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Abstract

In this article, the predictability performance of certain classi-

cal business cycle theories are tested against contemporary statistical

methods by using Finnish macroeconomic data. Keynesian multiplier-

accelerator model derivatives and neo-classical real business cycle mod-

els are compared to statistical stochastic time-series methods. Some

philosophical considerations on the scientific principles and macroeco-

nomic analysis are extended for applied econometric practice. VAR

and SUTSE models are estimated and compared against classical the-

ory implications. It is found that in this case, SUTSE model has a

superior forecasting ability and that pure statistical algorithms are the

most efficient alternatives for predicting Finnish business cycle data.

1 Introduction

Economic theory concerning the modelling of the business cycles has not

been emerging noteworthily since the early 1980s when the substantial body

of literature was devoted to the ”real business cycle” approach. As [4, p.436]

has noted, the accuracy of the macroeconomic forecasts has not improved
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over the last 40 years, maybe because the descriptive statistics, used to mea-

sure the difficulty of forecasting over different time periods, may not capture

the difficulty of preparing forecasts in any specific time period. A more ap-

propriate approach is rather to consider performance relative to a suitable

benchmark that has the potential to eliminate idiosyncratic effects which

arise during each time period under analysis.

In this paper the reasoning follows Bayesian argumentation which treats

uncertainty across theories as no conceptually different from stochastic el-

ements of the theories themselves. Therefore alternative implications and

forecasting power should be compared, not just between alternative theories,

but also between classical theories and pure statistical methods [20, p.1599].

A focus on solving and calibrating models, rather than carefully fitting them

to data, is reasonable at a stage where solving the models is by itself a major

research task [21, p.112]. But when applicable theories have been advanced

enough, more systematic collection and comparison of evidence cannot be

avoided. As argued by McCloskey [11] and Sims [21], economics is definitely

not physics. Economics is analyzing questions, which may always ultimately

be returned to human behavior, and therefore does not achieve the clean

successes and consensuses of the natural sciences. In economics, like in other

social sciences, there can be disagreement not only about which theories are

best, but also about which modes of argument are legitimate [21, p.119].

This paper follows the idea of the research by Fildes and Stekler (2002)[4],

where they have analyzed the macroeconomic forecasting accuracy of macroe-

conomic models compared to their time series alternatives1. Previous qual-

itative results (see footnote) indicate that forecasters have made systematic

errors in predicting several macroeconomic variables.These errors occurred

when the economy was subject to major perturbations, just the times when

accurate forecasts were most needed.

1for other related research see, Klein, 1991; Wallis, 1993; Bodkin et al.,1991; Daub,

1987; Smith, 1994; Den Butter and Morgan, 1998; Zarnowitz, 1992; McNees, 1992;

Zarnowitz and Braun, 1992
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Fildes and Stekler used US and UK data, and in this paper Finnish

macroeconomic data is used instead. This gives interesting opportunity to

test and compare their findings by using different data. They found that

a comparison of the US and UK macroeconomic forecasts with times series

predictions support the use of advanced statistical methods for improving

the forecasting accuracy. By using different data, Finnish macroeconomic

variables, that research is extended in this paper.

Traditional view of economic science was that the core issue in economics

was to formulate testable hypotheses and confront them with data [18, p.21].

As Sims [21] has noted, that hypothesis oriented science is essentially de-

pendent on the idea that there are true and false theories, when in reality

the degree to which theories succeed in reducing data can be a continuum.

As McCloskey [11] has argumented, still a large majority in economics (es-

pecially in macroeconomics) closely stick with traditional view of economic

science [12, p.1320]. This is strange during the current time when most

philosophers agree that strict logical positivism is dead [11, p.486].

The main forerunner in modernist economics were Samuelson and Fried-

man2, which founded the modernist economic methodology. McCloskey

labels Samuelson’s use of mathematical problem formulations as scientific

rhetoric, as a handy tool for persuasion and giving an impression of author-

ity [11, p.500]. This is in contrast to Hicks, who pushed mathematics off

into appendices. Most natural sciences give a much less important role to

probability-based formal inference than does economics, but that is unavoid-

able, because there are few possibilities available for experimentation. But

econometricians should remember to distinguish between the notions of pure

statistical significance and economic significance [13, p.99], which apparently

are not equal.

One implication from Lucas critique, not perhaps gained enough atten-

tion in economics, is his concluding sentence ”econometric models are useless

2Friedman, M, ”The Methodology of Positive Economics (1953) and Samuelson P.A.

”The Foundations of Economic Analysis (1947)
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for policy evaluation”. The ultimate criterion for the validity of scientific the-

ory should be the degree to which they help us order and summarize data.

Classical Keynesian multiplier-accelerator models and RBC share the com-

mon interest into constructing and estimating of models, which Sims [21,

p.115] labels as dynamic, stochastic, general-equilibrium (DSGE) models.

But all too often these models, representing Kuhn’s ”normal science” in con-

temporary economics, are too stylized and remote to fit the data to provide

a reliable guides to policy. That is the reason why several scholars, Sims

[21] in forefront, demand that more stylized statistical time-series methods,

like frequency domain analysis or other orthogonal decomposition VAR and

SUTSE methods should be used as a standard part of any model (including

especially RBC) evaluation. As Sims argues [21, p.118], usually a simple re-

duced form VAR(1) model gives a better fit than neoclassical RBC models.

Therefore it is considerable interest in making comparisons between DSGE

and alternative models, not to mention before any quantitative policy anal-

ysis is done.

2 Theoretical considerations

This chapter presents shortly the applied modelling alternatives for business

cycle behavior. Models are explained only by extend relevant for the empir-

ical purposes of this paper. More extensive analysis of the most important

business cycle models can be found e.g. in collection by T.C. Mills[14].

2.1 The Samuelson Oscillator

The basic Samuelson (1939) business cycle model relies on simple Keynesian

consumption function, which is appended by dynamic investment function to

derive a classical multiplier-accelerator mechanism. His model represented

a dynamic adjustment process, which is in contrast to classical static mod-

els [9]. The consumption function includes a Robertsonian lag of type
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Ct = c0 + cYt−1 (1)

where present consumption is a function of past income. Investment func-

tion includes changes in consumption demand, according to the accelerator

principle.

It = I0 + β(Ct − Ct−1) (2)

Government and foreign sector are assumed away, so the market identity

closes the system with

Yt = Ct + It

This system implies a second order linear difference equation:

Yt − (1 + β)cYt−1 + β cYt−2 = (c0 + I0) (3)

The roots of this system determine the dynamics. It can be shown that

they are the parameter regimes of β and c which yield the different dynamics,

both complex and asymptotic. Only the apparently rare case of c = 1
β

will

produce constant and harmonic oscillation.

2.2 Hicks’ trade cycle

Hicks’ model (1950) is characterized by aiming to explain unstable oscilla-

tions and adding floors and ceilings to constrain them. Hicks applies simple

Robertsonian consumption function as Samuelson, but replaces the acceler-

ator by using past output differential. Therefore, the investment function

becomes

It = I0 + β(Yt−1 − Yt−2) (4)

while the consumption function remains identical to Samuelson model.

The main implication is the different characteristic equation. Now the suffi-

cient condition for constant oscillation behavior reduces to somewhat more
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simple case of β = 1, with no requirement for c. Nevertheless, any slight

movement of β from unity will lead to explosive or damped behavior, mak-

ing the model structurally unstable. The model adds also income ceiling and

investment floor to the cyclical behavior [6, 435].

We should also note that the variations which induce investment are

lagged one period. This means that some time must elapse in order that

the new capital goods required to accommodate the increased demand can

be produced. Hicks’ model also shows that the linear dynamic models require

exact model specification [2, 189-198].

The major difference between the Samuelsons’ and Hicks’ multiplier-

accelerator models is, that in the Hicks’ model the difference between the

damped and explosive oscillation depends only on the accelerator β, while in

Samuelsons’ model this depends on β and c [5, 77].

Hicks’ model is intrinsically less stable than Samuelson’s model. This

is not surprising, since in the former induced investment depends on the

variations in consumption demand, which are evidently smaller. According

to Hicks, the accelerator coefficient is always greater than unity, and this puts

the model in the unstable regions. The explosiveness of the model, however,

is checked by some non-linearities built in the model in an ingenious way.

These non-linearities are an upper limit and a lower limit to income, which

check its otherwise explosive behavior and give rise to cycles of constant

amplitude around the trend.

It is interesting to note that the presence of the limits reduces to a matter

of secondary importance the problem whether the ”free” movement (i.e. the

movement that would occur in absence of the limits) is monotonic or oscilla-

tory, since the rebound gainst the limits gives rise in any case to a fluctuating

movement. The fluctuations in income are then contained between the two

limits and so are of approximately constant amplitude in relative terms, i.e.

when measured as relative deviations from the trend. In absolute value they

are actually of increasing amplitude.
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2.3 RBC, Real Business Cycle-theory

Formulating of RBC-theory meant the establishment of a new research method-

ology. This must be emphasized as one common mistake among RBC-critics

is to only blame it as forgetting any substantive role of money in formulating

business cycle behavior [3]. But that is an over-simplification of the underly-

ing meaning of the theory, which has enabled a more inductive approach to

systematic quantitative description of business cycle behavior. The theory

has also been able to emphasize the importance of purely qualitative results,

spreading to other economic applications as well. One important contribu-

tion of RBC to modern business cycle theory is that it implies that a model

should be broad enough to explain also related economic findings.

One feature that differentiates alternative theories of the business cy-

cle is the nature of the ”shocks” (random events) that cause fluctuations

in economic aggregates. For example, one popular theory, often identified

with Milton Friedman, holds that shocks to monetary policy are the primary

cause of business cycles. Another theory, one identified with John Maynard

Keynes, maintains that sudden changes in the sentiments (”animal spirits”)

of entrepreneurs are the primary cause. Real business cycle theory focuses on

the role played by fluctuations in the level of technology. Real Business Cycle

models assume an economy which aggregates a large number of infinite-lived

identical households [8], which at time t aim to maximize

Et

[ ∞∑
j=0

βju(ct+j, lt+j)

]
. (5)

Representative consumption and leisure decisions are denoted by ct and lt,

respectively. Parameter β can be interpreted as a discount factor (0 < β < 1)

which reflects a current over future consumption preference.

Households are assumed to face a homogenous of degree one production

function

yt = ztf(nd
t , k

d
t ), (6)
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where nd
t and kd

t denote production inputs of labor and capital. The

variable zt is a random variable that implies the state of technology in period

t and follows a Markov class process. Capital is assumed to disappear via

depreciation by the fraction δ. Household’s budget constraint in period t

depends also on wage and rental rates wt and qt, which are assumed to be

derived from competitive labor and capital services markets.

ct + kt+1 = ztf(nd
t , k

d
t ) + (1− δ)kt − wt(n

d
t − nt)− qt(k

d
t − kt). (7)

RBC model assumes rational expectations. Market equilibrium, holding

for periods t = 1, 2, . . . , is characterized by the following equalities:

ct + kt+1 = ztf(nt, kt) + (1− δ)kt (8)

u1(ct, 1− nt)− λt = 0 (9)

u2(ct, 1− nt) = λtztf1(nt, kt) (10)

λt = Et βλt+1[zt+1f2(nt+1, kt+1) + 1− δ] (11)

Empirical problem with RBC models is that there are very few functional

forms for u and f which will permit derivation of explicit closed-form solu-

tions for kt+1, ct and nt. Nevertheless, one combination involves a log-linear

specification for u and a Cobb-Douglas form for f , implying:

u(ct, 1− nt) = θlogct + (1− θ)log(1− nt), (12)

ztf(nt, kt) = ztn
α
t k1−α

t (13)

That special case requires δ = 1, that is complete depreciation of capital

during a single period. It has been shown that in this depreciation case

and using AR(1) technology shocks, quantity variables have the time series

properties of AR(2) process. Usually detrended quarterly macroeconomic

data series for the logs of various aggregate factors are well described by
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AR(2) type models. Empirically that is important, because we can now

estimate the RBC model by using:

log ct = (1−α+ρ)log ct−1−(1−α)ρ log ct−2+α(1−ρ)φ1+(1−α)(1−ρ)φ0+εt

(14)

Another interesting property of equation 14 is that the average product

of labor is positively correlated with the level of total output.

2.4 VAR forecasting

Forecasting is quite obvious use for VAR systems. The optimal forecast in

this context is the conditional expectation given all information up to the

period when forecast was made. Optimality implies minimizing the forecast

mean square error (MSE) of each variable. If the generation process is a

known VAR(p) for variable yt with independent white noise errors vt, the

conditional expectation yT (h) of yT+h given yT , yT−1, . . . , is straightforward

to determine. Denoting by ET the conditional expectation operator given

yT , yT−1, . . . ,.

yT (h) = ET [yT+h] = v + Θ1ET [yT+h−1] + . . . + ΘpET [yT+h−p]

= v + Θ1yT (h− 1) + . . . + ΘpyT (h− p) (15)

where yt(h−1) = yT+h−i for i ≥ h and ET [vT+h] = 0 has been used. This

equation can be applied repeatedly for recursively computing h-step-forecasts

for h = 1, 2, . . ..

2.5 Seemingly unrelated time series equations mod-

elling (SUTSE)

Seemingly unrelated time series equation modelling estimates Beveridge-

Nelson[1] type decomposition of multivariate time series in an unobserved
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components framework. Vector of observations are linked together through

the correlations of the disturbances driving unobservable components. All

the series are assumed to have the same dynamic properties[22]. SUTSE is

an alternative to VAR approaches and its appeal lies in its transparency and

structural character. The basic SUTSE model parsimoniously nests a large

set of common trend and common cycle restrictions. If the cyclical compo-

nent has a sufficiently rich serial correlation pattern, all covariance terms of

the trend and cycle innovations are identified[17]. Tests for common trends

are based on a method developed by Nyblom and Harvey[16] and hypotheses

on common cycles are tested using likelihood ratio statistics with standard

distributions.

SUTSE models offer insights in the dynamic relations between variables

as well as the identification of innovation sources. Individual pieces like trend,

cycle, seasonal and possible exogenous and endogenous explanatory variables

can be modeled separately and subsequently combined in the state-space

model. Unobserved components approach also enables modeling common

factor restrictions in a transparent way. Possible common factor restrictions

include long-run restrictions imposed by common trends and short-run re-

strictions by common cycles [22].

The basic SUTSE representation is a state-space model that serves as

a basis to estimate the Beveridge-Nelson decompositions as the sum of two

unobserved components, which consists of k common stochastic trends, γτt,

and l common cycles, γ̃ct [17]. No restrictions are imposed on the covariances

of the error terms (as is done in unobserved components models (UC)). It

is assumed that the cyclical component is described by a stationary VAR(p)

process. This implies

yt = γτt + γ̃ct (16)

τt = τt−1 + ηt (17)

Φ(L)ct = εt (18)
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where ηt and εt are the trend and cycle innovations, and Φ(L) is a l-

dimensional lag polynomial of order p. Basic model allow for a wide range of

formulations [15, p.3]. The model can be cast into state space form by defin-

ing the measurement equation as (16) and the state vector as equation (17)

with present and past values of the cycle being generated by equation (18).

The parameters are estimated by maximum likelihood using the prediction

error decomposition [10].

3 Empirical results

Empirical testing is done by using Finnish macroeconomic data, which cov-

ers years 1975-2002. The quarterly time-series are seasonally adjusted and

presented in figure 1.

1975 1980 1985 1990 1995 2000

5000

10000

15000

20000

25000

30000
BKT 
C 

G 
I 

Figure 1: Macroeconomic data used for Finland

The well-behaving residual requirements and stability conditions for the

estimations are guaranteed by using usual diagnostic procedures. Statistical
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properties of Finnish business cycle are presented in table 1. The statistics

support the usual understanding that investment fluctuates much more than

output or consumption (about 4 times)3. Detrended variables do not present

significant autocorrelation.

Variable (a) (b) (c) (d) (e)

Output 0.13 1.00 1.00 0.11 0.23

Consumption 0.13 0.99 0.46 0.17 0.14

Investment 0.51 3.85 0.62 -0.09 0.30

Table 1: Statistical properties of Finland Business Cycle

Note: Explanation of columns: (a) standard deviation, s.d.; (b) s.d. relative to output;

(c) correlation with output; (d) ar(1); (e) ar(2)

Measuring forecasting accuracy and estimating it statistically would be

straightforward, if we would knew the true probabilistic structure which gen-

erates these prediction errors, but in measuring macroeconomic forecasts we

have no definite idea of how to measure the welfare losses of incorrect pre-

dictions or the stochastic structure [19, p.226]. Under these circumstances,

ranking of forecasting ability is done here only by using the first two moments

of calculated forecasting errors.

Business cycle models of Samuelson and Hick’s were estimated by using

simultaneous multiple-equation FIML technique applied to the system of

macroeconomic variables. Each system was built according to equations

found in section 2. Dynamic (ex ante) 1-step forecasts were calculated for four

(inside the data) periods. Parameter constancy was also tested. Estimation

diagnostics are found in table 2.

Econometric modelling requires a testing of unit root property. Variables

were found to be I(1), but no co-integration was found in test. Co-integration

was analyzed following Johansen’s method in VAR context and tested for

the VAR estimation purposes. The co-integration test results are found in

3Results are derived from detrended seasonally adjusted data, ADF tests were done for

each time-series, which were uniformly found to be I(1)
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Model (a) (b) (c) (d) (e)

Samuelson 0.13 0.25 1.93 287.12 16.07

Hick’s 0.13 0.25 14.97 295.62 10.21

RBC 0.13 0.13 0.52 64.89 4.45

VAR 0.12 0.12 0.44 557.61 6.87

Table 2: Estimation diagnostics of Keynesian multiplier-accelerator, RBC

and VAR models

Note: Explanation of columns: (a) σ for output eq; (b) σ for consumption eq; (c) σ for

investment eq; (d) −T
2 log |Ω̂| of system; (e) parameter constancy forecast χ2 test using Ω

table 3. Because no co-integration property was found, VAR model was es-

timated using first differences of the variables and the appropriate lag value

(k = 4) was found using general-to-specific reduction algorithm enabling

well-behaving residuals with no autocorrelation property. Also VAR model

estimation diagnostics are included in table 2. VAR model seems to produce

best fit for the data used, even when VAR model was estimated in first differ-

ence form, which may weaken the forecasting ability contra error-correction

VAR representation alternatives.

H0:rank ≤ λtrace p-value eigenvalue

0 18.091 [0.569] 0.10112

1 6.8969 [0.596] 0.049536

2 1.5624 [0.211] 0.014770

Table 3: Co-integration test results

SUTSE model estimation enables using common factor representation,

if disturbance vectors have less than N elements. Recognition of common

factors yields models which may not only have an interesting interpretation,

but may also produce more efficient inferences and forecasts[7], but as Jo-

hansen’s co-integration test implied, this is not an valid alternative in this

case. Therefore one important alternative modelling option is here absent.

Nevertheless, in basic SUTSE representation applied, several components can
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be included into multivariate model. In this case, one common cycle (am-

plitude estimated as being 13 periods) and a stationary AR(1) process are

appended, producing the following estimation diagnostics found in table 4.

Output Consumption Investment

s.d. 0.1195 0.1192 0.4062

Q(12, 6) 11.750 22.812 17.866

Final state coefficients

η 106.70 106.60 100.91

τ 0.0870 0.0699 0.0794

c1 0.0528 -0.0487 0.1442

c2 -0.0262 0.0242 -0.0716

ar(1) -0.1356 -0.0585 0.1435

s.d. of disturbances (q-ratio)

η (10−2) 4.9038 (1.0000) 7.6753 (1.0000) 30.388 (1.0000)

τ (10−2) 2.2309 (0.4733) 2.7244 (0.3550) 8.3033 (0.2732)

ct (10−2) 1.2520 (0.2349) 1.0634 (0.1385) 3.1463 (0.1035)

ar(1) (10−2) 8.2498 (1.6823) 3.06360 (0.3956) 4.5312 (0.1491)

Cycle amplitude 0.0590 0.0544 0.1610

Cycle % of trend 5.8954 5.4421 16.1023

Table 4: SUTSE model diagnostics

In the presented table 5 the mean values and standard deviations of the

forecast errors are presented, for the GNP, consumption and investment fore-

casts (scaled for base 10−2). In predicting output behavior, SUTSE model

(including common cycles and AR(1) process) gave superior forecasts. Nev-

ertheless, the result was not much better than with using simple VAR(4)

estimation. Classical multiplier-accelerator models were giving clearly worst

predictions. Compared to those, RBC succeeded better. A little surprise

was that RBC models gave the best predictions in estimating consumption

behavior and with that time series, statistical VAR and SUTSE models did

not succeed significantly better than theoretical applications. Nevertheless,
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the differences are not wide. In investment forecasts, SUTSE model was a

clear winner, but VAR(4) performance was not far away behind.

These results seem to support the idea that pure a-theoretical alternatives

for business cycle modelling are not awkward alternatives against more the-

oretically grounded classical models. It also suggests that frequency domain

analysis or other standard methods of orthogonal decomposition of macroe-

conomic time series data, as VAR impulse responses or SUTSE common

component analysis, ought to be a standard part of RBC model evaluation.

Variable Samuelson Hicks RBC VAR(4) SUTSE

Output x̄ 0,71 2,18 -0,14 -0,11 -0,02

σ 9,74 10,00 8,77 8,30 8,24

Consumption x̄ 37,93 30,01 5,28 -4,74 2,63

σ 8,25 7,55 5,54 8,12 7,51

Investment x̄ -188,01 -194,22 33,39 -21,43 30,55

σ 41,75 14,83 26,25 14,32 13,40

Table 5: Moments of macroeconomic forecast errors

But the methodological and philosophical aspects should not be neglected

in macroeconomic modelling. Econometric modelling is not separate entity

from economic science. Pure statistical inference does not imply anything on

economic significance. Pure statistical significance does not per se reveal any

new information on the business cycle formation or behavior. The economic

meaning and content should be given with theoretically solid argumentation,

not just using significance level. That task is relevant for any economist and

should not be neglected or left to statisticians or mathematics. Therefore,

these results imply that more emphasis should now be put on developing

better business cycle models with clear and solid economic reasoning, using

statistical tools, but not forgetting the basic scientific aim of revealing real

behavior of human economics.
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4 Conclusion

By comparing the forecasting ability of several business cycle modelling alter-

natives, it was found that pure statistical algorithms were the most successful.

Keynesian multiplier-accelerator models and real business cycle models failed

to give additional forecasting accuracy compared to VAR or SUTSE models,

except in forecasting the consumption variable, where RBC model seemed

to give the best predictions. Nevertheless, the overall predicting ability was

superior using SUTSE modelling. This finding is thus in line with previous

findings by Fildes and Stekler (2002), where similar analysis was done by us-

ing the macroeconomic data of US and UK. This raises important questions

to be asked in future macroeconomic empirical modelling. VAR and SUTSE

models are considered as valid alternative for macroeconomic and business

cycle forecasting if appended with theoretical foundations. SUTSE models

can be seen as wide applications of time-series statistics, which encompasses

the other methods tested, which can be seen as special case restricted alter-

natives. This supports the notion that common factor models yield more effi-

cient inferences and forecasts[10]. As each component is modelled separately

by an appropriate stochastic process, this technique enables the econometri-

cian to identify specific stable relationships between time series.

Previous research on macroeconomic forecasting states[4], that there ex-

ists one result about where there is general agreement, namely that no one

forecasting method or one model or one individual does best all of the time.

Both theoretical and empirical studies have shown economic forecasting to

be potentially valuable. Contemporary macroeconomic models provide a

rigorous theoretical basis for macroeconomic analysis. These theoretical de-

velopments have been matched by statistical innovations. The comparison

of model forecasts with those generated by time series has led to improved

specifications as well as a more refined evaluation methodology based on

structural time series modelling. These approaches abandon the premise

that there is a ”correct” model that is stable over time.

Considerable intellectual activity is devoted to forecasting major eco-
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nomic variables. Improved macroeconomic forecasting may also require a

thorough understanding of the intellectual or cognitive processes that fore-

casters use in making forecasts and adjusting their models. In order to obtain

the understanding of forecasting processes, it would be necessary to build and

test models of forecaster behavior. Use of various methods and techniques

would give an enchanted forecasting power for different situations where con-

ventional procedures are not any more the optimal choices. Increasing use of

common component and SUTSE models would improve also the macroeco-

nomic forecasting performance. While there is considerable research resource

spent in developing macroeconomic theory and to a lesser extent, statistical

models, little attention has been given to the evaluation and improvement

of forecasting performance. A success in widening use of structural time se-

ries models would also lead to an improved understanding of macroeconomic

processes.
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A SUTSE estimation results
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Figure 2: SUTSE components; Trend, cycle, irrational
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