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Abstract

What determines the speed of the technology diffusion? What are the consequences of

diffusion? This paper presents a model to address these questions. Skilled machine-users adopt

a new technology first, while unskilled users wait until machines become more reliable and

accessible. The quality improvement of machines is the engine of diffusion, and it is carried

out by the machine producer. The speed of diffusion is affected by the skill distribution in the

economy. At any point in time, the machine producer can start producing a new generation of

machines. The timing of this event is influenced by the skill distribution.
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1 Introduction

New technologies are the engines of economic growth. Since the pioneering work of Abramovitz

(1956) and Solow (1957), many researchers have found that technological progress is essential in

growth process.1 Recent studies on international income differences suggest that a large part of

income variation is explained by the differences in technology employed in each country.2

It takes time for a new technology to acquire economic significance. First, it has to be brought

into the economy (innovation). Then, it is gradually adopted by many people (diffusion). The

last decade has witnessed a large development in the economics of innovation. However, not much

attention has been paid to the economics of diffusion. Diffusion is as important as innovation: no

new technologies have an economic impact until they become widespread in the economy. Diffusion

is not a trivial process: in general, diffusion takes a long period of time.3 Moreover, in many cases,

innovation and diffusion are interrelated. This paper is an attempt to understand the process of

technology diffusion.

A common feature of newly invented machines is that initially they are difficult to handle. This

feature leads to a well-known empirical fact: high levels of skill4 are required in the early stage of

technology diffusion. To quote Nelson, Peck, and Kalachek (1967),

The early ranks of computer programmers included a high proportion of Ph.D. math-

ematicians; today, high school graduates are being hired. During the early stage of

transistors chemical engineers were required to constantly supervise the vats where

crystals were grown. As processes were perfected, they were replaced by workers with

less education. (pp.144—145. As quoted by Bartel and Lichtenberg 1987)

1Taking the period from 1929 to 1982, Denison (1985, p.30) estimates that 34% of the growth in U.S. real

nonresidential business output (after smoothing business cycles) comes from “the advances in knowledge”. Barro and

Sala-i-Martin (1995, Table 10.8) summarize some results on other countries.
2See, for example, Klenow and Rodríguez-Clare (1997).
3Mansfield (1968) reports: “Measuring from the date of the first successful commercial application, it took twenty

years or more for all the major firms to install centralized traffic control, car retarders, by-product coke ovens, and

continuous annealing” (p.115).
4By skill we mean higher level of ability and education. We especially focus on a specific aspect of skill: the ability

to cope with new technologies. In a broad sense, it corresponds to what Schultz (1975) called “allocative ability” —

the ability to adjust to the changes in economic conditions. Rogers (1995) summarizes the characteristics of early

adopters of innovations. Among them, it is described that: “early adopters have more years of formal education than

later adopters” and “early adopters are more likely to be literate than later adopters” (p.269).
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This is the first key ingredient of our theory. The idea that skill is required for the adoption of a

new technology is also expressed by other economists. In an influential paper, Nelson and Phelps

(1966) construct models where education enhances adoption. They obtain insightful results such as:

the return to education is higher if the technological progress is faster, and the level of technology

adopted is higher when the level of education is higher. These results are consistent with our model.

However, Nelson and Phelps do not consider the process of technology diffusion explicitly. In their

model, the law of motion for adoption is given exogenously, while we make the process of diffusion

endogenous.

To investigate the endogenous process of technology diffusion, we ask the following question: if

a new technology requires skill, how is it possible that it will eventually be adopted by less-skilled

users? Casual observations suggest that it is due to a change in the nature of the technology.

As the technology matures, machines become more user-friendly so that anyone can handle them.

They also become more reliable. Figure 1 is taken from Rosenberg (1982, p.131). It exhibits the

typical cost of an engine maintenance schedule, together with the particular trajectory for the Pratt

and Whitney JT3D turbojet engine. It shows that maintenance expense drops dramatically in the

first several years of engine operation. This reflects improvement in the reliability of engines. The

increase in reliability makes the adoption easier for less-skilled adopters. This change in nature of

technology is the second key ingredient of our theory.

How does this change happen? We observe that it is mainly achieved by an effort to improve the

technology by the producers of machines. The producers of a new machine can improve the machine

(improve reliability and user-friendliness) by learning and investing in R&D. This aspect has been

analyzed previously. Stoneman and Ireland (1984) is an early attempt to model the supply side

effect of diffusion. They consider a capital good monopolist facing users with different threshold

price levels. The production cost falls by learning by doing, and the price of a machine falls over

time. This leads to the diffusion of the technology. Unlike our interest in skill and improvement,

their focus is on the price decline, and relating the price decline to the shape of the diffusion curve.

In this paper, a model that focuses on supply-demand interaction in the process of technology

diffusion is constructed. On the demand side, the skill levels of the users are heterogenous, and

high-skilled users adopt the technology early on. On the supply side, improvement of technology

occurs through the producer’s learning and R&D activity. It makes the adoption by less-skilled

users possible. We also allow a producer to start producing a new generation of machines at any

time.
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Figure 1: Engine Maintenance Expense

Empirical Background: Many recent empirical studies examine the relationship between the

adoption of new technologies and the skill level. Bartel and Lichtenberg (1987) show that there is a

positive correlation between skill and new technology adoption. They consider the hypothesis that a

firm that adopts new technologies demands more skilled workers. To test their hypothesis, they use

the share of skilled workers as the dependent variable and the age of the capital as an independent

variable. In other words, they consider that high skill level is the result of new technology adoption.

We have a different causality in mind: a firm with more skilled workers is more likely to adopt a

new technology.5 A recent study by Doms, Dunne, and Troske (1997) suggests that this direction

is more relevant. They conduct two empirical analyses: cross-sectional and time-series. In the

cross-sectional analysis, they find a positive correlation between skill level (measured by education

or wage level) and technology use. In the time-series analysis, they did not find any change in the

worker characteristics between before and after the adoption of new technologies. They interpret

the result as:
5The source of the difference seems to be the view about which is more fixed (and fundamental) for a firm; skilled

workers or technology. Bartel and Lichtenberg consider a story where new machines are fixed and they call for skilled

workers, and we view that skilled workers are fixed resources for a firm and they adopt new machines.
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Attribute 5 (Very Important) 4 3 2 1 (Not Important) Mean

Quality/reliability of product 79% 19% 2% 0% 0% 4.8

Ease of use 43% 45% 10% 1% 0% 4.3

Price/performance 48% 37% 13% 1% 0% 4.3

Service/support 43% 44% 11% 1% 1% 4.3

Ease of maintenance 42% 41% 16% 2% 0% 4.2

Purchase price 37% 45% 14% 4% 1% 4.1

Table 1: Importance of Attributes When Evaluating Computers, Computer Boards and Peripherals

Vendors and Products

Our findings suggest that, at the plant level, the correlation between technology use

and worker wages is primarily due to the fact that plants with high wage workforces

are more likely to adopt new technologies. (p.255)

We follow Doms, Dunne, and Troske and consider skill as a determinant (not a result) of a new

technology adoption. More recently, Caselli and Coleman (2001) analyze the diffusion of com-

puters among countries. They show that the human capital level in each country is a significant

determinant of computer imports.

We emphasize the importance of a machine’s reliability and ease of use in adoption decision.

Table 1 is taken from Cahners Electronics Group (2000). It is based on a survey of north American

design and development engineers. It shows that the factors such as quality/reliability and ease of

use are more important than price/performance when they evaluate computers, computer boards

and peripherals.

The role of capital goods producers in the process of the technology improvement is empha-

sized by many economic historians. For example, MacLeod (1992) studies mechanical engineering

industry in 19th century Britain and writes “... it was often only through the medium of their

capital-goods suppliers that information about a new technology was passed back and forth among

users” (p.287). In our model, this channel is important since the experience of current users

contributes to the improvement of the technology and benefits future adopters only through the

supplier.
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Recent Literature: The role of the change in the nature of technology during diffusion tends

to be ignored in the recent literature. One important exception is Galor and Tsiddon (1997).

They explicitly analyze the effect of the improvement in accessibility of a technology on wage

inequality, intergenerational earnings mobility, and economic growth. They take the improvement

in accessibility as an exogenous process, and consequently do not analyze the mechanism of the

improvement itself. In contrast, in this paper the process of improving a technology, which is an

essential determinant of the technology diffusion, is modelled endogenously.

There are several important recent papers that attempt to explain diffusion of new technolo-

gies as endogenous process. Jovanovic and MacDonald (1994) analyze innovation and diffusion of

knowledge. Firms try to acquire better knowledge (technologies) by R&D and learning. Diffusion

of new technologies is slow because of informational barriers: it takes time and effort for firms

to learn new technologies. Technologies are disembodied, and there is no role for capital goods

producers. (In fact, there is no capital in their model.) In our model, the capital goods producer

plays a crucial role in both innovation and diffusion. We do not assume any informational barriers,

but lack of skill prevent some people from using a new machine. Chari and Hopenhayn (1991)

construct a vintage human capital model where new and old capital are complementary inputs.

The marginal product of investment depends not only on the vintage of technology but also on the

amount of old capital available for that specific vintage. Even when new technologies are available,

people invest in old technologies if there exist abundant old capital for these technologies. As a

consequence, diffusion of new technologies is slow. We do not assume any complementarity between

old and new capital. In our model, diffusion is slow because new machines are difficult to use. Jo-

vanovic and Lach (1989) study diffusion of a new technology which is embodied in capital goods.

The vintage-specific installation cost and production cost fall over time, due to (external) learning

by doing. This leads to a gradual diffusion of a new technology. Thus, the diffusion is totally due

to the fall of the adoption cost. Their main focus is on the shape of the diffusion curve. In their

model, firms are homogeneous before adoption; in contrast, we emphasize the skill difference among

machine users.

Since the rate of the technological progress is determined endogenously, this paper is also related

to the literature on endogenous technological progress and growth. The most relevant model is

Young (1993). Young constructs an endogenous growth model with innovation and learning by

doing. In his model, a new product is invented by R&D activity. A new product has high production

cost initially, but it falls as learning by doing occurs. His model focuses on cost decline through
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learning in the consumption goods sector. In contrast, in our model the learning occurs in capital

goods sector, and learning induces an improvement of a technology. His model does not exhibit

gradual diffusion: consumers are homogenous and a new product is either purchased by everyone

or not purchased at all.

In our model, machines become more and more accessible by learning and R&D investment.

For learning, we consider a specific mechanism: learning by using. A statistical model is employed

to derive a learning function (Lemma 1). Jovanovic and Nyarko (1995) derived a different form of

learning function based on Bayesian theory. They consider a situation where a worker tries to find

an unknown target value through trial and error. In contrast, we study a setting where the capital

goods producer learns from the experience of users.

Structure of the Paper: In the next section, a model of technology diffusion is constructed.

In Section 3, the dynamics of the model is analyzed through numerical simulations. In Section 4,

the effect of the change in skill distribution is analyzed. In Section 5, some other implications and

possible extensions of the model are discussed. Section 6 concludes.

2 Model

Consider a capital good industry, where machines are sold to end-users. The market is monopolized

by one producer. For simplicity, it is assumed that the monopoly lasts forever and there is no entry

into the machine production.

A machine has two dimensions of characteristics: performance and quality. Performance is

the measure of the benefit that one can obtain from using the machine. Machines with higher

performance are, for example, more efficient, more powerful, faster, and so on. Quality corresponds

to the characteristics such as likeliness to break down, ease of use, frequency of maintenance, and

so on. Higher quality machines are more accessible and easier to adopt. In the model, quality

is represented by the error-free rate: if a machine contains many errors, it is called a low-quality

machine. Later, we impose an assumption that a low-quality machine can be operated only by

high-skilled users. As the quality gets better, lower-skilled users become able to adopt it. In this

sense, quality substitutes for the skill of users.6

6Quality improvement in our model can be interpreted as a “skill-replacing” technological progress. For discussions

that the technological advances were predominantly skill-replacing in the nineteenth century, see Acemoglu (2002)

and Goldin and Katz (1998).
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Performance is denoted by bi ∈ R++, where i is the index of the generation of the technology.
When the generation-i technology is born, the value of bi is determined. bi does not change over

the life cycle of technology i. It is always the case that bi ≥ bi−1 for all i. Quality is represented by

the error ratio, θi ∈ [0, 1]. It represents the amount of “bugs” in a generation-i machine. Smaller
θi implies higher quality. θi is improved over time as technology i matures. (Thus, θi is inversely

related to the quality. We can view (1 − θi) as the actual measure of the quality.) It is possible

that θi−1 < θi (an older technology has higher quality), especially when i is just introduced.7

Thus, there is a possibility of a trade-off between performance and quality. In equilibrium, skilled

users choose to adopt a higher-performance technology despite its low quality, while unskilled users

remain using a lower-performance technology because of its high quality.

2.1 Machine Users

A user of a capital good (machine) is defined as a worker-firm match. Each worker has an exoge-

nously given skill level s. This is going to be a key factor in the technology adoption decision. The

machine user produces a consumption good. The only input for the consumption good production

is a machine (and its operator). The machine depreciates completely in one period. Let bi be the

amount of surplus generated by hiring one generation-i machine.

Imagine that, when introduced, a machine contains “bugs” when performing some of its tasks.

Let θi be the ratio of the tasks that contain bugs in a generation-i machine. The error rate, θi,

declines over time as bugs are corrected. This process is called a quality improvement. Assume that

high-skilled users are more tolerant of the errors. Low-skilled users and high-skilled users are hit

by an error with the same probability, but high-skilled users can deal with the bugs better. They

are able to solve the technical problems and fix the bugs more easily.8 The profit of a user from

7Mansfield (1968) states: “Learning takes place among the producers of innovation, as well as the users. Early

versions of an innovation often have serious technological problems, and it takes time to work out these bugs. During

the early stages of the diffusion process, the improvements in the new process or product may be almost as important

as the new idea itself” (pp.112—113).
8Anderson and Davidson (1940) describe: “In the first stages of such mechanization when machines are somewhat

crude, their operation requires the watchful care of skilled machinists. Likewise, to make those improvements which

increase machine efficiency, competent machinists are employed to observe the machines in operation under practical

working conditions. But, as machines increase in importance, they must be further improved in efficiency so as to

require little attention and a minimum number of stoppages for repairs or overhauling. This increasing efficiency of

the machine itself tends, in the long run, to eliminate much of the work of that large corps of machinists which was

required when machines were first installed to displace hand workers” (p.228. As quoted by Goldin and Katz 1998).
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using technology i (i = 0, 1, 2, ...) is assumed to be

πi(s, bi, θi) = bi − gi(s, θi), (1)

where gi(s, θi) represents the cost of handling errors. The function gi(s, θi) is decreasing in s and

increasing in θi. We consider an extreme case: assume that gi(s, θi) > bi if s < mθi and gi(s, θi) = 0

otherwise, where m > 0 is a constant parameter. Then πi(s, bi, θi) ≥ 0 if and only if s ≥ mθi. A

user can earn positive profit if and only if he possesses large enough skill level relative to θi. Thus

the potential demand for a machine with technology i and error rate θi, when it is priced at pi, is9

Di(pi, θi) =

(
0 if pi > bi,

N [1− F (mθi)] if pi ≤ bi,
(2)

where F (·) is the distribution function of skill. Di(pi, θi) is called potential demand, since all

technologies are subject to the competition with other technologies. Thus, actual demand in

equilibrium can be smaller than Di(pi, θi).

One advantage of this formulation is that we can conceptually distinguish between the quality

improvement of the existing technology (a fall in θi) and the arrival of a new technology (an increase

in bi) in a simple fashion. The current demand specification contrasts them in an extreme way: the

quality improvement expands the demand (shifts the demand curve rightward), while an innovation

that improves performance increases the reservation price (shifts the demand curve upward). See

Figure 2. It also allows for the effect of a quality improvement in technology to be separated from

the effect of a decline in machine production cost.10 In the current model, the production cost does

not affect demand as long as the marginal cost is lower than bi.

2.2 Machine Producer

2.2.1 Production

The monopolist can produce the current ith-generation technology and the past (i− 1)th one. For
simplicity, the production cost of the machine is set to zero.

9Alternatively, this form of demand can be interpreted as reflecting a skill requirement for the use of a machine

with technology i (as θi gets smaller, the machine becomes easier to use).
10As discussed before, the implications of machine production cost changes are already analyzed in the existing

literature (see, for example, Stoneman and Ireland 1984 and Jovanovic and Lach 1989).
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Figure 2: Potential Demand

2.2.2 Innovation

He can always begin producing newer (i + 1)th-generation machines, which provide a higher per-

formance, bi+1. We call this switch innovation. Upon innovation, two things happen:

1. The monopolist has to abandon the technologies (i − 1) and older. He is able to maintain
only two production lines, i and (i+ 1), at the same time.

2. The (i+ 1)th-generation technology starts from the quality of

θi+1 = θi + c(bi+1/bi),

where c(·) : [1,∞) → R+ is increasing and continuous. Quality is lost by upgrading, and
the amount of the lost quality is larger when the producer introduces the higher performance

technology.11

11A more general specification is

θi+1 = ν · θi + c(bi+1/bi),

where ν ∈ [0, 1]. When ν < 1, there is an incomplete transfer of quality. It turns out that, in the numerical analysis,

the qualitative nature of the model is not altered by the value of ν.
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The first assumption reflects the capacity constraint in production. It is easy to extend two lines to

more lines, without changing the qualitative nature of the model.12 It ensures that, in equilibrium,

there exist (at most) two kinds of active users: the ones who operate the ith-generation technology

and the ones who employ the (i− 1)th-generation technology.
The second assumption bears some similarity to the vintage capital literature (e.g. Zeckhauser

1968 and Parente 1994). A large bi+1/bi implies that the nature of technology i+1 is very different

from technology i, and the knowledge that the machine producer has accumulated for technology

i cannot be applied to technology i+ 1. It introduces a trade-off in the choice of innovation. Even

though higher bi+1 can give a higher unit profit to the monopolist, it increases θi+1 so that the

demand for the (i+1)th-generation technology becomes smaller. The value of θi+1 is restricted to

be less than one. From θi + c(bi+1/bi) ≤ 1, it follows that bi+1 ≤ bic
−1(1− θi).

2.3 Quality Improvement

The technology can be improved over time by learning and R&D investment. Both activities by

the machine producer contribute to the decline in θ.

2.3.1 Quality Improvement-1: Learning by Using

First, consider the process of learning. Here, a specific form of learning, learning by using, is

considered. The capital goods producer learns from the experience of users.13 For example, users

may find bugs in the machine, which leads to improvement in machine quality. Users may be able

to suggest new applications of the machine. Rosenberg (1982) stated:

... in an economy with complex new technologies, there are essential aspects of learning

that are a function not of the experience involved in producing the product but of its

utilization by the final user. ... Perhaps in most general terms, the performance char-

acteristics of a durable capital good often cannot be understood until after prolonged

experience with it. (p.122)

12Alternatively, we can introduce a cost of expanding product lines. Then, capacity is determined endogenously.
13 In the literature of economic development, the effect called “learning by exporting” is often discussed to be

important source of technology improvement. Grossman and Helpman (1991) notes that “When local goods are

exported the foreign purchasing agents may suggest ways to improve the manufacturing process ...” (p.166). It is

often argued that “learning by exporting” has been important in Korea’s economic development. See Rhee, Ross-

Larson, and Pursell (1984, Chapter 4).
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In what follows, we will employ a statistical model to formulate the idea of learning by using.14

Learning Process Learning occurs on the side of the machine producer.15 As discussed above,

learning by machine producers is emphasized in many studies in economic history. However, this

aspect has not been formulated in theoretical literature.

Machine producers learn from the users of machines. Each machine can be used for K tasks.

There are Z users who operate machines in each period. Each user employs his machine to carry

out one of these tasks, chosen at random. The operation of J ≤ K tasks are subject to “bugs”.

Thus, a user is hit by an error (finds an error) with probability J/K. For the ease of exposition,

suppose that the users operate machines in turn. If the first user finds an error, it is reported to

the producer and fixed instantly, and the probability that the second user finds an error drops to

(J − 1)/K. If the first user does not find an error, the probability that the second user finds an
error remains J/K. Then the third user operates the machine, and so on.

The following lemma summarizes the learning process.

Lemma 1 When J, K, and Z are large, the expected ratio of remaining errors in a machine, θ0,

follows the law of motion

θ0 = θ · e−z, (3)

where θ = J/K is the initial error ratio and z = Z/K.
14Conceptually, it is important to distinguish between learning by using and conventional learning by doing (Arrow

1962). We consider learning by using as a process of quality improvement through the utilization of the capital good.

In contrast, learning by doing is usually formulated as the decline of production cost induced by the cumulative

experience of production. In many cases the cumulative utilization and the cumulative production of a capital good

move in the same direction (in our model they coincide), and it is difficult to formally differentiate between them

(unless the capital goods are under-utilized or the capital-labor ratio changes over time). However, the difference

between quality improvement and cost decline is evident in our specification. It will become clear that in equilibrium,

quality improvement (decline of θi) enhances diffusion, while cost decline has no impact on diffusion (as long as the

cost of production is lower than bi).
15This assumption provides an interesting channel of spillovers. It is possible that skilled and unskilled workers in

our model are producing different consumer products (for example, consider the case that the new capital good is a

computer). The experience of a skilled worker may generate a positive spillover for an unskilled worker, if it makes

it easier for the unskilled worker to adopt a new technology. Then, this can be a channel of inter-industry learning

spillover. Stokey (1988) develops a growth model with inter-industry spillovers and writes “... it is important that

learning display spillovers among goods. Otherwise, learning simply reinforces existing patterns of production ...”.

We do not explicitly model the production structure of the goods produced by the users, but an extension along the

lines of Stokey (1988) would give a similar implication.
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Proof. See Appendix.

Notice that z measures the number of users relative to the total number of parts. Although the

above process of error finding is stochastic, for simplicity we posit a deterministic process for

learning. Following the law of motion (3), we postulate a learning function16

θ0i = θi · e−µYi , (4)

where µ > 0 is the parameter of learning efficiency and Yi is the flow machine use of the generation-i

technology.

2.3.2 Quality Improvement-2: R&D

It is assumed that the quality of a technology can also be improved through R&D investment. That

is, the producer can make its product more user-friendly by “debugging” it. To do so requires a

cost.

We assume that R&D cost is a function of the generation of technology and the amount of

quality improvement. Specifically, it is assumed to take a form of bi ·R(x), where x is the amount
of quality improvement. The cost is proportional to the performance. The function R(·) relates the
amount of quality improvement to the cost, and satisfies that R(·) ≥ 0, R0(·) ≥ 0, and R(0) = 0.

16The learning process (4) has two attractive features. First, using one machine for two periods leads to the same

degree of improvement as using two machines for one period. This transpires since (θi · e−µ) · e−µ = θi · e−2µ. This
characteristic is shared by other learning functions listed below. Second, our learning process is comparable to the

learning functions used in the literature. Denote the quality of a machine as qi ≡ 1− θi. In terms of qi, (4) can be

rewritten as

q0i − qi = (1− e−µYi) · (1− qi).

When Yi is exogenous and constant over time, (1−e−µYi) can be regarded as a constant parameter. This formulation

corresponds to the learning function in Parente (1994). Arrow’s (1962) specification amounts to

qi = α1Λ
α2
i , α1, α2 > 0,

where Λi denotes the cumulative use of the machine. Jovanovic and Nyarko (1995) suggests the following learning

process

qi = 1− 1

1 + 2Λi
, 1, 2 > 0.

Our formulation can be rewritten as

qi = 1− θ̄i · exp(−µΛi),
where θ̄i is the initial value of θi. Therefore, our formulation can be viewed as an alternative functional form for

learning process.
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With the current demand structure, the monopolist machine producer cannot sell the generation-

i machine to more than N [1 − F (mθi)] users, and this limits the amount of quality improvement

which comes from learning. Thus, the process of learning is based on the current value of θi, and it

can be myopic. In contrast, R&D investment is driven by the future profit from demand expansion.

In other words, R&D investment is based on the future expectation, while learning is based on the

history of past quality improvement. The difference will be more evident in Section 4, where we

investigate the implication of the skill distribution on the dynamics of the industry.

2.4 Equilibrium

Clearly, given the structure of demand, it is optimal for the monopolist to price pi = bi so that he

can capture all the surplus. With this pricing, he still faces the choice of how many machines of

each generation to sell.

Bellman’s Equation: Denote the monopolist’s value function by V (bi−1, bi, θi−1, θi). The state

variables are the performance and the quality of the machines that he is currently producing. The

Bellman’s equation is

V (bi−1, bi, θi−1, θi)

= max
θ0i−1,θ

0
i,Yi

©
Πi(bi, θi, θ

0
i, Yi) +Πi−1(bi−1, θi−1, θ

0
i−1, Yi) + βW (bi−1, bi, θ0i−1, θ

0
i)
ª
,

where

W (bi−1, bi, θ0i−1, θ
0
i)

= max

*
V (bi−1, bi, θ0i−1, θ

0
i)| {z }

do not innovate

,max
bi+1

©
V (bi, bi+1, θ

0
i, θ

0
i + c(bi+1/bi))

ª
| {z }

innovate

+
.

The flow net profit of the monopolist from the ith-generation machines, Πi(bi, θi, θ0i, Yi), is

Πi(bi, θi, θ
0
i, Yi) = bi · Yi| {z }

profit

− bi ·R(θie−µYi − θ0i)| {z }
R&D cost

.

The flow sales amount accruing from ith-generation machines, Yi, is chosen optimally subject to

Yi ∈ [0, N{1− F (mθi)}],
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where F (·) is the cumulative distribution function of the skill distribution.
The flow net profit from the (i− 1)th-generation machines, Πi−1(bi−1, θi−1, θ0i−1, Yi), is

Πi−1(bi−1, θi−1, θ0i−1, Yi) = bi−1 · Yi−1| {z }
profit

− bi−1 ·R(θi−1e−µYi−1 − θ0i−1)| {z }
R&D cost

,

where Yi−1 = max{0, N [1 − F (mθi−1)] − Yi}. This transpires since the potential demand for the
(i− 1)th-generation machines is 1−F (mθi−1) and it is always subject to the competition from the

ith-generation machines.

Stationary Formulation: Let the degree of performance enhancement be represented by γi ≡
bi/bi−1. Then, from the homogeneity of the return functionsΠi andΠi−1, it follows that V (bi−1, bi, θi−1, θi) =

bi−1v(γi, θi−1, θi) and W (bi−1, bi, θ0i−1, θ
0
i) = bi−1w(γi, θ

0
i−1, θ

0
i). Let the subscripts h and l denote

the higher- and the lower-technology machines that the firm is currently producing. The stationary

formulation is:

v(γ, θl, θh) = max
θ0h,θ

0
l,Yh

©
Ph(γ, θh, θ

0
h, Yh) + Pl(θl, θ

0
l, Yh) + βw(γ, θ0l, θ

0
h)
ª
, (P1)

w(γ, θ0l, θ
0
h) = max

*
v(γ, θ0l, θ

0
h)| {z }

do not innovate

,max
γ0

©
γv(γ0, θ0h, θ

0
h + c(γ0))

ª
| {z }

innovate

+
, (5)

where

Ph(γ, θh, θ
0
h, Yh) = γ · Yh| {z }

profit

− γ ·R(θhe−µYh − θ0h)| {z }
R&D cost

,

Yh ∈ [0, N{1− F (mθh)}],
and

Pl(θl, θ
0
l, Yh) = max{0, N [1− F (mθl)]− Yh}| {z }

profit

−R(θle
−µmax{0,N [1−F (mθl)]−Yh} − θ0l)| {z }

R&D cost

.

To ensure the existence of the value functions, an additional constraint is imposed: γ ≤ γ̄, where

1 < γ̄ < β−1.

The following proposition obtains:

Proposition 2 Suppose that F (·) is continuous. Then, a unique continuous function v which

satisfies the Bellman’s equation exists. v is weakly increasing in the first term, and weakly decreasing

in the second and third terms.
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δ σ µ m N ξ β κ ζ

1 1 0.05 80 1 1000 0.8 0.018 3.5

Table 2: Parameter Values

Proof. See Appendix.

This result is intuitive: The value function is increasing in the relative performance of the higher

technology and the quality levels of both technologies.

3 The Dynamics — Numerical Experiment

It is difficult to establish the properties of the model analytically. In this section, the dynamics

of the model are analyzed through numerical simulations. For the skill distribution, a lognormal

distribution is used:

ln s ∼ N(δ, σ2).

δ is the scale parameter and σ is the shape parameter of the distribution.

The R&D cost function is specified as follows:

R(θe−µY − θ0) = ξ · (θe−µY − θ0)2,

where ξ > 0 is a parameter. R&D cost is zero when θ0 = θe−µY ; in that case only “learning by

using” takes place. For the loss of quality with innovation, let

c(γ) = κ+ ζ(γ − 1)2,

where κ ≥ 0 and ζ > 0 are parameters.

Table 2 shows the values of the parameter used for the experiment. Standard value function

iteration method is used for the computation. A simple grid search method is utilized (since the

problem is not necessarily concave, a method which involves differentiation is hard to use) and

linear interpolation is employed when necessary.17 Initial values are given as θ1 = 0.01, θ2 = 0.05,

and γ = 1.05.

It turns out that in the experiments below, it is optimal for the monopolist to set Yh = 1 −
F (mθh), that is, to sell the higher-technology machine as many users as possible at any time. This is

17 Interpolation is needed to compute the value along the “innovate” branch. Better interpolation methods, e.g.

cubic interpolations, do not alter the result.
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Figure 3: Diffusion Curves

intuitive for three reasons. First, since ∂Ph/∂Yh = γ and ∂Pl/∂Yl = 1, higher-technology machines

give higher (static) marginal profit to the producer. Second, since ∂
¡
θe−µY

¢
/∂Y = −µθe−µY ,

keeping Y constant, the contribution of Y to learning is larger when θ is larger. Since it is always

the case that θh ≥ θl, learning efficiency is higher in the production line of the higher-technology

machine.18 Third, the value function when innovation occurs, maxγ0
©
γv(γ0, θ0h, θ

0
h + c(γ0))

ª
, de-

pends on θ0h, but not θ
0
l. This gives an additional incentive to make θh smaller.

The next two sections show the dynamics of technology diffusion and adoption in the model.

First, we focus on the process of diffusion itself. Second, adoption timings of the users with different

skills are described.

3.1 Time Series for Technology Diffusion and Innovation

Figure 3 shows the time series for technology diffusion. The four curves represent the potential

demand Di(pi, θi) for the four technologies. The price pi is constant at bi (see Section 2.4), but

18 It is also true that µθe−µY is decreasing in Y , so this intuition goes the opposite direction when Yh ≥ Yl.

However, µθe−µY is bounded below by µθ for the change in Y , and thus learning efficiency is higher in high-tech if

µθhe
−µYh ≥ µθl holds. This appears to hold almost always, since θl is always very close to zero.
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Figure 4: Diffusion Curves: Another Look

Di(pi, θi) increases over time since θi declines. The diffusion curves typically exhibit an S-shape,

which is observed in many empirical literature of technology diffusion.19 Figure 4 provides another

look at the diffusion curves. It shows what fraction of the users use each technology in each period.

Since high-skilled users adopt a new technology first, we can consider that the highest-skilled user

is at the bottom and the lowest-skilled user is at the top of the figure. By reading the figure

horizontally, we can see how a user at each percentile of skill distribution changes his technology

over time. Figure 5 shows the dynamics of the error ratio, θ. They fall almost at a constant speed.

The S-diffusion curves then follow from the shape of the cumulative distribution function for the

lognormal skill distribution.

An innovation occurs when θh becomes nearly zero, that is, when the best-practice machine

has diffused to nearly everyone. This transpires since the cost of innovation is lower when θh is

small. The cost of bringing the (i+1)th generation technology on line is twofold. First, the lower-

technology machine switches from the (i − 1)th generation to ith generation. This implies that

the quality of the lower technology changes from θi−1 to θi. Usually this entails a deterioration in

quality, since most of the time θi−1 ≤ θi holds. If θi (which is θh before the innovation) is nearly

19For a recent survey of the models which exhibit S-diffusion curve, see Geroski (2000).
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zero, this cost is also very small. Second, the error ratio of the higher-technology machine increases

by c(γ). That is, θi+1 = θi + c(γ). This deterioration in quality entails a loss of demand. The cost

of this change (the loss of demand) depends on how many users are in between the skill levels mθi

and m[θi + c(γ)]. Since our skill distribution is lognormal, f(mθi) is increasing in θi when θi is

small enough. Consequently, the loss of demand,
Rm[θi+c(γ)]
mθi

f(x)dx, is small when θi is small.

The fact that innovation occurs when θh ≈ 0 implies that, if θh approaches to zero quickly

(which results in faster diffusion), the speed of innovation is also fast. There is a connection

between diffusion and the timing of innovation.

3.2 Heterogeneity in Technology Adoption

Figure 6 shows the technology level of machines that the users of each skill level have adopted.20

The skill levels are s =1, 2, 3, and 4 in this example. Higher-skilled users adopt the new technology

earlier. In period 5, for example, the users with skill levels 3 and 4 use the second technology, while

the users with skill levels 1 and 2 use the first technology, which has less performance. In period

6, the users with skill level 2 adopt the second technology as its quality improves, while the users

20The minimum is set to 1 in the figure to clarify the comparison.
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with skill level 1 keeps using the first technology.

The difference in adoption timing and the difference in technology level are both determined by

the machine producer’s decision about θ and γ. The values of θ and γ are determined endogenously,

and they are affected by the distribution of skills. Through this channel, the other people’s skill

levels affect a user’s own technology level.

One of the criticisms that Jovanovic (1998) made on vintage capital models, such as Arrow

(1962b) and Parente (1994), is that they exhibit unrealistic leapfrogging: in these models, a “pro-

ductivity miracle” and a “productivity disaster” repeat endlessly. The data do not show this type

of leapfrogging at any level of aggregation. Our model passes Jovanovic’s critique; there is no

turnover in productivity distribution among users. To see this, let’s look at Figure 6 again. The

productivity of each user is represented by the height of the graph (the level of adopted technol-

ogy). A low-skilled user adopts a new technology some time after a high-skilled user’s adoption,

and a “productivity catch-up” occurs. However, the low-skilled user’s productivity never exceeds

the high-skilled user’s productivity (therefore, a leapfrogging never happens), since a high-skilled

user always adopts a high-performance technology earlier.
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4 The Effect of Skill Distribution

In this section, the impact of the shape of skill distribution on the dynamics is analyzed. An

implication of the model is that the shape of the skill distribution can have a nontrivial effect on

the dynamics of technology development and diffusion. A user’s dynamic path of performance is

not only governed by his own skill level, but also by the economywide distribution of skills.

4.1 Simple Analytical Examples

First, the basic mechanism is illustrated by a series of simple examples. Only one important element

is contained in each model so that analytical procedures can be employed.

4.1.1 Learning and Diffusion

The first model analyzes the process of learning. Assume that there exists only one technology:

call it technology 1. Technology 1 arrives at time 0. The next generation technology never arrives.

Let the density function f(x) ≡ F 0(x) for the skill distribution be uniform:

f(x) =

(
1/σ for x ∈ [δ − σ/2, δ + σ/2] ,

0 otherwise,
(6)

where δ ∈ (0, 1) and σ ∈ (0, 2δ). The mean of the distribution is δ, and the variance is σ2/12.
δ shifts the distribution in a parallel fashion, while σ determines the shape of the distribution.

Denote the error ratio of technology 1 by θ and its performance by b. Technology 1 is owned by

the capital goods producer, who learns from the users. The quality improvement of technology 1

(decline of θ) follows

θ0 = θ · e−µY , (7)

where Y is the total use of technology 1. The optimal policy for the monopolist is to sell Y =

N [1− F (mθ)] with the price b. Thus (7) can be rewritten as

θ0 = θ · exp{−µ ·N [1− F (mθ)]}. (8)

Suppose that technology 1 starts from θ̄. It is assumed that mθ̄ < δ + σ/2 (otherwise, the

quality improvement does not start). The following proposition characterizes the relation between

dispersion parameter σ and the speed of quality improvement.
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Proposition 3 Consider two economies A and B with skill distributions FA and FB. FA and FB

have a common δ and two different σ’s, σA and σB, where σA > σB. For given θ, the speed of

quality improvement, θ/θ0, is larger in economy A if and only if θ > δ/m.

Proof. See Appendix.

Thus, a more “unequal” economy A experiences a relatively faster diffusion initially (when θ is

large), while economy B experiences a faster diffusion later on (when θ is small). Figure 7 shows

the equilibrium graphically. When the error ratio is θ, the sales of each economy is proportional

to the shaded area. The area is larger for A if and only if the cutoff skill level mθ is larger than δ.

Since the amount of learning is a increasing function of the sales, the proposition follows.21

21From (8), the following result is also straightforward: if the skill distribution of economy X first-order stochas-

tically dominates the skill distribution of economy Y , the speed of quality improvement is faster in economy X for

given θ.
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4.1.2 R&D and Diffusion

Here it is assumed that the machine producer can improve quality by R&D investment. Again,

we consider the diffusion of a single technology, with the same notation as the previous section.

The skill distribution is given by (6). Machine production is monopolized perpetually. There is no

learning, but the monopolist can improve the quality of machines by R&D investment. He chooses

the new quality (1− θ0) of the technology (where θ0 ≤ θ) subject to the R&D cost function

R(θ − θ0) = ξ · (θ − θ0)2.

Clearly the optimal sales policy for the monopolist is to sell N [1 − F (mθ)] with the price b,

which yields the profit of N [1−F (mθ)] · b. Then the only decision for him is the choice of θ0. Since

it is not beneficial to set θ < θ ≡ δ − σ/2, it is innocuous to impose a constraint θ0 ≥ θ. Suppose

that the initial value of θ̄ satisfies θ̄ ≤ δ + σ/2.

The monopolist’s Bellman’s equation is

v(θ) = max
θ≤θ0≤θ

{N [1− F (mθ)] · b− ξ(θ − θ0)2 + βv(θ0)}.

The Euler equation is

β

·
Nbm

σ
+ 2ξ(θ0 − θ00)

¸
| {z }
marginal benefit of reducing θ0

− 2ξ(θ − θ0)| {z }
marginal cost

− λ = 0, (9)

where λ is the Lagrange multiplier associated with the constraint θ0 ≥ θ. With the initial condition θ̄

and the transversality condition limt→∞ βtλt = 0, the unique solution of this second-order difference

equation is (θt refers to the value of θ at period t):

θt =

(
θ̄ − φt if t ≤ (θ̄ − θ)/φ,

θ otherwise,

where

φ ≡ βNbm

2(1− β)σξ

governs the speed of quality improvement. The speed of quality improvement is higher when b,

m, N , and 1/σ are larger, since these raise the marginal benefit from quality improvement. The

parameter β affects since the benefit of R&D activity is an “investment”. A rise in the R&D cost
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parameter, ξ, slows the diffusion. A notable result is that the speed of quality improvement, φ, is

decreasing in σ. In an “unequal” economy, the speed of quality improvement due to R&D is slower.

Figure 8 shows the equilibrium. The area of shaded region is proportional to the direct benefit

from R&D, which is the first term in the square bracket in (9). This area represents the amount

of (additional) demand that can be captured by the quality improvement. The area is larger if

the density of the skill distribution is “thick”: in the case of uniform distribution, the area is

proportional to 1/σ. Thus, the incentive for quality improvement is larger when σ is smaller.

4.1.3 Size of Innovation

The third model focuses on the decision to innovate. Assume that the skill distribution is given by

(6), but δ − σ/2 ≤ 0. Here, quality improvement is exogenous: θt = ρt · θ̄, where ρ ∈ (0, 1). Let
mθ̄ ≤ δ + σ/2 so that the demand for the machines is

Dt = N ·
³
δ +

σ

2
−mθt

´
· 1
σ
.

The monopolist can choose the level of the machine performance, γ, when he innovates. It is

assumed that if he chooses a higher γ, then initial quality is lower. Thus,

θ̄ = c(γ), where c0(·) > 0.

This imposes a trade-off: if the monopolist chooses a revolutionarily high-performance technology,

he can sell it at a high price (price equals γ) but demand is going to be low because of the low

quality. A low-performance technology would sell to many, but the profit per machine is small.

The monopolist’s problem is

max
γ

∞X
t=0

βt · γ ·N ·
h
δ +

σ

2
−m · ρt · c(γ)

i
· 1
σ
.

The objective function can be arranged to reduce this problem to:

max
γ

γN

σ

·
1

1− β

³
δ +

σ

2

´
− m · c(γ)
1− βρ

¸
.

The first order condition is

N

σ

·
1

1− β

³
δ +

σ

2

´
− m · c(γ)
1− βρ

¸
| {z }
marginal benefit from increasing γ

− γN

σ

m · c0(γ)
1− βρ| {z }

marginal cost

= 0. (10)
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The next proposition follows.22

Proposition 4 Optimal performance γ is increasing in σ.

Proof. See Appendix.

Since γ is increasing in σ, θ̄ is also increasing in σ. In an “unequal” economy, innovation is more

drastic, and the initial quality of machines is low when introduced.

4.2 Numerical Simulation

Next, the full model is analyzed numerically. The main focus is the effect of the change of the

shape parameter σ.

4.2.1 Diffusion and the Distribution of Skills

Figure 9 compares the diffusion of a technology with different values for σ. The other parameter

values are the same as in Table 1. Three cases are displayed: σ = 0.8, σ = 1.0, and σ = 1.2. It can

be seen that the diffusion is faster with a small σ. The diffusion curves start from almost the same

level of adoption (about 40%), but it takes 5 periods when σ = 0.8, 6 periods when σ = 1.0, and

almost 8 periods when σ = 1.2 to diffuse to 70% of users.

Two effects are working. First, as we saw in Section 4.1.2, the incentive for R&D is larger when

the skill distribution is less dispersed. R&D investment in first 6 periods23 is 0.085 for σ = 0.8,

0.081 for σ = 1.0, and 0.068 for σ = 1.2. This leads to faster diffusion for smaller σ. Second, as in

Section 4.1.1, learning is faster in the beginning the larger σ is, but it favors the smaller σ later.

This second effect can be seen in the figure from the fact that in the first few periods, the speed

of diffusion is almost the same for all the distributions. The combination of these two yields the
22For a general skill distribution, the first order condition becomes

N
∞X
t=0

βtf [m · ρt · c(γ)]
½

1

H[m · ρt · c(γ)] −m · ρt · c0(γ) · γ
¾
= 0,

where H(x) = f(x)/[1−F (x)] is the hazard function. Thus, the optimal choice of γ is closely related to the property

of H(x). An important fact here is that H(x) is decreasing in σ for the uniform distribution employed in this section.

This property holds for the lognormal distribution used in the numerical experiments, when x is not too small (see

Hastings 1975, p.87).
23The R&D investment in later periods do not contribute much to the diffusion of current technology. (It is rather

for the next upcoming technology, since the next technology starts from the quality level θh + c(γ).) So we do not

take it into account here.
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Figure 9: Diffusion Curves

overall faster diffusion for smaller σ. This is consistent with the empirical works cited in Oi (1997):

a homogenous society exhibits faster diffusion.

4.2.2 Innovation and Growth

The innovation decision is also affected by the shape parameter σ. There are two decisions to make:

when to innovate and how much to innovate. Figures 10 and 11 show that there is a systematic

relationship between σ and the innovation decision. As σ increases, the degree of performance

enhancement, γ, becomes larger. This is consistent with the analytical result in Section 4.1.3. It

reflects the fact that when σ is large, the marginal loss from larger θ (low quality) is smaller (relative

to the marginal gain). The periods between innovations become longer as σ gets larger. As is seen

in Section 3.1, innovation occurs when θh ≈ 0. In an economy with large σ, it takes time for θh to
become near zero.24

In a stationary equilibrium, the rate of growth in machine performance for each user is dictated

by γ and the interval between innovation (denote it by T ). In fact, the average rate of growth is

24This is due to two effects. First, a larger θh (due to a larger γ) in each innovation implies that it takes time to

make θh small. Second, as is shown in Section 4.2.1, the diffusion is slower when σ is larger.
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common among the active users and given by g = (log γ)/T . Figure 12 plots the change in average

growth rate g as σ changes from 0.4 to 1.4. There is a non-monotonicity, as the effects of γ and

T offset each other. When σ is very low, the innovations are too incremental. On the other hand,

when σ is very high, even though each innovations are revolutionary, the time intervals between

innovations are too long.

5 Other Implications

5.1 General Equilibrium

Our analysis has been in a partial equilibrium framework. Extending it to a general equilibrium

model would complicate the analysis, but it maintains the interesting features.

To illustrate, consider a simpler model where there are only two skill levels. The skilled workers

(H) can engage in R&D (for quality improvement) in the capital goods sector (HR) or work as

machine users (HU ) in the consumption goods sector. All the unskilled workers (L) become machine
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users (LU ). The resource constraint is

HR +HU = H, (11)

and

LU = L. (12)

Suppose that the supply of unskilled labor (L) increased suddenly. From (12) LU increases, so

keeping HU constant, the relative amount of unskilled users of machine increases. Thus it would

be more beneficial for capital good producers to improve the quality of machines. This increases

HR, and from (11), it reduces HU . Then, the relative amount of unskilled users increases further.

The general equilibrium effect makes quality improvement even faster.

Another interesting implication would arise when we consider multiple industries. Industries

may vary in their timing of innovation. Since skill is rewarded the most in those industries which

have just experienced innovation, skilled workers tend to be allocated to those industries and would

move out of them as the technologies mature. It adds another dynamic aspect to the model. If the

size of innovation differs among the industries, the most skilled workers would move to the industry

whose innovation is the most revolutionary. Thus, the skill distribution of potential users in an

industry is affected by the behavior of the other industries.

5.2 Growth and World Income Distribution

Our model applied to the world economy can shed a light on world growth and the evolution of

world income distribution. As is described in Section 3.2, there can be a large difference in the

timing of new technology adoption due to differences in skills. It is well known that there is large

difference in the educational attainment between the advanced countries (the North) and the less

developed countries (the LDCs). Even if the LDCs have an access to new technologies by importing

new machines, they may not adopt them because of the lack of skills. LDCs adopt new technologies

only after they mature and become easier to be handled. The difference in skills can be a source

of heterogenous technology adoption, and in turn, large TFP differences.25

25Acemoglu and Zilibotti (2001) also attempts to explain the differences in TFP in the world where LDCs have an

access to the same set of technologies as the North. They argue that the technologies tend to be inappropriate for

the LDCs, since they are targeted at the use in the skill-abundant North and tend to be complement to skills. In our

model, the nature of technology (skill-complementarity) changes over time. In the Acemoglu and Zilibotti model, a

machine that is skill-complementary can never be successfully adopted by unskilled workers, while in our model an

adoption is possible if a sufficient amount of quality improvement occurs.
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One interesting aspect of our model is that, even if the Northern countries are the only ones who

produce new capital goods and conduct R&D, technological progress and the world growth rate

depend on the skill distribution of the whole world. As we have seen above, diffusion and innovation

are interrelated, and the rate of diffusion affects the incentive for innovation. It is possible that

increases in educational expenditure in the LDCs not only speed up the rate of diffusion but also

drive up the world growth rate.

5.3 Skill Premium

In our model, the demand curve (2) is horizontal. It follows that the monopolist captures all the

surplus and no surplus is left to the users. Then, all users are left with zero surplus, regardless

of their skill levels. This is the result of our simple specification. If gi(s, θi) in (1) is specified

differently, some users will be left with some surplus. For example, let

gi(s, θi) = ψ
θi
s
,

where ψ is a constant parameter. Then a user with skill level s buys the i-generation machine if

bi − ψθi/s− pi ≥ 0, that is, s ≥ ψθi/(bi − pi). The potential demand becomes

Di(pi, θi) = N

·
1− F

µ
ψθi

bi − pi

¶¸
.

This demand curve is downward-sloping. Suppose that the equilibrium price is p∗i . If s > ψθi/(bi−
p∗i ), then bi − ψθi/s − p∗i > 0 and the user obtains a positive surplus from using the machine.

Moreover, the surplus is increasing in s. A user with higher skill level enjoys a larger amount of

surplus. We can interpret this difference in the surplus as skill premium.

Skill premium changes over time. It changes for the users who operate generation-i machines,

as θi and pi changes. The decision of switching to a new technology also affects the skill premium.

The full analysis of the modified model is substantially complicated, and it is beyond the scope of

this paper.

6 Conclusion

This paper has presented a theory of technology diffusion. We started from two assumptions. First,

high level of skills are required to adopt a new technology. Second, the nature of a new technology

changes over time, so that it becomes more and more accessible to less skilled machine users. This
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change is called a quality improvement, and it is carried out by the learning and R&D investment

of the capital good producer.

We considered a specific form of learning: learning by using. A learning function is developed in

Lemma 1, and applied to our model. The dynamics of diffusion show an S-shape. Since the speed

of quality improvement depends on the skill distribution of the economy, the timing of adoption

by each user is also affected by the distribution of skills. In Section 4, we analyzed the relation

between the skill distribution and diffusion.

The machine producer is also allowed to start producing a new generation of machines. It is

called innovation. If he chooses to produce high-performance machines, he has to start from low

quality. Thus the timing and the size of innovation is also influenced by the skill distribution. In our

numerical experiment, larger dispersion of skill delays innovation, and makes the size of innovation

larger.

This framework is capable of addressing many issues. Some directions were discussed in Section

5. Another interesting extension is to endogenize skill formation. In this paper, the skill distribution

is treated as exogenous. In reality, there is a substantial portion of skill that is the result of

intentional investment.26 On the one hand, as discussed in Section 5.3, the return to skill depends

on the dynamics of innovation and diffusion. On the other hand, in Section 4, it has been shown that

skill distribution affects innovation and diffusion. With endogenous skill formation, the three factors

— diffusion, innovation, and skill investment — interact with each other.27 Detailed investigation is

left to future research.

26Schultz (1975) emphasizes the role of education in enhancing the ability of students to perceive new classes of

problems, to clarify such problems, and to learn ways of solving them. See also Welch (1970).
27Redding (1996) constructs a simple endogenous growth model with R&D and human capital investment. New

technologies (as the results of R&D) and human capital are complementary, and he shows that, when there is an

indivisibility in R&D, multiple equilibria can exist.
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Appendix

A Proofs

Proof of Lemma 1:28

Denote the number of the errors not found before nth user by Jn. Jn is a random variable. By

definition, J1 = J . Let the (unconditional) expected probability that nth user finds an error be

πn. Clearly π1 = J/K. It is also clear that πn = E[Jn]/K, where E[·] is an expectation operator.
Let the event An = {nth user finds an error} and Ac

n = {nth user does not find an error}. The
following holds from the law of iterated expectations:

E[Jn] = E[Jn|An−1] · Pr[An−1] +E[Jn|Ac
n−1] · Pr[Ac

n−1]

= E[Jn|An−1] · πn−1 +E[Jn|Ac
n−1] · (1− πn−1)

= (E[Jn|An−1]−E[Jn|Ac
n−1])πn−1 +E[Jn|Ac

n−1].

Clearly the first term is −πn−1 (since one error is found if An−1 happens and no error is found if

Ac
n−1 happens), and the second term is E[Jn−1] (since nothing changes from the past user if the

error is not found). Then, noting πn−1 = E[Jn−1]/K,

E[Jn] = E[Jn−1]
µ
1− 1

K

¶
= J

µ
1− 1

K

¶n−1
. (13)

Consider the situation where J , K, and Z are large. Especially, keep θ = J/K and z = Z/K

constant and let J,K,Z →∞. Then at the limit, the expected ratio of remaining errors goes to

lim
E[JzK ]

K
= lim

J

K

µ
1− 1

K

¶zK−1

= θ · e−z.

Proof of Proposition 2:

Let the right-hand-side of (P1), combined with (5), define a mapping T . Note that Ph and Pl are

28 I thank Shakeeb Khan for helping the development of this lemma.
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bounded and continuous, and the constraint correspondence for θ0h, θ
0
l, Yh, and γ

0 is compact-valued

and continuous. Then from the standard argument, T defines a contraction mapping on a space of

bounded and continuous functions and the existence, uniqueness, and continuity of the fixed point

v follows (Stokey and Lucas with Prescott 1989, henceforth SLP, Theorem 4.6). The discounting

part of Blackwell’s sufficient condition (SLP Theorem 3.3) is ensured by the assumption βγ̄ < 1.

For the increasingness in γ, first note that since Ph and Pl are nonnegative, v is also nonnegative.

Then, if v is increasing in γ, Tv is also increasing in γ, since the domain of the choice variables

are not affected by γ. From the Corollary 1 of Theorem 3.2 in SLP, the fixed point of T is also

increasing in γ.

For the decreasingness in θh and θl, pick (θh1, θl1) and (θh2, θl2) where θh1 ≥ θh2 and θl1 ≥ θl2.

For each γ, let the optimal choice of (θ0h, θ
0
l, Yh, γ

0) under (θh1, θl1, γ) be (θ0∗h , θ
0∗
l , Y

∗
h , γ

0∗). Assume

that v(γ, θh, θl) is decreasing in θh and θl. Then w(γ, θ0h, θ
0
l) is decreasing in θ0h and θ0l. Let

θ̃
0
h ≡ min{θh2e−µY ∗h , θ0∗h } and θ̃

0
l ≡ min{θl2e−µmax{0,1−F (mθl2)−Y ∗h }, θ0∗l }. Then

Ph(γ, θh2, θ̃
0
h, Y

∗
h ) + Pl(θl2, θ̃

0
l, Y

∗
h ) + βw(γ, θ̃

0
l, θ̃

0
h)

≥ Ph(γ, θh1, θ
0∗
h , Y

∗
h ) + Pl(θl1, θ

0∗
l , Y

∗
h ) + βw(γ, θ0∗l , θ

0∗
h )

follows, and (θ̃
0
h, θ̃

0
l, Y

∗
h , γ

0∗) is feasible under (θh2, θl2, γ). Thus Tv(γ, θh2, θl2) ≥ Tv(γ, θh1, θl1).

From the Corollary 1 of Theorem 3.2 in SLP, the fixed point of T is also decreasing in θh and θl.

Proof of Proposition 3:

From (4), θ/θ0 is governed by Yi, which, in this case, is [(δ+ σ/2)−mθ]/σ. It is straightforward

to check that [(δ + σA/2)−mθ]/σA > [(δ + σB/2)−mθ]/σB if and only if θ > δ/m.

Proof of Proposition 4:

Define

Ω(σ) ≡ 1

1− β

³
δ +

σ

2

´
, (14)

and

∆(γ) ≡ m · c(γ)
1− βρ

+ γ
m · c0(γ)
1− βρ

.

Then the first order condition (10) can be rewritten as

Ω(σ)−∆(γ) = 0.
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From the implicit function theorem,
dγ

dσ
=
Ω0(σ)
∆0(γ)

.

From (14), Ω0(σ) > 0. From the second order condition, ∆0(γ) is positive. Thus

dγ

dσ
> 0.
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