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Abstract

This paper studies the role of collateral constraints in transforming small monetary shocks into
large persistent output fluctuations. We do this by introducing money in the heterogeneous-
agent real economy of Kiyotaki and Moore (1997). Money enters in a cash-in-advance constraint
and is injected via open-market operations. We find that a one-time exogenous monetary shock
generates persistent movements in aggregate output, whose amplitude depends on whether or
not debt contracts are contingent. If contingent contracts cannot be written, money shocks can
trigger large output fluctuations. In this case a one time money expansion triggers a boom, while
money contractions generate recessions. In contrast, if contracts are contingent amplification is
not only smaller, but it can generate the reverse results. When the possibility of default and
renegociation is considered, the model can generate asymmetric business cycles with recessions
milder than booms. Finally, one-time shocks monetary shocks generate a highly persistent
dampening cycle rather than a smoothly declining deviation.
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1 Introduction

The extent and mechanism through which monetary policy affects real economic activity over

the business cycles has been a long-standing question in macroeconomics. Different mechanisms

that explain the propagation of money shocks have been proposed. These include sticky prices,

wage contracting, monetary misperceptions, and limited participation.1 Another mechanism that

has received special attention in recent years is credit-market imperfections. In particular, the

agency-cost model of Bernanke and Gertler (1989) has been extended to monetary environments in

order to analyze how fluctuations in borrowers’ net worth can contribute to the amplification and

persistence of exogenous money shocks to the economy- see Fuerst (1995), Bernanke, Gertler and

Gilchrist (1999), and Carlstrom and Fuerst (2000).2

In contrast with these agency-costs models, little attention has been devoted to analyzing mon-

etary economies in which agents face endogenous credit limits determined by the value of collater-

alized assets. The environment we have in mind is one in which lenders cannot force borrowers to

repay their debts unless debts are secured. Using real-economy models, Kiyotaki and Moore (1997),

Kiyotaki (1998) and Kocherlakota (2000) among others, have shown that collateral constraints may

be a powerful mechanism of amplification and persistence of real shocks.3 These papers show that

when debts need to be fully secured by collateral, say land, and the collateral is also an input in

production, then a small shock to the economy can be largely amplified. For instance, a small

negative shock that reduces the net worth of credit-constrained firms forces them to curtail their

investment in land. Land prices and output fall because credit-constrained firms are by nature

more productive in the use of land. The fall in the value of the collateral reduces even more the

1See Cooley and Hansen (1998) for an illustration of the role of monetary shocks in the equilibrium business cycle
theory.

2Credit-market imperfections in these models emerge from asymmetric information and costly-state verification.
In this framework, entrepreneurs borrow to pay the amount of the factor bill that is not covered by their net worth.
Lenders must pay a monitoring cost in order to observe the entrepreneur’s project outcome. If an entrepreneur has
little net worth invested in the project, monitoring costs increase because there is larger divergence between the
interests of the entrepreneur and the lender, and so the premium for external financing is larger. With procyclical
net worth, periods of low output are associated with higher monitoring costs and a higher external finance premium.
This mechanism amplifies the effects of external shocks on production and investment.

3Scheinkman and Weiss (1986) also study the effects of borrowing contraints in the presence of uninsurable risk.
They simulate a lump-sum monetary injection that changes the distribution of assets across agents.
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debt capacity of constrained firms, causing additional falls in investment, land prices, and output.

This paper studies the potential role of collateral constraints as a transmission mechanism of

monetary shocks. We do this by introducing a cash-in-advance constraint for consumption and

investment in the real-economy model of Kiyotaki and Moore (1997). We exploit the simplicity of

this framework to study monetary injections carried out via open-market operations, as opposed

to the less realistic but simpler helicopter drops employed by many monetary models. Due to the

presence of credit-market imperfections, the exact path of the money supply is crucial to determine

the real effects of open-market operations. We choose a parsimonious type of monetary paths which

avoid changes in long-run inflation and fiscal variables. Thus, current monetary expansions need to

be offset by future monetary contractions to avoid changes in inflation or unstable government-bond

paths. As in the real-economy models, the price of the collateral plays a central role in generating

large and persistent effects of exogenous shocks. Moreover, the response of the nominal interest

rate becomes also critical in determining the effects of shocks.4

The main finding of this paper is that a one-time monetary shock can generate persistent

movements in aggregate output, whose amplitude depends on whether or not debt contracts are

contingent. In particular, if contingent contracts cannot be written, then unanticipated money

shocks can trigger large output fluctuations. In this case a one-time unanticipated money expansion

triggers an economic boom, while unanticipated money contractions generate depressions. The

basic mechanism at work is the Fisher effect, according to which unexpected debt-deflation (even

if small) redistributes resources from borrowers to lenders. In our model, due to the existence of

collateral constraints, this Fisher effect can significantly amplify output fluctuations. In contrast,

if contracts are contingent upon the monetary shock, output amplification is not only smaller,

but it is possible for money expansions to generate output downturns. This occurs because even

though contingent contracts prevent any redistribution of resources from lenders to borrowers, the

inflationary tax reduces borrowers’ net worth.

Unanticipated shocks may induce default and renegotiation if expost, the value of debts exceed

4In Kiyotaki and Moore (1997) and Kocherlakota (2000) the equilibrium interest rate is constant.
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the collateral value. The possibility of renegotiation can generate asymmetric business cycles as

default may occur during depressions but not during booms. We find that if contracts are non-

contingent, an unanticipated monetary contraction reduces the value of the collateral and therefore

may induce default and renegotiation, depending on the timing of the shock. Renegotiation benefits

borrowers and prevents a larger output downturn, i.e. renegotiation can substantially reduce output

amplification.

A third property of the model is that monetary shocks trigger highly persistent dampening

cycles rather than smoothly declining deviations. This occurs due to the interplay between cash-

in-advance and collateral constraints. In particular, the full impact of a shock that increases net

worth is delayed in this model because with a binding cash-in-advance constraint, collateral can only

be accumulated gradually. The cyclical dynamics of the model is consistent with the hump-shaped

pattern of output response to monetary shocks that has been observed in the data.5

Finally, the model also generates endogenous limited participation in the government-bonds

market due to the fact that in equilibrium, collateral constraints are binding only for a set of

agents. This implies that only unconstrained agents hold government bonds and can participate in

open-market operations. In this context, the propagation of the money shock is nontrivial because

agents differ not only in whether they are or not credit constrained, but also in their productivity.

The reminder of the paper is organized as follows. Section 2 presents the model and characterizes

the steady state. In Section 3 we discuss the dynamics of the model in response to a monetary

shock. The dynamic structure of the model can be summarized by a nonhomogeneous second-

order difference equation in the distribution of capital across agents. We parameterize the model

and provide a numerical illustration of the dynamics in Section 4. Finally, Section 5 concludes.

Technical details omitted in the text are presented in the Appendix.

5See Bernanke, Gertler and Gilchrist (1999), and Carlstrom and Fuerst (2000).
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2 The model

The model for this heterogeneous-agent economy is an extension of the framework of Kiyotaki and

Moore (1997). We keep the main features of their model and introduce money using a cash-in-

advance (CIA) constraint. There are two goods in this economy: a durable asset (capital), and a

nondurable commodity (output). We focus on the effects of monetary shocks on the distribution of

capital across agents and abstract from capital accumulation. Capital is available in an aggregate

fixed amount K.

There are two types of private agents in this economy. They are both risk neutral, but operate

different technologies and have distinct discount factors. As will become clear below, around the

steady state the more patient agents become lenders, while the impatient agents become borrowers.

To abbreviate, let us refer to the two types of agents as borrowers and lenders. Both types of agents

face a cash-in-advance (CIA) constraint and a collateral constraint. Finally, the government in this

economy has the only role of controlling money supply through open-market operations.

Events in this model occur as follows. Assume that there are two identical members per house-

hold who carry out different activities. Households enter each period with money balances stored

from the previous period. Production takes place overnight. Early in the morning households

observe the money shock and borrowers repay their outstanding debts in output.6 During the day,

all markets are opened simultaneously. The first member of the household uses the money balances

to make transactions in both the capital and goods markets. He can buy or sell capital, and buy

goods. The second member stays at home selling the goods the household has produced, making

transactions in the money market and contracting new debt. Financial transactions must satisfy a

standard budget constraint for the household, as well as a collateral constraint.

6Borrowers repay their outstanding debts at the beginning of the period to ensure that if the debt is repudiated,
lenders can appropriate the collateral. As in other CIA models, we assume that households value the different
“types” of output produced by other households. This implies that when lenders get paid in output, they will sell it
in exchange for money, and buy other varieties of output.
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2.1 Lenders

The mass of lenders in the economy is n. Lenders differ from borrowers in their production tech-

nology and preferences. Lenders use a strictly concave technology, and they are more patient than

borrowers. Their production function is given by yt = G(k
0
t−1), where G0 > 0, G00 < 0, G0(0) =∞,

and k0t−1 is their capital stock at the end of last period. Lenders choose sequences of consumption

{x0t}, capital holdings {k0t}, nominal money balances {m0t}, bonds holdings {b0t}, and government-
bonds purchases {h0t}, to solve the following problem for given sequences of output prices {pt},
nominal interest rates {Rt}, and nominal capital prices {qnt }.

max
∞X
t=0

β
0tx0t

subject to

qnt (k
0
t − k0t−1) + ptx0t ≤ md0

t−1, (1)

m0
t +Rtb

0
t−1 + h

0
t ≤ ptG(k0t−1) + b0t +Rth0t−1, (2)

where the prime denotes a lender’s decision variable. We define the nominal rate Rt as the interest

rate paid at t on loans made at t − 1. Equation (1) is the CIA constraint. Money is required for
both consumption ptx

0
t and investment q

n
t (k

0
t − k0t−1). Equation (2) is the budget constraint. The

revenues collected through output sales ptG(k
0
t−1), new bonds issued b0t, and the proceeds from

government-bond holdings Rth
0
t−1 must be enough to accumulate new money balances m0

t, pay

outstanding debt obligations Rtb
0
t−1, and purchase government bonds h0t.

Let β
0tΩt be the Lagrange multiplier associated to the CIA constraint and β

0tΛt the one for the

budget constraint. Then, the first order optimality conditions for the problem above are given by7

x0t : 1 = Ωtpt,

m0t : Λt = β0Ωt+1,
7These are the first order conditions for interior solutions. Assumptions above guarantee such result.
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b0t, h
0
t : Λt = β0Rt+1Λt+1,

k0t : q
n
t Ωt − β0qnt+1Ωt+1 = β0Λt+1pt+1G0(k0t).

From the optimality conditions above is easy to obtain expressions for the nominal interest rate

and the users cost of capital for the lenders u0 ≡ qt − β0qt+1

Rt =
1 + πt
β0

, (3)

u0t =
β02

1 + πt+1
G0(k0t), (4)

where πt =
pt+1−pt
pt

is the inflation between t and t + 1. Equation (4) states that lenders equate

their users cost of capital with the present value of its marginal product. Since in equilibrium these

agents are not credit constrained, the users cost is simply the difference between the cost of buying

capital today qt and the discounted value of selling capital tomorrow β0qt+1. Notice that the lenders’

users cost is not affected by inflation since the proceeds of selling the capital can be consumed or

invested immediately, without requiring previous accumulation of cash. In contrast, the marginal

product of capital has to be discounted by β02
1+πt+1

because output needs to be exchanged for money

before it can be consumed. This means that the investor has to wait two periods and pay the

inflation tax before he can consume the returns of the investment.

2.2 Borrowers

The measure of borrowers is normalized to one. Their technology is given by the production

function yt = (a + c)kt−1. They choose sequences of consumption {xt}, capital holdings {kt},
nominal money balances {md

t }, private issued bonds {bt}, and government-bonds purchases {ht}
to solve the following problem for given sequences of output prices, nominal capital prices, nominal

interest rates, and government-bonds nominal rates

max
∞X
t=0

βtxt
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subject to

qnt (kt − kt−1) + ptxt ≤ md
t−1, (5)

md
t +Rtbt−1 + ht ≤ (a+ c)ptkt−1 + bt +Rtht−1, (6)

Rt+1bt ≤ qnt+1kt, (7)

In addition to the CIA and budget constraints, borrowers face a collateral constraint, given by

equation (7). Borrowing can only take place up to the point where the principal plus interest Rt+1bt

is secured by the market value of the capital owned by the household qnt+1kt. Lenders also face a

collateral constraint but we did not explicitly write it. Around the steady state this constraint is

not binding under the following assumption:

Assumption 1. β0 > β.

It is also assumed that only the fraction a of the output is tradable between borrowers and

lenders. The fraction c can be traded only among borrowers, and it can be interpreted as a

subsistence minimum consumption. We refer to this fraction as the nontradable output. The

purpose of the assumption is to avoid the situation in which borrowers continuously postpone

consumption.8

In Appendix A we prove that around the steady state of the model the borrower’s optimal

plan is to consume only the nontradable fraction of output, i.e. xt = ckt−1, to borrow up to the

limit imposed by the collateral constraint, and to invest all remaining resources. This implies that

borrowers do not purchase government bonds, i.e. ht = 0, and that the CIA constraint is binding.

Notice that since borrowers do not hold government bonds while lenders do, this model generates

endogenous limited participation in this market. These results hold under the following additional

assumption

8Kiyotaki and Moore (1997) introduce a similar assumption. As will be explained later on, due to the linearity of
preferences borrowers would like to continuosly postpone consumption in exchange for investment. This is avoided
by introducing a nontradable fraction of output, which we think of as subsistence minimum consumption. Notice
that money is required to buy nontradable output because this type of output can be traded among borrowers. One
can think that households can only produce say fruit of a particular color, but they value fruits of all colors.
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Assumption 2.

c

a
>
(1− β)

β2
(2− β − β0)
(1− β0)

.

This condition is easy to satisfy if the discount factors are close to 1.9 We can use equations

(5), (6) and (7) to obtain

kt =
1

ut

"
(a+ qt)kt−1 +

1

1 + πt−1
md
t−1
pt−1

− Rt
1 + πt−1

bt−1
pt−1

− m
d
t

pt

#
, (8)

where qt ≡ qnt
pt
is the real price of capital. The term in brackets corresponds to the real net worth

of borrowers, which consists of the value of tradable output akt−1, plus the value of capital held

from the previous period qtkt−1, plus the real money balances brought from the previous period

1
1+πt−1

md
t−1
pt−1 , minus the real value of debt repayments

Rt
1+πt−1

bt−1
pt−1 , minus money balances reserved

for next period’s purchases
md
t
pt
. Finally, the users cost of capital for borrowers, ut, is given by

ut ≡ qt − 1 + πt
Rt+1

qt+1. (9)

Thus, equation (8) says that borrowers use all their net worth to finance the difference be-

tween the value of their capital qtkt and the amount they can borrow against each unit of capital

qt+1
Rt+1

(1 + πt) kt in real terms. Notice that borrowers discount the future value of the capital at the

nominal interest rate. This is the case, as will become clear below, because in equilibrium borrowers

need to borrow in order to buy capital.

2.3 Government

The government controls money supply in this economy through open-market operations (OMOs),

which take place in the bonds market. Let Hs
t be the nominal supply of government-issued bonds.

9In this case, (2−β−β
0)

(1−β0) is some constant near to 2, and (1−β)
β2

is close to zero. Further, in the proposed equilibrium
c
a
is the ratio between the marginal propensity to consume and the marginal propensity to save for borrowers, which

can be assumed to be bounded away from zero.
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The stock of money supply, Ms
t , in this economy is given by

Ms
t =M

s
t−1 −Hs

t +RtH
s
t−1, (10)

where

Hs
t = τHs

t−1, τ ≥ 0 (11)

so that at time t the government withdraws an amount τHs
t−1 of money and injects RtHs

t−1 back

into the economy. There are two comments in order. First, we choose a simple law of motion

for government bonds Hs
t . This simplicity is convenient for our purpose of analyzing the effects

of a one-time money shock. Notice that following this shock, unless τ < 1 for all t, government

bonds may exhibit an explosive path. To avoid this, any one-time money expansion through OMOs

must be eventually followed by a “policy reversal” or “sterilization” that guarantees convergence

back to the steady state. In particular, the size of τ determines the speed at which such monetary

contraction takes place. In the analysis below we consider τ very close to 1 in order to simulate

a very slow policy reversal. Since credit markets are imperfect in this economy, real effects of

monetary shocks may depend on the path of government debt. Although we choose a parsimonious

law of motion for Hs
t , we will discuss below the role of the size of τ in our results, as well as other

paths for government debt.

Second, notice that we do not consider a rebate of the inflationary tax. Since some agents

face corner solutions, such rebate cannot be lump-sum in general. For example, simple helicopter

drops redistribute wealth, and affect agents decisions. Since here we want to focus on the effects of

the “pure monetary shock”, we do not include any rebates in the model. Tax rebates in fact may

reinforce the results of the paper.10

10The intuition for this result is simple. Suppose the economy starts off at the steady state and there is a one-time
money expansion. Assume that borrowers were to receive a money transfer that compensates them for the inflationary
tax in an amount higher than their optimal consumption. This may happen, for example, with helicopter drops. In
this case, borrowers will buy capital with the extra resources, and next period output would increase. This reinforces
our results because, as will be shown below, in this economy monetary expansions generate booms. More details on
this are available from the authors upon request.
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2.4 Aggregate resource constraints

Let Kt, K
0
t, Bt, B

0
t, Ht, H

0
t, M

d
t , M

d0
t be the aggregate variables corresponding to the lowercase

individual variables. There are five markets in the model: consumption goods, capital, money,

private bonds, and public bonds. By Walras’ Law one needs only to consider four of them. The

equilibrium conditions to clear the last four markets are

Ms
t =M

d
t +M

d0
t = m

d
t + nm

d0
t ,

Bt = bt = −B0t = −nb0t,

K = Kt +K
0
t = kt + nk

0
t,

and since Ht = 0,

H 0
t = nh

0
t = H

s
t .

Using the market clearing conditions above along with equations (2) and (6) we obtain

Ms
t +H

s
t −RtHs

t−1 ≡Ms
t−1 = pt

·
(a+ c)Kt−1 + nG

µ
K −Kt−1

n

¶¸
, (12)

which is just the quantity equation.

2.5 Steady state

Define a steady state where all real variables are constant, and all nominal variables grow at the

constant rate π, which is the steady-state growth rate of money supply. From equations (10) and

(11) it follows that π = τ − 1 if τ ≥ 1, and π = 0 if τ < 1.

Next, it is easy to see that the steady-state users cost of capital for lenders and borrowers is the

same: u = u0 = q(1− β0). Further, since under the proposed equilibrium the collateral constraint

(7) binds for the borrowers, we can use R, u0 and the budget constraint of these agents (6) to

get: u = a + c − Md

pK∗ , where K
∗ is the borrowers’ steady-state capital level. Next, using the CIA
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constraint (5) one obtains: Md

p = cK∗ (1 + π), i.e. borrowers’ real money balances exactly cover

their consumption adjusted by inflation.

Combining the last two expressions we obtain: u = a− πc. Notice that if π = 0, we obtain the

intuitive results that M
d

p = cK∗, and u0 = u = a. This last equation means in a steady state with

no money growth, the users cost equals the tradable marginal product of capital.

Finally, using equation (4), we obtain an implicit solution K∗

G0
µ
K −K∗
n

¶
=
1 + π

(β0)2
(a− πc) (13)

The equation above, along with Assumption 2 imply that in equilibrium borrowers have higher

marginal product of capital than lenders. The following proposition summarizes the main features

of the steady state.

Propostion 1. Under Assumptions 1 and 2,

(i) if G0
¡
K/n

¢
< 1+π

(β0)2 (a− πc) there exists a unique steady state;

(ii) ∂K∗
∂π 6= 0 for (1 + 2π)c 6= a, so that inflation affects the steady-state output Y ∗.

Proof: The existence of a unique steady state level K∗ is guaranteed from the properties of the

production function G(.). It is easy to see that the left-hand side of equation (13) is con-

tinuous and strictly increasing in K, while the right-hand side is a constant. If G0
¡
K/n

¢
<

1+π
(β0)2 (a− πc) the left and right-hand side cross only once. Figure 1 illustrates the determina-

tion of the steady state. The second property follows easily.

It is interesting that in the long run money is not superneutral as indicated by Proposition 1,

(ii) even though aggregate capital is constant. It is well known (Abel 1984) that money is not

superneutral if investment enters in the CIA constraint, because inflation acts as a tax on capital

accumulation. However, aggregate capital is constant in our model so that the standard result does

not apply. The non-supernetrality arises because inflation acts as a tax for all agents, but in the

margin it affects differently borrowers and lenders. Higher inflation decreases the marginal cost
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of investing for both types, i.e. it decreases the users cost of capital. For a given K∗, borrowers

net worth decreases with higher inflation because they must demand more money to sustain their

consumption, cK∗. Further, since borrowers are credit constrained, they are in a corner solution.

In contrast, lenders have an interior solution and since u has decreased, their marginal benefit of

investing needs to decrease, which can only happen if lenders’ capital holdings, K −K∗, increase.
Thus, money is not superneutral due to the asymmetric effect of inflation on constrained and

unconstrained agents.11

3 Dynamics

To simplify the analysis, we only present the dynamics of the model around the steady state,

and assume zero steady-state inflation, π = 0. The solution for the case π > 0 is summarized in

Appendix D. We also assume that β0 is close to 1. This occurs, for example, if the length of the

periods is small. This assumption allows as to obtain some sharp analytical results, but numerical

simulations confirm that the main results hold even if β0 is far from 1. Let gt ≡ Ms
t

Ms
t−1
, i.e. gt is

one plus growth rate of money supply, vt ≡ pt+1
pt
, i.e. vt is one plus the inflation rate. Thus, in the

steady state, g = v = 1 + π. In general, let bxt = xt−x∗
x∗ denote the rate of deviation of a variable x

from its steady state value.

Assume that the economy starts off at the steady state, and that an unexpected one-time

increase in the growth rate of money ε > 0 occurs at t = 0, i.e. bg0 = ε
1+π . Since the monetary

expansion occurs through OMOs, H0 decreases below its steady state level (H0 < 0). According

to the law of motion for government bonds, Hs
t = τHs

t−1, Ht gradually returns to zero to avoid

changes in the long term inflation rate. Thus, the one-time money expansion at t = 0 is followed by

a monetary contraction, i.e. by a “sterilization policy”. In particular, the size of τ < 1 determines

11If the borrowers’ propensity to consume c
a+c

is larger than 0.5 then higher inflation reduces output, a result
consistent with Abel (1984). However, if money is injected via helicopter drops rather than via OMOs, higher steady-
state inflation may have the opposite results, i.e. higher π implies larger K∗ and larger Y ∗. This occurs if borrowers
receive a fraction of the transfer higher than their steady-state consumption share, α ≡ cK∗

Y ∗ . In this case, borrowers
are overcompensated for the inflationary tax and, as a result, they can afford to buy additional capital with the extra
resources. In addition, inflation increases the marginal cost of investing, u, but lenders are particularly hurt because
they face and interior solution.
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the speed at which such monetary contraction takes place.

Using the law of motion of money supply and bonds, one can obtain the following path of money

growth12

bg0 = −∂d0,
and

bgt = −(R− τ)τ t−1bg0.
Notice that this path is fully determined by the exogenous initial shock, and converges to zero

at a rate determined by the size of τ . In particular, a larger τ implies a smoother sterilization of

the monetary contraction. In what follows we will assume a τ very close to 1 in order to simulate

a very slow monetary contraction.13

To complete the characterization of the dynamics of the model, we need to solve for the paths

of bvt, bqt and bKt. Linearizing equation (12) yields
bvt = bgt − ρ

³ bKt − bKt−1´ ,
where ρ = (a+ c−G0

) K∗
Ms/p . Notice that bv−1 = 0 because both output and the money supply used

for transactions in the goods market are predetermined. Next, linearizing equation (4) we obtain

bqt − β0bqt+1 = ¡1− β0
¢µ1

η
− ρ

¶ bKt + ¡1− β0
¢
ρ bKt+1 − (1− β0)bgt+1, (14)

where 1
η = −G

00K∗
nG0 > 0.14 The equation above describes the forward-looking nature of capital

12Here we compute the absolute deviations of the government-debt to money ratio ∂d0 instead of the percentage
deviations from the steady state because d = 0. The first expresion follows from linearizing the stationary version of
the equation Ms

0 =M
s
−1 −Hs

0 . For t > 1, combine the law of motion for Hs
t and M

s
t , transform variables to render

them stationary, and linearize to obtain bgt = (R− τ)∂dt−1. Next, use the law of motion of government debt to obtain
∂dt = τ∂dt−1 = τ t∂d0, which together with the previous expresion implies that bgt = (R−τ)τ t−1∂d0 = −(R−τ)τ t−1bg0.
13When there is a monetary expansion at t = 0 and τ is very close to one, then the money contraction at t = 1

is very small. Ideally, for a more “realistic” scenario, one could have a more persistent money expansion, eventually
followed by a contraction. In the context of our simple model, since we analyze a one-time money expansion, by
using τ very close to one most of the subsequent money contraction occurs several period after the money expansion.
14The term 1

η
can be rewritten as: 1

η
= −G00(K−K∗)/n

G0
K∗

K−K∗ , and so it can be interpreted as a measure of the
elasticity of the marginal product of borrowers’ capital, weighted by the ratio of borrowers to lenders’ capital in the
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prices, i.e. the price of capital at t = 0 depends on the full path of capital distributions across

types.

Finally, using the three expressions above, as well as the linearized versions of equations (5), (6)

and (7), it is easy to show that bKt satisfies the following non-homogeneous second order difference
equation for t > 2

θ0 bKt = θ1 bKt−1 + θ2 bKt−2 + µ0τ t−2bg0, (15)

where θ0, θ1, θ2,and µ0 are constants that depend on steady-state variables (see Appendix B). It

can be shown that for β0 close to 1, these constants are given by: θ0 = 1 − ρ > 0, θ1 ≈ 2θ0,

θ2 ≈ −θ0, and µ0 ≈ −(1− τ)2. This last term reflects that a money injection at t = 0 generates a

negative trend in Kt as a result of the sterilization that takes place after the injection.

The previous equation summarizes the equilibrium dynamics of the model. It can be shown

that bKt exhibits persistent and dampening cycles, as summarized in the following proposition:
Proposition 2. For β0 sufficiently close to 1 and π = 0,

(i) the general solution to (15) is

bKt = Art cos (ωt− φ) +Aττ
tbg0 (16)

where A and φ are constants, r =
p−θ2/θ0, ω = cos−1 ³θ1/θ0

2r

´
, and Aτ =

µ0
θ0τ2−θ1τ−θ2 .

15

(ii) r is close to, but less than, 1, and ω is close to, but larger than, zero.

Proof: See Appendix B.

Corollary. bKt exhibits persistent and dampening cycles.
The existence of dampening cycles rather than monotonic dynamics occurs in this model due to

the interplay between the CIA and collateral constraints. In particular, the full impact of a shock

steady state.
15Note that lim

β0→1
Aτ = − 1

(1−ρ) .
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that increases net worth is delayed in this model because with a binding CIA constraint, collateral

can only be accumulated gradually. Recall that investment enters in the CIA constraint. This

cyclical dynamics of the model is consistent with the hump-shaped pattern of output response to

shocks that has been observed in the data.

To fully characterize the equilibrium solution, we require two additional conditions on the

trajectory of bKt. For reasons that we explain briefly, monetary injections via OMOs imply bK0 = 0.
Thus, the equilibrium path of the distribution of capital can be completely characterized in terms

of bK1. Using these two conditions, we obtain
A =

bK1 −Aττbg0
cos (ω − φ)

and cos (φ) = −Aτbg0
A

.

The result that bK0 = 0 follows from the following four facts: i) the money contraction occurs

in the bonds market; ii) the shopper’s only resources are the money balances accumulated during

the previous period and the land holdings; iii) near the steady state, borrowers’ consumption is

equal to the nontradable output which is predetermined. As a consequence, lenders consumption

is also predetermined; iv) the nominal price of consumption at the moment of the shock does not

change. These facts together imply that at the moment of the shock households cannot change

their investment level.

We now solve for bK1 following a monetary shock at t = 0. For this purpose, combine (5), (6),
and (7) to obtain

q1(K1 −K0) + cK0 = a+ c

1 + π0
K−1 +

1

1 + π0

B0
p0
− R0
(1 + π0) (1 + π−1)

B−1
p−1

, (17)

where B−1
p−1 is the aggregate steady-state level of debt in real terms, and K−1 corresponds to the

borrowers’ steady-state capital level. We consider two relevant cases at this point: non-contingent

and contingent debt contracts. The difference between these two is that under contingent contracts,

borrowers must compensate lenders for any unexpected inflation. Thus, debt repayments at time

zero are immune to period one’s inflation π0, i.e., R0B−1 = 1+π0
β0 B−1.
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3.1 Non-contingent contracts

When debt contracts are non-contingent, R0 in (17) is simply the steady-state nominal interest

rate R = 1
β0 . Linearizing (17) in this case yields

bK1 = 1

1− β0ρ

h
β0bq1 + ³2− rh − β0τ

´
ε
i
. (18)

To solve for bK1 we first need to solve for bq1, which in turn depends on the full sequence { bKt}.
Solving equation (14) forward we can obtain a solution for bq1, as shown in Appendix C. The
expression that relates bq1 with bK1 is algebraically complicated.

We can use equation (18) to gain some intuition on the real effects of a monetary expansion ε > 0

under non-contingent contracts. Suppose initially that the real price of capital remains unchanged

after the monetary shock so that bq1 = 0. In this case, the real effects of the shock depend on the
size of τ . Specifically, if τ < τ ≡ 1

β0
¡
2− rh¢, then K1, and also Y2, move in the same direction

as the monetary shock. This is always the case because when β0 is close to 1, then τ is close to

2. Finally, this change in the distribution of capital toward the more productive agents induces an

increase in the price of capital, bq1 > 0, which reinforces the initial effect of the shock. Therefore,
a one-time monetary expansion under non-contingent debt contracts induces a redistribution of

capital towards borrowers, and increases output.

3.2 Contingent contracts

As indicated above, if debt contracts are contingent, then R0 =
1+π0
β0 . In this case, linearization of

equation (17) when π = 0 yields

bK1 = 1

1− β0ρ

h
β0bq1 + ³1− rh − β0τ

´
ε
i
. (19)

The equation above is very similar to (18), except that now we have a smaller coefficient on

ε. This smaller coefficient has two important implications. First, the real effects of the one-time

money shock will be smaller than in the case of non-indexed debt contracts, i.e. the redistribution
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of capital as well as the output amplification are smaller. Second, different from the case of non-

contingent debt contracts, a monetary expansion may now produce an output downturn rather than

a boom. To see why, assume for a moment that bq1 = 0. In this case, the real effects of the shock
again depend on the size of τ . However, different from the non-contingent case, now τ is much

smaller: specifically, if τ < τ ≡ 1
β0
¡
1− rh¢, then the monetary expansion will increase output. But

for β0 close to 1, τ is close to 1. Thus it is possible to find τ > τ such that the monetary expansion

generates a downturn.

To better highlight the mechanisms behind this result, it is useful to rewrite equation (17) as

q1(K1 −K0) + cK0 = a+ c

1 + π0
K−1 +

β0q1K0
1 + π1

− R0
(1 + π0) (1 + π−1)

B−1
p−1

, (20)

where the left-hand side represents consumption and investment in t = 1, and the right-hand side

are the real balances brought from period t = 0. In particular, the first term on the right-hand

side are output sales; the second term is new debt contracted in t = 0; and the third term is the

repayment for debt contracted in t = −1. Notice that consumption in t = 1 is fixed because K0

remains at the steady-state level. Thus, the only way borrowers increase their investment in capital

K1, is if the right-hand side of the equation is large than its steady-state value.

First, notice that under contingent debt contracts, since R0 =
1+π0
β0 , then the last term on the

right-hand side does not change with the money expansion, i.e. it remains at its steady-state value.

This implies that lenders do not transfer any wealth to borrowers in the period of the shock via

interest rate repayments.

Second, due to the monetary expansion bg0 > 0, the level of prices in t = 1 increases, so that

π0 increases (bv0 > 0). This hurts borrowers because the first term on the right-hand side a+c
1+π0

K−1

decreases. Thus, the only way borrowers could increase K1 is if the second term on the right-hand

side β0q1K0

1+π1
increases by more than the decrease in a+c

1+π0
K−1. In general, π1 decreases (bv1 < 0) due

to the policy reversal, i.e. the money contraction that follows the one-time expansion. However,

for τ sufficiently close to 1, case in which the money contraction in t = 1 is very small, the drop in

π1 is so small, that
β0q1K0

1+π1
increases very little. In this case, borrowers decrease K1 and the money
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expansion causes a downturn. In summary, the only way a monetary expansion can generate an

increase in output when debt contracts are indexed is when this expansion is quickly reverted by a

monetary contraction (i.e., small τ).

Finally, notice that when debt is non-contingent, the third term on the right-hand side of (20)

decreases with respect to the steady state because π0 increases due to the money expansion. What

this means is that there is a transfer of wealth from creditors to debtors, which ultimately allows

borrowers to increase K1 and generate an output expansion.
16

3.3 Default and asymmetric business cycles

Up to now we have considered the same model of debt as in Kiyotaki and Moore (1997). There

are two important assumptions in their model. The first is that once a borrower has started to

produce with capital Kt, he is the only one with the skill to complete production in period t + 1.

In other words, if the borrower were to withdraw his labor between t and t + 1, there will be no

output in t + 1. A second assumption is that when the shock arrives, the borrower has already

input his labor into the production project, and so it is too late for him to threaten the creditors

by withdrawing his labor. The borrower thus never has incentives to repudiate his debt contract

in the face of a shock.

Consider now what would happen if the shock arrived before the borrower had input his labor.

In this case, if the value of the collateral falls with the shock below debt value, the borrower can

threaten his creditors by withdrawing his labor and defaulting on his debt. Since there is no output

without the borrower’s labor, then the borrower could be able to renegotiate his debt down to the

market value of the collateral. It turns out that if such renegotiation is possible, then our model can

generate asymmetric business cycles. In particular, if contracts are non-contingent and there is a

monetary contraction, borrowers have incentives to renegotiate their debt and the output downturn

is smoother.

The intuition for this result is as follows. If contracts are non-contingent, the interest rate

16The redistribution of wealth between debtors and creditors following a money shock has been emphasized by
Fisher (1933).
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borrowers pay is the steady-state rate. If there is a money contraction, this steady-state rate will

be higher than the equilibrium rate, due to deflation. Thus, borrower’s net worth is reduced, as

well as their capital holdings. This in turn triggers a decrease in the price of capital. In this

case, borrowers have incentives to repudiate their debt and pay back just the market value of the

collateral. The fact that borrowers end up paying back less, makes the output downturn smoother.

Notice that in contrast, if there is a monetary expansion, borrowers will not have incentives to

repudiate and renegotiate their debt. This is so because in this case the price of capital increases,

while the nominal interest rate remains at its steady state.17

Analytically, when debt is renegotiated, R0 in (17) is not the equilibrium value. Rather, the

term R0
B−1
p−1 is replaced by the market value of the collateral q0K−1. Linearizing equation (17) in

this case yields bK1 = 1

1− β0ρ

h
β0bq1 − bq0 + ³2− rh − β0τ

´
ε
i

which holds for both the contingent and non-contingent debt cases. It turns out that when debt is

renegotiated, the solution for bK1 can be simply written as18
bK1 = 1

θ0

h
(1− rh)− ¡1− 2β0¢ (R− τ)

i bg0. (21)

Since the expression above is algebraically simple, we can use it to analyze whether following

the one-time monetary contraction in period t = 0, it is the case that bK1 < 0 and so bY2 < 0.

Further, if bK2 < bK1, since the model exhibits persistent dampening cycles, we should observe a
downturn in the economic activity as borrowers’ capital level decreases. Proposition 3 summarizes

the conditions under which these results hold. Let α ≡ cK∗
Y ∗ < 1 be the fraction of steady-state

output consumed by the borrowers.

17If debt contracts are contingent, renegociation occurs depending on how interest payments change compared to
the change in the price of the collateral. For instance, suppose τ is small enough so that a monetary expansion
triggers an increase in output. Then, if the nominal interest rate increases by more than the increase in the price of
capital, borrowers will have incentives to renegociate.
18Under renegociation, the solution for bK1 is the same as that implied by the non-homogeneous second order

differential equation for t = 1 and bK0 = 0.
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Proposition 3. For β0 sufficiently close to 1 and π = 0,

(i) following a one-time decrease in the money growth rate ε < 0 at t = 0, borrowers decrease

their capital holdings in period t = 1, i.e. bK1 < 0. Further, the lower τ , the larger
¯̄̄ bK1 ¯̄̄ is.

(ii) if τ is sufficiently close to 1 then bK2 < bK1, while if τ → 0 then a sufficient condition forbK2 < bK1 is that α < 1
3 .

Proof: (i) When β0 → 1 it is the case that ρ → α and that rh → 0. Then, θ0 → (1 − α). Thus,

when β0 → 1 from equation (21) we have that: bK1 → 2−τ
1−αbg0, and since τ < 1 and bg0 < 0

it follows that bK1 < 0. Notice that the more slowly government debt returns to the steady
state, i.e. the larger τ , the lower the multiplier of monetary policy in the first period.

(ii) From equation (15) we have: bK2 = θ1
θ0
bK1 + µ0

θ0
bg0, and since when β0 → 1 we have that R→ 1

and so µ0 → −(1 − τ)2, then: bK2 → 1
1−α

h
2−τ
1−α − (1− τ)2

i bg0. If τ → 1, then bK2 → 1
1−α bK1

and so bK2 < bK1. On the other hand, if τ → 0, then bK2 → h
1
1−α − 1

2

i bK1, so that bK2 < bK1 if
α < 1

3 .

Part (ii) in Proposition 3 indicates the role of τ in strengthening the real effects of a monetary

contraction. In fact, when the sterilization policy is smooth, i.e. when τ is large, borrowers further

decrease their capital stock in t = 2. This implies that they would be able to borrow less against

their collateral, and their capital holdings will decrease for a number of periods after the shock.

This occurs because when the sterilization is smooth, then the government expands the money

supply in small amounts during several periods, and so the nominal interest rate remains above the

steady state, i.e. bRt > 0 for a longer time. In contrast, when the monetary contraction is reverted
quickly, i.e. when τ → 0, this dynamic pattern for capital may not necessarily hold, unless further

conditions are imposed.
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4 Simulations

To illustrate the magnitude and persistence of monetary shocks in this economy, we assign values

to the parameters of the economy and simulate the effects of a one-time 1% change in the growth

rate of money. The only purpose here is to illustrate the dynamics generated by our model, not

to calibrate our stylized model. As such, the quantitative results presented here are not to be

taken literally. We choose the parameters of the model to satisfy the assumptions imposed. We set

β0 = 0.995 to simulate a time period equal to a month. Note that β0 is close enough to 1, in line

with many of the proofs presented above.

We normalize to unity the total stock of capital, i.e. K = 1, as well as the nontradable fraction

of output, i.e. c = 1. The production technology for lenders is: G(K) = B(K − K)γ , where B
is also normalized to unity and set γ = 0.3. We set n = 3, which implies that in this economy

only 25% of the agents are constrained. Finally, we choose a steady-state capital distribution of

K = 0.25, i.e. lenders hold 25% of the total capital.

Figure 2 displays the effects of a one-time increase of 1% in the growth rate of money when

π = 0, τ = 0.9, and debt contracts are non-contingent. The figure shows percentage deviations from

steady-state values. Since τ is large, the subsequent money contraction is smooth and government

bonds go back gradually to their steady-state Hs = 0. As is shown in the graph, this policy

generates ample and persistent dampening cycles. The cycle starts with an increase in borrowers’

capital holdings, as well as an increase in output. The peak of the cycle is reached about 50 months

after the shock, when output is around 40% above the steady state. Of course, this quantitative

result is unrealistically large and due to non-standard assumptions of the model such as linear

utility. What lies behind such large amplification is the redistribution of wealth from lenders to

borrowers due to the non-contingent nature of the debt contract. In the figure, since the collateral

constraint binds, real borrowers’ debt mimics the behavior of capital.

These results emerge from the combination of two mechanisms that affect both sides of the

collateral constraint: one is the asset-price effect, and the other is the interest-rate effect. First,

there is an increase in real price of capital that increases the value of the collateral for a number of

22



periods. This increase in the asset price comes from the fact that to clear the capital market, the

users cost for lenders has to increase. Notice that the real price of capital is above the steady state

for 50 months, which is exactly the time at which capital and bonds reach their peaks. Second, the

nominal interest rate is at its steady-state value in the period of the shock, but it then decreases

below the steady state.

Figure 3 displays the effects of a one-time increase of 1% in the growth rate of money when

π = 0, but now debt contracts are contingent. In this case we choose τ = 0.999 in order to

illustrate the case in which a monetary expansion can generate an output downturn. The most

striking feature of Figure 3 is that even though we observe an output downturn, the real effects

of the money shock under contingent contracts are very small when compared to those obtained

in Figure 2. This clearly highlights the difference between the non-contingent and the contingent

cases: when debt is contingent, there is no redistribution of wealth from less productive lenders to

more productive borrowers.

Finally, Figure 4 illustrates the case in which debt renegotiation takes place. It displays the

effects of a one-time decrease of 1% in the growth rate of money when π = 0, τ = 0.9, and debt is

non-contingent. In this case, the model still exhibits persistence, and the amplitude of the effects

is much smaller than the ones observed in Figure 2. Notice that output reaches a trough of about

−2.5%. Renegotiation avoids a deep economy downturn because it partially protects borrowers
from deflation.

5 Concluding comments

This paper analyzes the propagation of monetary shocks by combining collateral and cash-in-

advance constraints in a world where changes in money supply occur via open-market operations.

We find that a one-time unanticipated monetary injection generate persistent movements in aggre-

gate output, whose amplitude depends on whether debt contracts are contingent or not. In general,

output fluctuations are larger if contingent contracts cannot be written. Due to the interaction be-

tween the cash-in-advance and collateral constraints, monetary shocks trigger a highly persistent
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dampening cycle rather than a smoothly declining deviation.

The model analyzed here is simple enough to provide insights on how collateral constraints work

in a monetary economy. Since the model is highly stylized, future work can involve the following

extensions. First, both the utility and production functions may be modified to the more standard

concave specification. This would be particularly important if the mechanisms described here were

to be carefully quantified and compared with the data. Second, in order to avoid excess response in

nominal prices, other frictions would need to be introduced besides collateral constraints. Finally,

the model studied here has not been carefully calibrated to assess its ability to match the data. A

careful calibration exercise is beyond the scope of this paper and is left for future work.

In summary, what we learn from the simple, stylized model analyzed here is that collateral

constraints in combination with cash-in-advance constraints, constitute a potential mechanism that

transforms small monetary shocks into significant persistent output fluctuations.
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A Proof of optimal solution for borrowers

We need to prove the claim that borrowers’ optimal plan is to consume only the nontradable fraction
of output, i.e. xt = cKt−1, to borrow up to the limit and to invest all remaining resources. To
do that we compare the utility achieved under the different alternative plans. The first one is to
follow the proposed investment path. Alternatively, borrowers can consume or save. For these last
two alternatives, we only consider single deviations from the investment path at date t = 0.19

Consider the borrower’s marginal utility of investing p0 dollars given that all aggregate variables
remain unchanged at their steady state levels. For simplicity let π = 0. In steady state, we have
R = 1/β0and q = a/(1 − β0). Therefore, for given prices and aggregate variables at their steady
state levels, equations (5), (6) and (7) can be rewritten as:

qkt + (c− q)kt−1 =
mdt−1
pt−1

(A1)

bt
pt
= qβ0kt (A2)

md
t

pt
= (a+ c)kt−1 +

bt
pt
−Rbt−1

pt−1
. (A3)

Replacing the borrowing constraint into the budget constraint,

mdt
pt
= (a+ c− q)kt−1 + qβ0kt. (A4)

Substituting (A4) into (A1) and solving for kt:

kt =

·
β0 + 1− c

q

¸
kt−1 +

·
a+ c

q
− 1
¸
kt−2. (A5)

¿From the steady state value of q we have that
³
β0 + 1− c

q

´
= 2 − (1 − β0) − c

q = 2 − a+c
q

= 2− rh. Let rh ≡ a+c
q . We can rewrite (A5) as:

kt =
³
2− rh

´
kt−1 + (rh − 1)kt−2 (A6)

It is easy to check that the roots of the associated characteristic polynomial are 1 and 1− rh.
Therefore, kt can be expressed as:

kt = A1 +A2(1− rh)t. (A7)

where constants A1 and A1 need to be determined. Under the proposed guess, the optimal strategy
for borrowers is to use the extra p0 dollars to invest in capital. With this amount, the borrower

19Following the logic of Kiyotaki and Moore (1997), “we appeal to the principle of unimprovability”, which states
that to prove that our proposed strategy of investing all the extra p0 dollars is optimal, we need to consider only
single deviations from this plan at date t = 0.
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can buy k0 = 1/q units of capital at t = 0. This allows him to borrow qβ0k0 = β0 additional units
of output.20 At t = 1, consumption increases by ck0 units so that from the additional resources,

β0 − c/q can be used to buy capital. Therefore, investment is given by: k1 − k0 = β0−c/q
q , so that

k1 = k0(β
0− c/q+1).With these two initial values (k0,k1), constants A1and A2 can be determined

as follows:

A2 =
k0 − k1
rh

and A1 =
1

rh

h
k1 − (1− rh)k0

i
.

Utility under the investment path is given by:

U inv = βc
∞X
t=0

βtkt = βc
∞X
t=0

βt
h
A1 +A2(1− rh)t

i
= cA1

β

1− β
+ cA2

β

1− β(1− rh)

=
c

q

β

1− β

1

1− β(1− rh) .

To show that higher utility is attained in the investment path than in the consumption path,
we need to find conditions under which:

c

q

β

1− β

1

1− β(1− rh) > 1

We can transform the expression above to obtain:

c

a
>
(1− β)

β

(1− β)

(1− β0)
+ (1− β)

a+ c

a
.

Since (1−β)
β < (1−β)

β2
then a sufficient condition for the utility from the investment path being

higher is:
c

a
>
(1− β)

β2

·
(1− β)

(1− β0)
+ 1

¸
which corresponds to Assumption 2 in the text.

To complete the proof we need to show that higher utility is attained in the investment path
than in the saving path. Borrowers can save the p0 dollars and use the return R to commence a
strategy of maximum levered investment from date t = 1 onwards. Then, all we need to show is
that the returns from saving p0 dollars in period t = 0 are lower than the return from investing at
t = 0. Since from Assumption 1, β0 > β, using Assumption 2 is easy to show that β0 > a

a+c . Thus,

1 + rh = 1 +
a+ c

q
= 1 +

(a+ c)(1− β0)
a

> 1 +
1− β0

β0
=
1

β0
= R.

Therefore, 1+ rh > R , which guarantees that the investment path yields more utility than the
alternative savings path. This completes the proof that the proposed solution is an equilibrium. We
have presented an analytical proof for π = 0. For π 6= 0 it is not possible to provide an analytical
20Note that p0 dollars are equivalent to one unit of output at t = 0 prices. Also, by borrowing extra b0 = β0, the

agent can demand extra β0 real money balances in the third subperiod of t = 0, in order to buy additional capital in
the first subperiod of t = 1.
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proof. However, for all the numerical simulations in the text, we have verified in the computer that
the decision rules for the borrower are optimal.

B Proof of Proposition 2

Let π = 0 so that in steady state u = a. Equation (15) in the text reads:

θ0 bKt = θ1 bKt−1 + θ2 bKt−2 + µ0τ t−2bg0 (B1)

where:
θ0 = 1 + (1− 2β0)ρ

θ1 = (1− rh)(1− ρ) + 1 + (1− 2β0)ρ− (1− β0)
1

η

θ2 = −(1− rh)(1− ρ)

µ0 = −(R− τ)
h¡
1− 2β0¢ τ + (1− rh)i

Since the particular solution for the equation above is

bKp = µ0bg0τ t
θ0τ2 − θ1τ − θ2

then the general solution is given by:

bKt = A1λt1 +A2λt2 +Aττ
tbg0 (B2)

where Aτ =
µ0

θ0τ2−θ1τ−θ2 is a constant and the eigenvalues λ1 and λ2 satisfy: λ1λ2 =
−θ2
θ0

and

λ1 + λ2 =
θ1
θ0
. Finally, the solutions for constants A1 and A2 can be obtained from: bK1 =

A1λ1 +A2λ2 +Aττbg0 and bK0 = A1 +A2 +Aτbg0.
B.1 Cycles

The dynamic properties of equation (B1) depend on the eigenvalues associated to the homogeneous
difference equation θ0 bKt = θ1 bKt−1 + θ2 bKt−2 which are given by:

λ1,λ2 =
θ1 ±

q
θ21 + 4θ0θ2

2θ0
.

The necessary and sufficient condition for cycles is θ21+4θ0θ2 < 0. Note that θ1can be rewritten
as:

θ1 = θ0 − θ2 − (1− β0)
1

η
. (B3)

Adding and subtracting proper terms, θ2 can be rewritten as

θ2 = ξ(β0)− θ0 (B4)
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where:

ξ(β0) ≡ 2ρ(1− β0) + rh(1− ρ)

= (1− β0)(2ρ+
a+ c

a
(1− ρ)) > 0.

¿From (B3) and (B4), θ1 can be written as:

θ1 = 2θ0 − ζ(β0) (B5)

where:

ζ(β0) ≡ (1− β0)(2ρ+
a+ c

a
(1− ρ) +

1

η
)

< (1− β0)
·
max

½
2,
a+ c

a

¾
+
1

η

¸
.

Finally, from (B3) and (B4), lim
β0→1

θ2 = θ0 and lim
β0→1

θ1 = 2θ0.

B.2 Proof of Proposition

To show that for β0 sufficiently large the model exhibits cycles, it needs to be proven that θ21+4θ0θ2 <
0. Use (B4) and (B5) to get:

θ21 + 4θ0θ2 = (2θ0 − ζ(β0))2 − 4 £θ0 − ξ(β0)
¤
θ0

< −4θ0(1− β0)
1

η
+ (1− β0)2

·
max

½
2,
a+ c

a

¾
+
1

η

¸2
.

Note that lim
β0→1

1
η = −

G00((K̄−K1)/n)K1

nG0((K̄−K1)/n)
> 0 where K1 is the solution of (13) for β0 equal to 1 and

π = 0. Therefore, the second term in the last expression approaches to zero faster than the first
term as β0 → 1. Note that θ0

1
η remains bounded above since θ0 approaches 1 − αN (K1) > 0 and

the fact that 1η approaches a constant greater than zero. Thus, for β
0 large enough the first term

dominates and the expression is negative.
It is also useful to state solution (B2) in its polar representation (See Allen, 1959, page 189)

bKt = Art cos (ωt+ φ) +Aττ
t,

where A and φ are constants that can be determined from the initial conditions, and

r =
p
−θ2/θ0,

ω = cos−1
µ
θ1/θ0
2r

¶
.

Stability is guaranteed if the modulo r is less than 1, a result that follows from (B5) for large β0.
In addition, r is close to 1 when β0 is close to 1. Thus, the difference equation displays persistent
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dampening cycles.

C Forward looking solution for asset prices

This appendix gives the solution for bq0 and π = 0. From equation (14) in the text:

bqt − β0bqt+1 = ¡1− β0
¢µ1

η
− ρ

¶ bKt + ¡1− β0
¢
ρ bKt+1 − (1− β0)bgt+1

iterate forward and use the transversality condition bq∞ = 0 to rule out bubbles in the price of
capital to obtain:

bq0
(1− β0)

=
∞X
j=0

β0j
·µ
1

η
− ρ

¶ bKj + ρ bKj+1 − bgj+1¸

=

µ
1

η
− ρ

¶ bK0 + ∞X
j=0

β0j
µ
β0
µ
1

η
− ρ

¶
+ ρ

¶ bKj+1 − ∞X
j=0

β0jbgj+1.
Using the solution for the non-homogeneous second order difference equation (B1) we have:

bq0
(1− β0)

=

µ
1

η
− ρ

¶ bK0 +µβ0µ1
η
− ρ

¶
+ ρ

¶ ∞X
j=0

β0j
³
A1λ

j+1
1 +A2λ

j+1
2 +Aττ

j+1bg0´
+(R− τ)bg0 ∞X

j=0

β0jτ j

which after some algebra yields:

bq0
(1− β0)

=

µ
1

η
− ρ

¶ bK0 +µβ0µ1
η
− ρ

¶
+ ρ

¶
(λ1A1 + λ2A2)− β0λ1λ2 (A1 +A2)

1− β0(λ1 + λ2) + β02λ2λ2

+

µ
β0
µ
1

η
− ρ

¶
+ ρ

¶
τAτbg0
1− β0τ

+
(R− τ)bg0
1− β0τ

.

Finally using bK0 = 0 and the properties of λ1, λ2 and bK1 from Appendix B we get, after some
algebra:

bq0
(1− β0)

=

³
β0
³
1
η − ρ

´
+ ρ

´
θ0

θ0 − β0θ1 − β02θ2
bK1 + (R− τ)bg0

1− β0τ

+

µ
β0
µ
1

η
− ρ

¶
+ ρ

¶·
τ

1− β0τ
− (θ0τ + β0θ2)

θ0 − β0θ1 − β02θ2

¸
Aτbg0

which solves for bq0 as a function of bK1. Also, the following equation relates bq0, bq1 and bK1:
bq0 = β0bq1 + ¡1− β0

¢
ρπ bK1 + (1− β0)(R− τ)bg0
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D Solution for π > 0

When the steady-state inflation is not zero, but π > 0, then the simple rule that following a one-
time money shock at t = 0 we can guarantee convergence of dt back to the steady state by imposing
τ < 1 does not hold anymore. Recall that since Hs

t = τHs
t−1 and when π = 0 we have Hs = 0,

then τ < 1 is enough to guarantee that Hs
t eventually converges to zero. In contrast, this is not

the case when π > 0 then d > 0. Thus, when π > 0 the “sterilization” policy needs to be changed.
In particular, assume that the economy starts off the steady state and at time t = 0 there is

an unexpected one-time increase in growth rate of money ε > 0, i.e. bg0 = ε
1+π . In this case, the

government chooses a period t = T such that from T on, the growth rate of money supply is zero,
i.e. bgt = 0 for t > T . What this implies is that for t > T , the law of motion of bdt is given by:21

bdt = 1

β0
bRt + 1

β0
bdt−1

which is clearly unstable, since β0 < 1. Iterating forward on the equation above and imposing the
transversality condition that bd∞ = 0, we obtain that bdT−1 must satisfy:

bdT−1 = − ∞X
τ=0

β0τ bRτ+T

to guarantee convergence back to the steady-state. Further, since using the law of motion of money
supply we have that bgT−1 is given by:

bgT−1 = − d

1 + d
bdT−1 + d

β0 (1 + d)
bRT−1 + d

β0 (1 + d)
bdT−2

so that bgT−1 depends on bdT−1. In summary, when the government chooses a period T such thatbgT = 0, it must also choose bgT−1 to satisfy the transversality condition. Further for periods
1 ≤ t < T − 2 we allow the government to choose any exogenous law of motion for bgt 6 0, i.e.
any rule in which the monetary expansion at time t = 0 is reverted. For instance, a natural choice
would be a gradual money contraction up to period T − 2 and a choice of bgT−1 that satisfies the
condition above.

When π > 0, the dynamics of capital are described by:

θπ0 bKt = θπ1 bKt−1 + θπ2 bKt−2 + 1

1 + π

h¡
1− 2β0¢ bgt + (1− rh)bgt−1i

where:
θπ0 = 1 + (1− 2β0)

ρ

(1 + π)

θπ1 =
(1− rh)(1− ρ)

(1 + π)
+ 1 + (1− 2β0) ρ

(1 + π)
− (1− β0)

η(1 + π)
21This equation is the linearized version of the law of motion of the money supply when bgt = 0.
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θπ2 = −
(1− rh)(1− ρ)

(1 + π)
.

Using the dynamic equation of capital, as well as the transversality condition for government
debt, the law of motion of money supply and the forward-looking solution for capital prices it is
possible to construct a system of 5 equations in 5 unknowns: bKT−1, bqT−2, bqT−1, bdT−1 and bgT−1.
Since this system is a function of past values bKT−3, bKT−2 and bdT−2 an iterative procedure that
starts with a guess for bK1 must be implemented to find the solution. Details on the solution
procedure are available from the authors upon request.
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                   Figure 1: Steady state distribution of capital
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Figure 2: A 1% one-time money expansion under non-contingent debt
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Figure 3: A 1% one-time money expansion under contingent debt contracts
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     Figure 4: A 1% one-time money contraction with debt renegotiation




