016 0,9046 0,466 0,9749 0,9548 0,9837 0,9808 0,956 0,8706 0,9041

R3
2 0,9714 0,9811 0,9866 0,9661 0,9916 0,9456 0,9985 0,9177 0,9692 0,9502 0,7686 0,7761 0,9352 0,9646 0,7968 0,9444 9826 0,9753 0,862 0,6656

Note: the numbers in parentheses are asymptotic t-statistics

Table 1: Estimates of Generalized Box-Cox Parameters
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SOURCES 20 21 22 23 24

1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80
1.SCALE 0,0637 0,0422 0,0536 0,0728 0,0256 0,0506 0,0152 0,0233 0,0190 0,0355 0,0266 0,0313 0,0575 0,0538 0,0557
2.INFLATION 0,0012 0,0028 0,0087 0,000699 0,0199 0,0098 0,0006 0,0167 0,0082 0,0015 0,0213 0,0108 0,0002 0,0165 0,0078
3.TECHNICAL 0,0231 0,0223 0,0227 0,0568 0,0397 0,0487 0,0596 0,0419 0,0513 0,0495 0,0361 0,0432 0,0540 0,0388 0,0469
   CHANGE
4.TOTAL 0,0394 0,0171 0,0222 0,0153 -0,0340 -0,0079 -0,0451 -0,0352 -0,0405 -0,0155 -0,0308 -0,0227 0,0033 -0,0015 0,0010

SOURCES 25 26 27 28 29
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0694 0,0121 0,0425 0,0452 0,0130 0,0301 0,0452 0,0064 0,0269 0,0388 0,0314 0,0353 0,0146 0,0428 0,0279
2.INFLATION 0,0046 0,0306 0,0168 0,0013 0,0116 0,0061 0,0045 0,0311 0,0170 0,0011 0,0128 0,0066 0,0007 0,0195 0,0095
3.TECHNICAL 0,0810 0,0475 0,0652 0,0561 0,0314 0,0445 0,0214 -0,0014 0,0107 0,1398 0,1146 0,1279 0,0353 0,0221 0,0291
   CHANGE
4.TOTAL -0,0162 -0,0660 -0,0396 -0,0122 -0,0300 -0,0206 0,0193 -0,0234 -0,0008 -0,1020 -0,0960 -0,0992 -0,0214 0,0012 -0,0107

SOURCES 30 31 32 33 34
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0759 0,0301 0,0543 0,0632 0,0198 0,0428 0,0219 0,0635 0,0415 0,0334 0,0207 0,0274 0,0477 -0,0226 0,0146
2.INFLATION -0,0009 0,0076 0,0031 0,0009 0,0263 0,0129 0,0013 0,0082 0,0046 0,0039 0,0311 0,0167 0,0154 0,0174 0,0899
3.TECHNICAL 0,0190 0,0137 0,0165 0,0916 0,0624 0,0779 0,0178 0,0150 0,0165 0,0550 0,0476 0,0515 -0,0196 -0,0289 -0,0240
   CHANGE
4.TOTAL 0,0578 0,0087 0,0347 -0,0293 -0,0689 -0,0480 0,0028 0,0403 0,0205 -0,0256 -0,0580 -0,0408 0,0519 -0,0111 -0,0513

SOURCES 35 36 37 38 39
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0520 0,0346 0,0438 0,0409 0,0211 0,0316 0,0637 0,0091 0,0380 0,0406 0,0319 0,0319 0,0280 0,0429 0,0350
2.INFLATION 0,0016 0,0231 0,0117 -0,0002 0,0167 0,0077 0,0004 0,0126 0,0062 0,0029 0,0258 0,0026 -0,0370 0,0283 -0,0063
3.TECHNICAL 0,0411 0,0263 0,0341 0,0336 0,0225 0,0284 0,0531 0,0325 0,0434 0,0134 0,0112 0,0112 0,0135 0,0108 0,0122
   CHANGE
4.TOTAL 0,0093 -0,0147 -0,0020 0,0076 -0,0180 -0,0045 0,0102 -0,0361 -0,0116 0,0242 -0,0051 0,0181 0,0514 0,0038 0,0290

  Table 2: Influence of Inflation on total factor productivity growth
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