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Abstract

This paper asks two questions. First, can we detect empirically whether the
shocks recovered from the estimates of a structural VAR are fundamental? Sec-
ond, can the problem of non-fundamentalness be solved by considering additional
information? The answer to the first question is “yes” and that to the second is
“under some conditions”.
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1 Introduction

Structural Vector Autoregressive Models (SVAR) are a very useful tool in applied
macroeconomics since they are simple, flexible and robust to model misspecification
(see Stock and Watson (2001) for a discussion). Moreover, under some conditions, the
linearized solution of dynamic stochastic general equilibrium models (DSGE) can be
approximated by a finite autoregressive model (VAR) so that SVARs can be used to
match models to data.

Predictions from different DSGE models can be compared empirically using the
VAR tool with which a linear combination of the structural shocks can be easily esti-
mated as residuals of OLS regressions and then identified by imposing a set of restric-
tions. If such restrictions are verified by a broad class of models, different predictions
of models within that class can be compared by looking at the estimated shocks and
their coefficients (impulse response functions).

However, if the structural model has a Moving Average (MA) component, the VAR
representation is admissible only under some conditions which may not be verified by
the structural model. In that case, there is no hope to recover the structural shocks
from VAR estimation. This point was first made by Hansen and Sargent (1991) and
Lippi and Reichlin (1993) and recently brought back in the macroeconomic debate by
Chari et al. (2005), Christiano et al. (2005) and Fernandez-Villaverde et al. (2005).

This paper asks whether it is possible to verify empirically if the shocks of interest
are indeed in the span of the present and past of the variables considered in the SVAR
model. Moreover, we ask whether, in case the shocks are not in that span, we can
recover them from the span of the present and past of the variables in a larger model
obtained by adding auxiliary variables to the ones we want to focus on.

We will go through the analysis via an empirical application where we use aggregate
and sectoral data for US manufacturing industries to study the effect of technology
shocks on hours worked, in the spirit of Gali (1999) and Christiano et al. (2004).

2 SVAR and their critics

Suppose that the equilibrium solution of a “true” structural model links a number m
of observable variables to a number q of structural shocks:

X∗
t = B∗(L)u∗t (2.1)

where X∗
t is an m-dimensional vector of observable macroeconomic variables, u∗t is a

q-dimensional vectors of shocks, white noise with unit variance, whose propagation is
captured by B∗(L) = B∗

0 +B∗
1L+B∗

2L2 + ..., an m× q matrix of moving average filters.
In general, the number of shocks, q, can be equal to or different from the number of
observable variables m.

The objective of the econometrician is to make inference on the responses of the
observable variables X∗

t to the shocks, i.e. the impulse response function:

B∗
h = ∂X∗

t+h/∂u∗t , h = 0, 1, 2, ...
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SVAR modelling consists in two steps. First, model (2.1) is approximated by a VAR
representation:

A∗(L)X∗
t ' ε∗t (2.2)

where A∗(L) = A0 + A∗1L + ... + A∗pLp is an m × m filter of finite length p, A0 is
normalized to be lower triangular, and ε∗t is an m-dimensional vector of orthogonal
innovations.

The second step consists in inverting and rotating the VAR representation (2.2).
Denoting by R a rotation matrix (R′R = Im), from

X∗
t = [A∗(L)−1R] [R′ε∗t ]

we get the Impulse Response, B∗(L) ' A∗(L)−1R, to the structural shocks u∗t .
For inverting the VAR representation, prerequisite is the existence of a filter N(L) =

N0 + N1L + N2L
2 + ... such that: N(L)B∗(L) = Im. In this case we have:

N(L)X∗
t = N(L)B∗(L)u∗(L) = u∗t

i.e. the structural shocks u∗t can be extracted from present and past observations
(X∗

t , X∗
t−1, ...). In this case, the filter A∗(L) and the innovations ε∗t , in the finite VAR

representation (2.2), are an approximation of RN(L) and Ru∗t , respectively. Notice that
for such filter to exists, the number of structural shocks, q, should be less or equal to
the number of observable macroeconomic variables m. Following the SVAR tradition,
we will assume from now on that there are as many shocks as variables (m = q), but
the discussion holds, with minor modifications, for m > q1.

The ability of a SVAR to recover structural shocks and their propagation mechanism
relies crucially on the ability of the VAR representation (2.2) to approximate the model
solution (2.1). There are three possible situations in which such approximation does
not work:

1. The roots of detB∗(L) are on the unit circle. In this case, known as non-
invertibility, the VAR representation does not work since an infinite number of
lags of the observables p = ∞ is needed to recover the structural shocks. This
situation might occur, for example, if some variables are over-differenced (see for
example Christiano et al., 2004).

2. The roots of detB∗(L) are inside the unit circle. In this case, the system is said to
be non-fundamental, (see Hansen and Sargent, 1991; Lippi and Reichlin, 1993),
and the impulse response functions cannot be recovered even with an infinite past
of the observable variables (p = ∞).

3. The roots of detB∗(L) are outside the unit circle. In this case the number of
lags (p) necessary to recover the structural shock maybe very large. This might
happen, for example, when some state variables are not included in the set of
observable variables, (see for example Chari et al., 2005; Cooley and Dwyer,
1998).

From now von we will discuss case 2 (non-fundamentalness) which is the worse case.
1If there are more shocks than variables, m < q, there is no hope to recover the structural shocks

from a finite of number of variables.
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3 A well known empirical example

We consider, as an example, the empirical model introduced by Gali (1999) which is a
VAR on aggregate labor productivity (yt) and aggregate labor input, hours (ht), whose
corresponding structural MA representation is:

(
∆yt

∆ht

)

︸ ︷︷ ︸
=

(
b∗11(L) b∗12(L)
b∗21(L) b∗22(L)

)

︸ ︷︷ ︸

(
u∗1t

u∗2t

)

︸ ︷︷ ︸
X∗

t B∗(L) u∗t .

(3.3)

Here u∗1t is the technology shock and u∗2t is the non technological shock. We are
interested in the responses of hours worked to productivity shocks since this allows us
to assess the empirical relevance of price stickiness in the economy. In particular, the
contemporaneous response of hours to productivity shocks is expected to be negative in
a sticky price economy and positive in a flexible price economy (see for example Gali,
1999; Christiano et al., 2004; Chari et al., 2005).

The system is identified by assuming that only technological shocks can affect the
long run level of productivity

b∗12(1) = lim
s→∞ ∂yt+s/∂u∗2t = 0.

4 Is non-fundamentalness detectable?

Let us consider a system in which the set of variables of interest X∗
t is augmented with

blocks of additional variables, X1t, ..., Xkt. The general representation is:



X∗
t

X1t

...
Xkt


 =




B∗(L) Ψ∗(L)
B1(L) Ψ1(L)

... ...
Bk(L) Ψk(L)




(
u∗t
vt

)
(4.4)

where vt are additional structural shocks, orthogonal to the shocks of interest u∗t . The
model (2.1) implies the restriction Ψ∗(L) = 0, i.e. that the additional shocks vt are
specific to the added variables. In a compact form the system (4.5) can be rewritten
as: (

X∗
t

Xt

)
=

(
B∗(L) 0
B(L) Ψ(L)

) (
u∗t
vt

)

where Xt = (X1t, ..., Xkt)
′ is a vector of additional variables of dimension n, B(L) =

(B1(L), ..., Bk(L))′ and Ψ(L) = (Ψ1(L), ...,Ψk(L))′.
Non-fundamentalness can be easily detected by looking at this larger system. Pre-

cisely, if u∗t is fundamental with respect to X∗
t , then the structural shocks can be

recovered from the past of the observables, u∗t = N(L)X∗
t . This implies:

Xit = Bi(L)N(L)X∗
t + Ψi(L)vt.
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Since vt is orthogonal to X∗
t , then Xit depends only on the past of X∗

t . It hence
follows that Xit does not Granger cause X∗

t (Sims, 1972). This proves the following2:

Proposition If any of Xit,i = 1, ..., n, Granger causes X∗
t , then u∗t is non-fundamental

with respect to X∗
t .

Non-fundamentalness can hence be detected empirically by checking wether the
block of interest X∗

t is (weakly) exogenous with respect to potentially relevant additional
blocks of variables that are likely to be driven by sources that are common with the
variables of interest. This is a quite stringent condition; we will further discuss it later.

We can check the condition above for Gali (1999)’s model (3.3) on aggregate hours
and productivity by looking at sectoral information. Precisely, we test for block exo-
geneity of the aggregate manufacturing X∗

t variables with respect to sectoral variables
Xit = (∆yit, ∆hit)′ which represents the bivariate vector of the growth rate of labor
input and labor productivity for the two-digit manufacturing sectors, i = 1, ..., 18. Our
data are annual and consist of measures hours of all persons and output per hour
(source: Bureau of Labor Statistics). The sample is 1949-2000.

Results are reported in Table 1.

Table 1: Granger Causality Test
F-test p-value F-test p-value

Non Durable Sectors Durable Sectors
Food & Kindred Prod. (SIC 20) 1.58 0.81 Lumber & Wood Prod.∗∗ (SIC 24) 13.85 0.01
Textile Mills Prod.∗∗ (SIC 22) 14.18 0.01 Furniture & Fixtures (SIC 25) 6.87 0.14
Apparel &Related Prod. (SIC 23) 6.83 0.15 Stone, Clay & Glass ∗∗ (SIC 32) 15.23 0.00
Paper & Allied Prod. (SIC 26) 2.18 0.70 Primary Metal Ind. (SIC 33) 6.19 0.19
Printing & Publishing (SIC 27) 6.52 0.16 Fabricated Metal Prod. (SIC 34) 5.18 0.27
Chem. & Allied Prod. (SIC 28) 3.73 0.44 Ind. Machinery,Comp.Eq. (SIC 35) 6.51 0.16
Petroleum Refining∗∗ (SIC 29) 11.34 0.02 Electric & Electr. Eq. (SIC 36) 0.63 0.96
Rubber & Plastic Prod. (SIC 30) 5.62 0.23 Transportation Equip. (SIC 37) 3.59 0.46

Instruments∗∗ (SIC 38) 20.42 0.00
Misc. Manufacturing (SIC 39) 1.71 0.79

For five sectors (25% of the total) the hypothesis of weak erogeneity is rejected,
hence non-fundamentalness of the system (3.3) is detected. The Grange-causing sectors,
ordered according to their F-stat associated to the Granger causality test, i.e. starting
from the sectors with respect to which the aggregate manufacturing are less likely to
be weakly exogenous, are: Instruments, Stone, Clay & Glass, Textile Mills Products,
Lumber & Wood Products and Petroleum Refining.

If we augment the aggregate VAR model with the k sectors most likely to Granger-
cause the aggregate manufacturing system, the shape of the estimated response of
output to the technology shock changes.

Let us include, recursively, sectors starting from those for which the aggregate
manufacturing system is less likely to be weakly exogenous:

2This result was first introduced by Forni and Reichlin (1996) in the case data follow a factor
structure.
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Figure 1: Impulse response functions of hours
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X∗
t

Xi1t

...
Xikt


 =




B∗(L) 0
Bi1(L) Ψi1(L)

... ...
Bik(L) Ψik(L)







u∗t
vi1t

...
vikt


 (4.5)

We identify the system by imposing that sectoral shocks have no contemporaneous
effects on the aggregate Ψik(0) = 0 for all k and by requiring, as usual, that only
technological shocks can affect the long run level of productivity

b∗12(1) = lim
s→∞ ∂yt+s/∂u2t = 0

Figure 1 reports the estimated responses of hours worked to technology (upper panel)
and non-technology (lower panel), for four different system and for k = 0, 1, 3, 5. We
start from a system with only aggregated measures of hours and productivity (k = 0,
first column) and then we add the Instruments sector (k = 1 second column), the
Instruments, Stone, Clay & Glass, Textile Mills Product sectors (k = 3, third column),
and finally all the Granger causing sectors at 5% level (k = 5, fourth column).

The impulse response functions computed by estimating the VAR only with aggre-
gate manufacturing sectors show a contemporaneous (k = 0) decline of hours worked
in response to a technology shock. This result is in line with the finding of Gali (1999)
and has been considered as evidence of substantial price stickiness in the US economy.
However, when we add more and more sectors the response of hours worked to technol-
ogy shocks are shifted upward while the response to non technology shocks are shifted
downward.
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Figure 2: Contemporaneous response of hours to technology shock
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Figure 2 plots the contemporaneous response of hours to technology against the size
of the system. Clearly, as we add the Instruments sector, the contemporaneous impulse
response becomes insignificant. Point estimates increases monotonically approaching
zero when we add all five Granger-causing sectors.

5 Does large information help?

In the previous Section we have seen that large information can help detecting non-
fundamentalness and, for our example, adding extra information actually changes the
shape of the impulse response function thereby changing the interpretation of the re-
sults in a key dimension. Here we ask the question of whether, in general, by enlarging
the econometrician information set, we can solve the non-fundamentalness problem. In
terms of our empirical application, we would like to understand if the shocks recov-
ered by augmenting the system with sectoral variables are the fundamental shocks
u∗t . In general, larger information does not necessarily solve the problem of non-
fundamentalness. This is easily seen by computing the roots of the moving average
of system (4.5):

det

(
B∗(z) 0
B(z) Ψ(z)

)
= [detB∗(z)][detΨ(z)]

where B(L) = (B1(L), ..., Bk(L)). If some roots of B∗(z) are inside the unit circle then
the larger system will have roots outside the unit circle as well, unless some roots of
detB∗(z) cancel with those of detΨ(z). This implies that, in general, the whole system
is not fundamental if the small system is not. Therefore, taking into account additional
information, does not help solving the non-fundamentalness problem in general.
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However, information helps under some conditions. Let us illustrate them in the
case of finite moving average to the shocks of interest. The discussion holds for the
more general case, but implies a heavier notation.

Suppose that (4.5) satisfies the following restriction: B(L) = B0 +B1L+ ...+BsL
s,

i.e. the effect of all shocks in zero after s periods. The system can hence be rewritten
as:

Xt = BU∗
t + Ψ(L)vt

where B = (B0, B1, ..., Bs), U∗
t = (u∗′t , ..., u∗′t−s)

′.
Let us start from the assumption that vt = 0, i.e. that the system is driven by q

shocks only. In this case, if B′B is of full rank, we have:

Proj[U∗
t |Xt] =

(
B′B

)−1 B′Xt =
(
B′B

)−1 B′BU∗
t = U∗

t

and we can recover U∗
t , and hence u∗t , from the present of Xt. This is to say that u∗t is

fundamental with respect to X∗
t .

As Forni et al. (2005) have shown, fundamentalness with respect to (X∗
t , Xt)′ is a less

stringent condition if the system size is larger than the number q of the relevant shocks.
In this case, to extract u∗t from the present and past of all variables of the observables,
we just need the full-rank condition above. The latter ensures that the dynamic of the
panel is sufficiently rich so that, by exploiting the cross-sectional dynamic, it is possible
to recover the lags of the common shocks.

Let us now consider the more realistic case in which et = Ψ(L)vt 6= 0. In this
case, sufficient conditions for recovering the U∗ can be established by studying the
properties of the system as we increase the number of auxiliary variables we consider.
This analysis is provided in details by Forni et al. (2005).

Let us here reformulate the problem for our case. We have:

Proj[U∗
t |Xt] =

(
B′Σ−1

e B + Iq(s+1)

)−1
B′Σ−1/2

e BU∗
t +

(
B′Σ−1

e B + Iq(s+1)

)−1
B′Σ−1/2

e et

where Σe = Cov(et). To recover U∗
t we need two conditions. Precisely:

A1) B′B/n is of full rank for n large.

A2) ‖Σe/n‖ small for n large.

Assumption A1 ensures that the shocks of interest are pervasive throughout the
cross-section and that they generate heterogenous dynamics. Assumption A2 ensures
that the remaining shocks do not propagate “too much” and can therefore be considered
as idiosyncratic, sectoral shocks or as measurement error.

Under A1 and A2, as the cross-sectional dimension n goes to infinity, we have:
(
B′Σ−1

e B + Iq(s+1)

)−1
B′Σ−1/2

e et → 0

and hence
Proj[U∗

t |Xt] → U∗
t

.
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These conditions imply that the shocks u∗t ’s are asymptotically, for n large, fun-
damental. In other words, by adding extra information we can eventually recover the
structural shocks.

How realistic are condition A1 and A2? For the empirical example we are consid-
ering here, with aggregate and sectoral variables, the conditions are satisfied provided
that sectoral variables Granger-cause the aggregate.

Assumption A2 is satisfied since, by construction, sectoral shocks vt’s do not affect
aggregate manufacturing measures, i.e. Ψ∗(L) = 0. For assumption A1 to be satisfied,
the macro shocks, which are our shocks of interest, must affect all sectors and this
implies that the sectoral variables Granger-cause the aggregates. Evidence on the
latter is given by results on Granger causality reported in Table 1 above.

Therefore, the reliable result is the one produced by the system augmented by the
Granger-causing sectors and this indicates that there is no evidence of hours worked
going down in response to technological shocks.

In a more general case, conditions A1 and A2 are satisfied if data can be represented
by an approximate factor model (Forni et al., 2005). A large literature has brought
evidence that these models are a good empirical representation of large panels of macro
data and of sectoral or regional data (Giannone et al. (2004), Stock and Watson (2005),
Bernanke et al. (2005), Forni et al. (2005)). The estimation and identification theory for
shocks and impulse responses is developed by Forni et al. (2005) so that these models
can be easily used for structural analysis and they are a valid alternative to SVAR
analysis when information may help solving the problem of non-fundamentalness.

6 Dealing with the curse of dimensionality problem

The discussion of the previous Section implies that we may have to consider many
auxiliary variables and this leads to the possibility of running out of degrees of free-
dom. In our empirical illustration, for example, modelling all sectors together implies
considering a system of 38 equations (= 2 × 18 sectors + 2 aggregates) with only 51
observations in time.

A solution to this problem is provided by the dynamic factor literature. In fact,
under the assumptions A1 and A2 defined in the previous Section, the system has
an approximate Factor Structure (see Forni et al., 2005) whereby the variables are
driven by few pervasive shocks and n idiosyncratic ones. This implies that all the
relevant information can be captured by few common factors which can be extracted
as appropriate aggregates of the observables (see Forni et al., 2000; Stock and Watson,
2002).

Precisely, under A1 and A2 the following representation holds:
(

X∗
t

Xt

)
=

(
Λ∗

Λ

)
Ft + Ψ(L)vt

where Ft = DFt−1 + Cu∗t . Ft is r × 1 and ut is (q × 1), D(L) is (r × r) finite stable
filter and C is r×q matrix. Hence B∗(L) = Λ∗D(L)−1C and Ψ(L)vt is an idiosyncratic

9



Figure 3: Contemporaneous response of hours to technology shock: factor
model estimation
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component, poorly cross-sectionally correlated.3

The common factors Ft can be estimated by the first r principal components of
(X∗

t , X ′
t). The parameters Λ, Λ∗, D, C can hence be estimated by ordinary least squares

considering the estimated factors as they were know (see Forni et al., 2005, for details).
Once parameters are estimated, we can impose the identification restriction b∗21(1) = 0
as in the traditional SVAR literature4.

Figure 3 plots the contemporaneous response of hours to technology shocks for dif-
ferent values of r, the number of common factors. For r = 2, results are very similar to
those obtained only with aggregate manufacturing labor input and labor productivity.
This is due to the fact that the span of the first two principal components is very close
to the span of the aggregate manufacturing measure, since principal components are a
weighted average of sectoral variables. Notice that, as we add more common factors (r
increases), we capture more sectoral information and the contemporaneous response of
hours to productivity increases monotonically.

This confirms the result that the negative contemporaneous response of hours to
technology is an artifact due to the presence of non-fundamentalness, i.e. we cannot
extract the fundamental structural shocks on the basis of the aggregate growth rate of
labor and labor input alone. Enlarging the information set of the econometrician, we
have a larger chance of capturing the structural shocks and indeed the contemporaneous
response of hours becomes not significantly different from zero.

3This model has been also applied by Giannone et al. (2004, 2005). Notice that a number of common
factors r larger than the number of common shocks q captures dynamic heterogeneity: r = q(s + 1) in
the finite MA example of the previous section.

4A closely related approach consists on augmenting the system X∗
t with the first r principal com-

ponents of Xt (Bernanke et al., 2005; Stock and Watson, 2005). Results using that approach confirm
the findings we report here
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7 Lessons for applied work

The discussion above suggests some lessons for applied work. Even when the object of
interest is a small system, one should check for the possibility of non-fundamentalness
by augmenting it with auxiliary variables. Variables which have forecasting power
(Granger-cause) for the variables of that system or factors capturing the information
from a large data set should be included in the estimation. The auxiliary variables,
beside being Granger-causing the key variables, must have strong commonality with
them and small idiosyncratic dynamics, weakly cross-sectionally correlated.

The shocks of interest will be recoverable as long as they are “pervasive”. This
implies that, in general, it is easier to recover “large” shocks which affect all variables
(key and auxiliary ones as well) than small ones.
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