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Abstract

In this paper, we consider new bifurcation phenom-
ena in a class of stochastic dynamic macroeconomet-
ric models as represented by the stochastic model de-
veloped by Leeper and Sims (1994). This model is a
well known Euler equations macroeconometric model
designed to be suitable for monetary policy analysis al-
though the complexity of the model makes any attempt
of analytical analysis a difficult task. Our analysis re-
veals that a singularity boundary exist within a small
neighborhood of the estimated parameter values. That
singularity boundary is located and displayed. As pa-
rameter values approach a singularity boundary, one
eigenvalue of the linearized part of the model rapidly
moves to infinity while others remain bounded, imply-
ing nearly instantaneous response of some variables to
changes of other variables. On the singularity bound-
ary, the number of differential equations will decrease
while the number of algebraic constraints will increase.
Such change in the order of dynamics is a new phe-
nomenon in macroeconometric models. We determine
the singularity-induced bifurcation and its effect on
model behavior.

The primary concern is the loss of robustness in dy-
namic inferences, when a singularity bifurcation bound-
ary occurs within a confidence region of the parameter
inferences. The nature of the model’s dynamics then
can be very different in different subsets of that con-
fidence region. Dynamic simulations produced at the
parameters’ point estimates can display dynamics that
are very different from the dynamics that would be
produced at nearby points in the parameter space. We
believe that the appearance of singularity bifurcation
boundaries in this model is associated with the fact
that the model is based upon Euler equations, and we
anticipate that the same problem may arise in other
macroeconometric models.

1 Introduction

There is great interest in the rigorous analysis of
macroeconomics through the study of their mathe-
matical models. For this purpose, various macroe-
conometric models have been established in the lit-
erature. Among those models that have direct rel-

evance to this research include high dimension con-
tinuous time macroeconometric models in Bergstrom,
Nowman and Wymer (1992), Bergstrom, Norman, and
Wandasiewicz (1994), Bergstrom and Wymer (1976),
Grandmont (1998), Leeper and Sims (1994), Pow-
ell and Murphy (1997) and Kim (2000). Surveys of
macroeconomical models are available in Bergstrom
(1996) and in several textbooks such as Gandolfo
(1992) and Medio (1992). The general theory of eco-
nomic dynamics is provided for example in Boldrin
and Woodford (1990), and Gandolfo (1992). With
mathematical models available, it is natural to inves-
tigate their dynamical properties through which in-
sights on macroeconomics could be obtained. Top-
ics that have received great attention include stabil-
ity /instability study and bifurcation analysis on which
an extensive list of papers is available in the literature.
Particularly, various bifurcation phenomena are re-
ported in Bala (1997), Benhabib (1979), Medio (1992),
Gandolfo (1992), Nishimura and Takahashi (1992). Fo-
cused studies of stability are conducted in Grandmont
(1998), Scarf (1960), and Nieuwenhuis and Schoonbeek
(1997). Barnett and Chen (1988) discovers chaotic be-
haviors in economics. Bergstrom, Nowman, and Wan-
dasiewicz (1994) investigates stabilization of macroeco-
nomic models using policy control. Wymer (1997) de-
scribes several mathematical frameworks for the study
of structural properties of macroeconometrc models.

This paper is concerned with the analysis of bifurcation
phenomena in stochastic dynamic macroeconometric
models. Bifurcation analysis is useful in understanding
dynamic properties of macroeconometric models. Bar-
nett and He (1999) recently investigated bifurcation in
high dimension macroeconometric models, particularly
the UK model established in Bergstrom, Norman, and
Wymer (1992). This practical model is characterized
by large state space, which makes pure analytical study
impossible. The main issue of concern is the change of
structural properties such as stability when parameter
values vary. A computational approach was adopted
in the analysis of Bergstrom, Norman, and Wymer
model in Barnett and He (1999). It was discovered
that macroeconometric models could exhibit fascinat-
ing bifurcation phenomena including various types of
bifurcation such as transcritical bifurcation, Hopf bi-
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furcation, and codimension two bifurcation.

Recently, Leeper and Sims (1994) proposed a new
macroeconometric model. The new model, while ad-
dressing issues such as Lucas critique (Lucas, 1996), is
intended for use in policy analysis. Similar models are
developed in Kim (2000). Such models are motivated
by the need of analyzing behaviors of the macroecon-
omy. With such a goal in mind, the dimension of state
space in the Leeper and Sims model is substantially
lower than that in Bergstrom, Norman, and Wymer
UK model. However, the reduction of state space is not
much helpful to analytical study for the following rea-
sons. First, the dimension (with seven state variables
after reduction in our analysis) is still high for generally
available analytical approaches. Second, the dynamics
of the Leeper and Sims model is in fact considerably
complex as we shall show later in the paper, because
it includes not only the usual differential equations but
also algebraic constraints. Such a combination of dif-
ferential equations and algebraic constraints raise new
issues as we explore further. It should be pointed out
that the Leeper and Sims model, though we have not
been aware of its use in policy analysis, indeed have
several attractive features such as the integration of
several factors of interest such as monetary stock, price
level, wage level, and interest rate. It also simultane-
ously considers behaviors of consumers, firms, and the
government. Furthermore, the model treats monetary
and fiscal policies explicitly.

In this paper, we are interested in how parameter
changes could affect dynamic behaviors of the model
and subsequently the macroeconomy it represents. We
discover that the order of the dynamics of the Leeper
and Sims model could change within a small neighbor-
hood of the estimated parameter values. More specifi-
cally, one eigenvalue of the linearized part of the model
could go from finite quickly to infinite and again quickly
comes back to finite. Such phenomenon characterizes
the instability of the structure inherent in the model.
A large stable eigenvalue represents the case in which
some variables could respond rapidly to changes of
other variables while a large unstable eigenvalue cor-
responds to rapid diversion of the variable from other
variables. The infinity case of the eigenvalue implies
the existence of pure algebraic relations among the
variables of interests. In this sense, the change in the
order of dynamic part of the system shows a funda-
mental property of Leeper and Sims model. It’s not
clear, however, whether such a change indicates an in-
herent instability of the model or simply the nature of
macroeconomy that the model correctly and dutifully
captures. To the best of our knowledge, this is a new
bifurcation phenomenon in macroeconometric models.

The paper is organized as the following. Section 2 in-
troduces Leeper and Sims model. Section 3 analyzes

the model based on linearization around the equilib-
rium. Structural properties of the model are exam-
ined in detail. Section 4 uses numerical examples to
illustrate the results. Implications of the singularity-
induced bifurcation are also discussed.

2 A Stochastic Growth Model

In an effort to provide a macroeconomic model that
one can rely on for policy analysis, Leeper and Sims
(1994) developed a stochastic macroeconomic model.
The model, among other attractive features, captures
the dynamic behavior of consumers, firms, and the
government. Several similar models were also devel-
oped in Kim (2000) and in Binder and Pesaran (1999).
One special feature of those models is that they con-
sist of dynamic subsystems described by ordinary dif-
ferential equations (ODE) and algebraic constraints.
Such systems are differential /algebraic systems. differ-
ential/algebraic systems (Dai 1989, Aplevich 19917).

Leeper and Sims (1994) derive their macroeconometric
model by considering consumers, firms, and the gov-
ernment. Both consumers and firms operate so as to
maximize their respective utility functions. The gov-
ernment provides monetary and tax policies “to sat-
isfy intertemporal governement budget identity and the
pursuit of countercyclical policy objectives.” The de-
tailed derivation of the models is available in Leeper
and Sims (1994) and will not be repeated in this paper
as we are interested in the structural properties of the
model. In the next we simply introduce the mathemati-
cal equations of the model and investigate its structural
properties.

The Leeper and Sims model consists of the following
12 state variables.

work

consumption net of transactions cost
non-interest-bearing money
interesting-bearing government debt
capital

factor income

gross consumption

investment

consumption goods price
investment goods price

velocity of transactions costs
general price level
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The state variables satisfy the following differential
equations.
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where (1) represents the consumers’ budget constraint,
(2) is the law of motion for capital, and (3) is first-
order condition from optimizing consumers’ objective
function. In addition to the three dynamic equations,
the state variables also satisfy the following algebraic
constraints.
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The relations (4)-(8) are obtained from the first-order
condition by maximizing firms’ objective function.
Equation (9) defines consumption net of transactions
costs, with total output serving as a measure of the

level of transactions at a given point in time. Equa-
tion (10) defines income. Equation (11) is the income
velocity of money. Equation (12) is the social resource
constraints. Equations (13)-(14) are also obtained from
the first-order condition for maximizing consumers’ ob-
jective function.

Control variables are the following government policies.

i:  nominal rate of return of government bonds
T: the level of lump-sum taxes

Leeper and Sims (1994) introduces the following mon-
etary policy and tax policy into the model. The mon-
etary policy is

i P P i L
;= ap log(ﬁ)+amtﬁ+ai log(EH—aL log(f)+ei(15)
and the tax policy is
d T T T L P
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The overscored variables, according to our convention,
denote steady state values. D/Y is the steady state
debt-to-GNP level. The free parameters are the steady
state price level P, D/Y, the a’s, and the b’s. The
noises are ¢; and €.

In this model, it is conventional to use 7/C, rather than
T, as a control. Therefore, the control variables are i,
7. =71/C.

In Leeper and Sims model, the following parameters
and exogenous variables n, g, m, §, 6, a, A, and ¢,
are logrithmic first-order AR in continuous time. The
variable 3 is a logrithmic first-order AR in unlogged
form. We analyze the structural properties of (1)-(14)
without any external disturbance, or equivalently, the
exogenous variable are set at their nominal values. At
the nominal value, we have 7 = 0. Further analysis is
part of an on-going research.

The original form (1)-(14) has 12 states variables and
14 equations. 7¢ equations to For analytical investi-
gation, we would like to have as few state variables as
possible. For this purpose, we next reduce the dimen-
sion of the problem by temporarily eliminating some
state variables. We consider the following state vari-
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The rest of state variables can be written as unique
functions of x.

By eliminating M, C*,V, @, X, direct verification from
(1)-(14) shows that z satisfies the following equations.
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For the ease of notation, we denote equations (18)-(24)
as

h(z,u)t = f(x,u) (25)

0= g(m,u) (26)

in which the dimensions of h(z,u), f(x,u) are 4 x 7.
The dimension of g(x,u) is 3 x 7. Equation (25) de-
scribes the nonlinear dynamical behavior of the model
and (26) represents the algebraic (and nonlinear) con-
straints. Many systems can be described in the form of
(25) and (26) which have been known as nonlinear de-
scriptor systems. The model developed in Kim (2000)
is also in this form. Thus we will investigate this class
of systems. We shall use n, ny, no, ny +ny = n, and m
to denote respectively the dimension of z, the number
of difference equations in (25), the number of algebraic
constraints in (26), and the dimension of control vari-
able. For Leeper and Sims model, n = 7, ny = 4,
ne =3, and m = 3.

The steady state of (25)-(26) can be solved from the
following equations.

0= f(z,u) (27)

0= g(m,u) (28)

Let us denote the steady states of x and v by & and u,
respectively. The @ is the solution of (15) and (16) in
steady state when external noises are zero, i.e.,

(29)
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The values T and @ are solutions to (27)-(28), and (29).
This steady state is an equilibrium of (25)-(26) when
the control variables are set at their steady state.

The vector of parameters of concern is

p=lgnrBlaadspyol,



where the superscript 7' denotes vector (or matrix)
transpose. More parameters will be introduced later
when needs arise. The nominal values of the param-
eters are estimated in Leeper and Sims (1994) from
quarterly data from 1959 to 1992. Details of the esti-
mation are available in that paper.

The constraints of the parameter values are:

0<r<1

v>0

0<o<1

p>1

0>0 (30)
0<p<1

920

n>0

0>0

In addition to the above constraints, the steady states
of state variables need to exist and be practical. For ex-
ample, C' should be non-negative. Such constraints are
included in the existence of equilibrium of the Leeper
and Sims model.

3 Singularity in Leeper and Sims model

The structural properties of the Leeper and Sims model
in a small neighborhood of the equilibrium (Z, %) can
be studied using local linearization around this equilib-
rium. The linearized system of (25) and (26) is
Eyi = Az + Biu (31)
0= Asz + Byu (32)
where

E, = h(z,a) € R™*",

Alzaf(a:,u) o

oz |x:z,u:u

€ RM*" Ay = Lg(;; ) le=z u=a € Rn2xn"
of (z,u

B, = %H:f,u:a

c Rn1><n’B2 — Whﬂ:i,u:ﬂ c RnMe2Xn

The linearized system (31)-(32) is solvable if it is regu-
lar (Gantmach 1974), i.e.,

det({ o ]) £0.

If the regularity condition is violated, the linearized
system either has multiple solutions or no solution.
We randomly chose parameter value within feasible re-
gion and observed that the Leeper and Sims model,
as expected, is also regular. Because this is a practi-
cal model, it is reasonable to assume that it is always
regular within the parameter feasibility region.

To study the structural properties of the Leeper and
Sims model, we further transform the linearized system
(31)-(32) into a form that is easy to work with.

Definition 3.1 Two systems

Ei = Az + Bu (33)
and

Ej = Ay + Bu (34)

are said to be restricted system equivalent (r.s.e.) if
there exit two nonsingular matrices 77 and 75 such that

T\ET, = E, T\AT, = A, T\B = B, y = Thx.

The form (34) can be obtained by using coordinate
transform y = Thx and by multiplying from left both
sides of (33) by T;. The relationship of r.s.e. allows
one to transform a system into appropriate forms while
preserving important properties of the system.

We next transform (31)-(32) into suitable r.s.e. forms.
First, denote

rg = rank(E).

Then there exist nonsingular matrices 77 and 75 such
that

| Iz O
TVE\T, = { 0 0 ] .
Consider the following coordinate transform
T2

T _ _
[ ! :| =T, 11’,1’1 €ER'®, xg € RMTE

Then

=[]



Substituting the form of  into (31)-(32) and also mul-
tiplying both sides of (31) by Ti, the we know that
(31)-(32) is r.s.e. to

j?l = Anxl + A12£l72 + BH’U,
0= Az + Ayyxs + Biyu (35)
0= A311‘1 + A321‘2 + B2U

where
A Ap
g R
B
V| =By [ Az Ass | = AsTo.
By,

Combining the second and the third equation in (35),
we have

i’l = Allml + A121'2 + B11U (36)

0= Agll'l + AQQZ’Q + B12U (37)

where

! ! !
tor = | P [ = 4 ] Ba=| 5 ).

If Ay, is nonsingular (or invertible), it is possible to
solve for x5 from the algebraic constraint equation (37).
In fact, in this case, we have

To = —A;21(A21$1 + Biau).
Substituting the form of z» into (36), we obtain
iy = (A — A1 AS) Agy )y
+(By1 — A12A;21Blg)u.
In other words, z; could be described by the usual ODE

and an algebraic relationship between x; and z-.

However, the previously described transformation
could not be finished if Asy is singular (or not invert-
ible). In fact, as we shall explain soon, that the dynam-
ics of (25)-(26) could be completely different from those
of ordinary linear differential equations if As5 becomes
singular.

To see what could happen when Ass is singular, let
revisit the linearized system (36)-(37) which could be
re-written as

[,‘E 0 i I
0 0 t T
B A11 A12 T1 Bll
_[Am A22}[$2]+{B12}u' (38)

If the Leeper and Sims model is regular, so is the matrix

pair
( I, 0 A A )
0o 0}’ A21 A22

which is called a matrix pencil. For a regular matrix
pencil, there exit nonsingular matrices 77,75 such that
(Gantmacher 1974)

where 71 + fis = n, N is a nilpotent matrix, i.e., there
exists a positive integer d > 1 such that

Nt=0

The smallest such integer d is called the nilpotent index
of N. The following is an example of nilpotent matrix

0 1 0 0 0
0 0 1 0 0
N = (39)
0 0 O 01
0 0 O 0 0

A matrix is nilpotent if and only if it is similar to the
following block diagonal matrix

diag(Nl, N2, vy Np)
in which each N; has the form of (39).

Consider the coordinate transform

=)=



or equivalently [ zl } = T2_1 [ 1 ]
2

Multiplying both sides of (38) by T}, we have another
r.s.e. form of (31)-(32)

7= Alyl + Blu (40)
Ny = ys + Bou (41)

where
By =1 | Bu
~ =T
s
The solution to (40) and (41) are respectively

- t >
yr = Aty (0) / el (t — &) Bru(€)de

to

d—1

d—1
Yz = — Z 6(]671) (t)NkyQ (0) — Z Nkélgu(k) (t)
k=1 k=0

where to > 0 is the initial time and u®) denotes that
k-th order derivative of u.

Unless N = 0 or the initial state y,(0) = 0, there exist
impulsive terms and derivative terms of u in the solu-
tion yo. Such a solution structure is totally different
from those of ODE such as y;. The derivative terms
could produce shock effects to the state response ys if
u is not smooth. For example, if u is a step function

1 ift>t
“(t)_{o if ¢ < to

the first-order derivative of such as step function is the
well known Dirac function

3t —to) = %u(t).

On the other hand, if N =0, we have
Y2 = —Bzu

which is again an algebraic relationship between y» and
w. This is not surprising as explained in the following
theorem.

Theorem 3.1 If both (40)-(41) and (36)-(37) are r.s.e.
forms of the same linearized system (31)-(32), then

N=0
if and only if Ass is nonsingular, i.e.,

det(A22) 7é 0.

Proof. If N = 0, then (40)-(41) and (36)-(37) have
the same form with Ass = I, which is nonsingular.

On the other hand, if Ass is nonsingular, choose

= [ In, —AnAy
Tl - |: 0 Iﬁz )

T — [ A —A12A2_21A21 A12A2_21 }
2 0 I, ’

Direct verification confirms that

with
A=Ay - A12A§21A21-

Therefore, we have N = 0. This completes the proof.
O

Since the linearized model (31)-(32) singular Asy re-
sults in completely different behaviors, we say a singu-
larity occurs when Asy becomes singular. The condi-
tion for singularity is

det(Az2) =0 (43)

The preceding condition has another form in terms of
original coefficient matrices. In fact, we can prove the
following theorem.

Theorem 3.2 Assume that E; has full row rank, i.e.,

rank(E,) = ny (44)



Then Ass is nonsingular if and only if

]

is nonsingular, i.e.,
rank([ il }) =n (45)
2

Proof. Denote

where Ty and T, are defined in (42). Then both 7} and
T5 are non-singular.

Consider the following matrix

Eq A1
o4
A= 0 E;
0 O

On one hand, we know that

- E - - A -
o T1[01]T2 Tl[Al]Q
TVAT, = i Ef i
0 Tl[ ’ ] ,
In, 0 A A
_ 0 0 A21 A22
- 0 0 I; 0
0O 0 O 0
= 2171,1 + Tank‘(A22). (46)

On the other hand, if F; has full row rank, n — 1 = nq,

rank(Ey) = ny = nq,

and

rank(A) = rank( 4

OOOH@
o
A

= rank(E,) +mnk({ éi ])

E,
= k .
ni + ran ({ Ay ])
Combining the previous equation with (42), we obtain
A
rank( 5 ) =mn1 +rank(As). (47)
1

Note that Asy € R™*™ and fi, = ny. Equation (47)
says that Ass is nonsingular if and only

As
E,
is nonsingular, which is exactly what we need. a.

Therefore, another singularity condition is readily
available from Theorem 3.2.

det({ Z ]) —0 (48)

Note that x» is solvable from (37) alone if Ayy is non-
singular. Therefore, singularity condition implies the
case in which x5 is not readily solvable from the alge-
braic (37) alone. We need to take into account of the
dynamic constraint (36).

We next introduce another property to have a closer
look at the singularity condition.

Corollary 3.3 Consider the following system

Eli' + E12:l) = All’ + A12y + B1U
y=Ayy+ Byu (49)
0= AQZ’ + A22y + B2U

Then the singularity condition for (49) is the same as
that for (31)-(32).

Proof. According to Theorem 4.2, the singularity con-
dition for (49) is

Ey Ep»
det(| 0 1 |)=o,
Ay Ay

which,by eliminating the second column, is equivalent
to (48), the singularity condition for (31)-(32). o
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Corollary 3.1 says that adding (or deleting) state vari-
ables that can be described by ordinary differential
equations does not change the singularity condition.
This property is useful in reducing the dimension of the
problem under consideration. For example, we could
drop the state variable K in (31)-(32) without affect-
ing the singularity condition.

It is easy to verify that, after dropping the state vari-
able K, the singularity condition becomes

EI
det({ Ai }) =0 (50)
in which
L 2= 0 0 0 +
Ei = 0 % €93 -y (i_ﬁ) 0 €26
1— 1—
0 5 0 0 7R 7
and
A =
0 pC+gr 't 0  Bu(Z+nK)*t  pyrt
0 93 24 0 a26
0 0 oL°1 0 A gy
where
1—m(1-— _
en = LT  gyy - 1)(C 4 9]
_l-p
C+yg
1—m(1-— 1-
ez = 2D gy (o 4 g+ LB

*

Y
asg = (1 = 2¢V)ATYFOLO7H(1 — p)(C + g) 7"

1—-n 1

T 1-—0L

az4 = (1= 20V)A"Y" "7 (0 = 1)L *(C + g)' "

-7 C
T (-L)7

aze = (1 = 20V)A%(u — )Y "I L7H(C + g)' .

Direct calculation shows that (50) is equivalent to

€93 (1=y)(1—m) 1—p el
1-L Z+nK 26
det(| MO +9) 0 Ou(Z +nK)—t  —pyr!
az3 a24 0 a26
0 oLo~ ! 0 A-ogyeo—1
(51)
where
/ 1- 7T(]. — ’Y) w nw—1
ehy = VY (C + 9)" ).

As we shall demonstrate later, singularity does occur
within feasible parameter regions.

In systems theory, bifurcation is said to occur if
change of structural properties occurs when a parame-
ter crosses a certain value. Such value is referred to as
a bifurcation point. There have discovered many types
of bifurcation such as saddle-node bifurcation, trans-
critical bifurcation, and Hopf bifurcation. Bifurcation
analysis is useful to determining critical behaviors of a
system such as limit cycle or stability.

Because the Leeper and Sims model has structural
changes in its dynamics, the boundary determined by
(51) will be referred to as singularity-induced bifurca-
tion boundary. To the best of our knowledge, this is a
new type of bifurcation in macroeconometrics models.

Leeper and Sims (1994) proposed the government pol-
icy control using the monetary policy (15) and tax
policy (16). boundary. To investigate bifurcation of
the closed-loop system under the control of government
policies, let us expand the state variable to

Le =

ds~NRSNQYT

With this new state variable,
(31)-(32) now becomes

the linearized system

[ c
Efg. = Afx,

0= [A2 0]1‘6



where Ef € R™*™ | A € RM>™ nf =ny +2,n° =
n+ 2.

4 Numerical Examples

In this section, we numerically find the singularity-
induced bifurcation boundaries using the condition (51)
but appliedtothe closed-loop system (54). Note that
extra care is needed in the numerical calculation of
the r.s.e. (40)-(41). The issue of numerical stability
was indeed encountered in our numerical calculation
of both (40)-(41) and (36)-(37) although we only fol-
lowed the theoretical procedure mentioned earlier and
did not try any special algorithms to ensure numerical
stability. It’s not our intention to divert the focus of
this research to address the issue of stability. On the
other hand, calculation using the condition (51) is nu-
merically rather stable. We did not have any stability
problem to finish the task using MatLab software.

We first tried to test all pairs of parameters to find out
the pairs that yield bifurcation boundaries. Parameters
are allowed to take values within the 95%th-percentile
confidence intervals of their estimated values, i.e.,

p(i) € [p(i) — co; p(i)) — oyl

where p(i) is the estimated value of parameter p(i),
o; the estimated variance, ¢ the critical value of the
95%th-percentile confidence interval for N(0,1). For
some parameters, variance information is not provided
in Leeper and Sims (1994). In this case, parameter
values are allowed to take values with 50% of the esti-
mated values. Such a range of parameter values puts
parameters well within the feasible region.

The estimate information for involved parameters u, g,
and S is shown in Table 1.

To find out what could happen when parameter values
cross the singularity boundary, consider the parame-
ter 5. The following table shows that change of finite
eigenvalues, A1, ..., A\g, when 3 varies.

The first row in Table 2 are the values  takes. The
second through the ninth rows are the corresponding
finite eigenvalues of the linearized model. There are
three more infinite eigenvalues which are not shown in
the table. The table clearly shows, when the value of
B increases (and crosses the bifurcation boundary), Ag
decreases rapidly to —oo and then decrease from +o0.
Table 2 clearly shows that the Leeper and Sims model
has a structural change when [ crosses the singularity-
induced bifurcation boundary and the two regions sep-
arated by the boundary exhibits drastically different
dynamical behaviors.

Example 4.1. Figure 4.1 shows singularity-induced

bifurcation boundaries
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Figure 4.1. Singularity-induced bifurcation boundaries

The numerical examples show several issues related to
Leeper and Sims model that deserves special attention.
First, p seems to play a critical role in the structural
properties of the model. Parameter estimation should
pay special attention on the accuracy of the estimation
of p. Second, the numerical example shows that the
number of dynamic equations and the number of alge-
braic equations change when u crosses the singularity-
induced bifurcation boundary. One natural question
is: Was such a change caused by estimation error or
modeling error? Or this is a fundamental property of
macroeconometric models? The reduction might have
occurred in cases where an actual algebraic equation
is modeled by a differential equation. At present we
are unable to reach any conclusion, however. Further
study is needed.

5 Conclusions

The Sims and Leeper model is representative of a larger
class of systems. Another example of this class is the
well-known fundamental dynamic Leontief model. The
most distinguishing characteristic of this class of sys-



tem is the form of the model

Ei = f(x)

in which the matrix E could become singular. In this
paper, we have examined the basic properties of such
model, proposed an approach for bifurcation analy-
sis, and most importantly discovered the existence of
singularity-induced bifurcations. Within a practically
small region of estimated parameter values, we found
and characterized the nature of the singularity-induced
bifurcation. Of notable significance is the fact that the
dynamic order of the system changes when parameter
values cross the bifurcation boundary.

We believe that this effort is the first step toward
achieving a better understanding of the dynamics of
this class of systems. It’s important to understand the
implications of the bifurcation on system dynamics and
stability.

Example 4.2. Figure 4.2 shows singularity-induced
bifurcation boundaries for three parameters

Figure 4.2. Examples of singularity-induced bifurcation
boundaries for three parameters.
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