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Abstract. Despite the fact that the empirical data indicate the
presence of non-stationarity in wage offer distributions, the ma-
jority of job-search models are stationary. We model logs of wage
offers as a Markov process with i.i.d. increments and solve two typ-
ical job-search models for reservation wages, value functions and
expected individual duration of unemployment. All solutions are
in the closed form and admit interpretation in terms of expected
present values of certain streams of payoffs.
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1. Introduction

Over the past two decades, many studies in labor economics have
attempted to analyze empirically the determinants of individual em-
ployment spell duration of workers looking for a job (see, for example,
Van den Berg (1999) and the bibliography therein). Many of these
studies have used the job search model as a workhorse: for surveys,
see, for example, Devine and Kiefer (1991) and Wolpin (1995). Indeed,
the former review of the empirical literature cites over 500 studies.

The basic job-search model contains three exogenous variables: the
Poisson rate of arrival of job offers, the wage distribution and the un-
employment compensation. If none of these variables change over time
and the time horizon is infinite, then the model is stationary. The
majority of existing job search models are stationary. At the same
time, various empirical studies find significant duration dependence of
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the probability of being (re)-employed. This dependence indicates the
presence of non-stationarity (see, e.g., Van den Berg (1990) and the
bibliography therein). Moreover, stationary wage distribution is in-
consistent with the productivity shocks modeled as a process in the
neoclassical growth model.

We construct the first job-search model where wage offers follow a
stochastic Markov process. To be more specific, we assume that log-
wages follow a random walk, that is a process with independently and
identically distributed increments. The characteristics of the random
walk are fairly general. Two job-search models are considered in the
paper: the benchmark model, where a worker remains employed forever
if she accepts an offer at some point in time; and the model where the
worker faces a positive probability of being laid off every period after
the first period on the job. Both models are solved for the reservation
wages, value functions, and expected duration of unemployment.

The method of the paper is straightforward and can be summarized
as follows: we assume that an unemployed worker accepts a wage offer
if and only if the wage is not less than a certain barrier called the reser-
vation wage. We fix an arbitrary candidate for the reservation wage
and write the corresponding dynamic programming problem. It turns
out to be the case that the Bellman equation is an integral equation
known as the Wiener-Hopf equation. The latter can be solved for the
value function by the Wiener-Hopf factorization method. The central
point of the method in the form suggested in the paper is that prac-
tically every step of the solution of the optimization problem can be
interpreted as the calculation of the expected present value of a certain
stream of payoffs. In particular, in the benchmark model, the expec-
tations are taken under assumption that wages follow the supremum
process w̄t = max0≤t≤s ws (here wt is the wage offer at date t). In the
model with layoffs, we also use the process for wages offered every other
period and the supremum of this process. The processes with two time
periods as the basic time unit become involved because the worker can
be laid off and if this happens, she has to wait one period before a new
offer arrives.

After an explicit formula for the value function has been obtained
by the Wiener-Hopf factorization method, we guess the reservation
wage and verify that the latter maximizes the value function. Also,
we prove the uniqueness of the solution. The reservation wages and
value functions in both models admit closed form solutions in terms
of stochastic integrals. Moreover, explicit analytical solutions can be
obtained as well (see Boyarchenko and Levendorskǐi (2002)). In the
paper, we provide such solutions for the reservation wages and the
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expected waiting time before an offer is accepted for a particular case
of the probability distribution function.

So far, only a few papers have been published that allow for non-
stationarity in job-search models (see, for example, Burdett (1979),
Gronau (1971), Heckman and Singer (1982), Lippman and McCall
(1976) and Mortensen (1986)). These papers consider only very specific
departures from stationarity and they lack a rigorous derivation of the
reservation wage dynamics. Van den Berg (1990) examines the dynam-
ics of an individual’s reservation wage in a more general non-stationary
job-search model. In his model, all exogenous variables may vary over
time in a rather general way. He derives a differential equation that
describes the evolution of the reservation wage over time. However,
there are some unrealistic assumptions in Van den Berg’s model. First
of all, it is assumed that once a job offer is accepted, it will be held
forever. The only reason the author does not allow workers to quit or
to be laid off is the intractability of the corresponding model. Second,
and more important, even though Van den Berg allows the wage dis-
tribution to vary over time, the wage which a worker may be offered in
the future is independent of the current state variables in that model.
When wage offers evolve as a stochastic process, the current state af-
fects possible future wages, therefore the way of modeling of the wage
evolution suggested in the paper is much more realistic than traditional
random draws from independent stationary or even non-stationary dis-
tributions.

The rest of the paper is organized as follows. In Section 2, the reader
is reminded about the specification of the benchmark job-search model,
the process for wages is specified and main results for the reservation
wage and value function are given. In Section 3, the rigorous derivation
of results for the benchmark model is presented. Section 4 contains the
solution for the model with layoffs. In Section 5, we derive explicit
analytical formulas for the reservation wages for the case when the
probability distribution function for increments of log-wages is given as
(or can be approximated by) a simple exponential polynomial. In this
case, the problem reduces to computation of the roots of a quadratic
polynomial. At the same time, the model is rather flexible: it admits
jumps in wages in both directions and the relative sizes of large and
small jumps can be controlled by the parameters of the PDF. The
reservation wage formulas allow one to analyze how the workers respond
to changes in the parameters of the underlying stochastic process. In
Section 6, the formula for the expected waiting time is derived, and for
the case of exponential polynomials, the explicit solution is given. For
the latter case, we also provide the necessary and sufficient condition
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(in terms of the parameters of the PDF) of finiteness of the expected
waiting time. The result is particularly simple in the case of continuous
PDF: the expected waiting time is finite if and only if the drift of the
log-wage is positive, and if it is positive, then the expected waiting time
is inverse proportional to the drift as in the deterministic continuous
time model. Section 7 contains final remarks. The most technical issues
are delegated to the Appendix.

2. Benchmark model: main results

2.1. Problem specification. Consider a problem of intertemporal
job search. Time is discrete and the horizon is infinite: t = 0, 1, . . .. An
unemployed worker devises a strategy to maximize the present value
of her expected life-time utility:

max E

∞∑
t=0

βtu(zt), (2.1)

where E is the expectation conditioned on information available at
t = 0, 0 < β < 1 is the discount factor, u is the instantaneous utility
function such that u′ > 0 and u′′ ≤ 0, and zt is the instantaneous
income. In this paper, we consider the linear utility: u(z) = z. Gen-
eralization to the case of Cobb-Douglas utility is straightforward and
more general utility functions can be considered as well.

If the worker is unemployed at date t, she receives the unemployment
income: zt = b ≥ 0, where b is the unemployment insurance benefit
less of search costs. At the same time, the worker gets a wage offer wt,
one at each date t.1 The worker has an option of rejecting an offer and
waiting until next period for a new wage offer to arrive. Alternatively,
the worker can accept a wage offer w, in which case she will be paid
the wage w every period starting from the date of acceptance.2 Thus
the value function defined by (2.1) is a function of the current wage
offer w, which is the state variable in the model. Notice that the value
of being unemployed forever is equal to

∞∑
t=0

βtb =
b

1− β
.

1For simplicity, we assume that job offers arrive every period when the worker
is unemployed, otherwise, we could have introduced a probability of random offer
arrivals.

2We disregard layoffs, quits and recalls in this model; the model with layoffs will
be considered in Section 4.
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We assume that wage offers follow a stochastic process; to be more
specific, we assume that the log-wage Xt = ln wt admits a decompo-
sition Xt = X0 + Y1 + . . . + Yt, where Y1, . . . , Yt are independently
and identically distributed random variables on the probability space
Ω (one says that X is a random walk on R). We impose the following
condition on the wage process:

βE[wt/wt−1] = βE[w1/w0] < 1. (2.2)

Equation (2.2) ensures that the value function (2.1) is finite, which can
be argued as follows. The value function does not exceed the sum of the
value of being unemployed forever (which is finite) and

∑∞
t=0 βtE[wt],

the sum of the expected present values of accepting an offer at date
t = 0, 1, . . .. By the law of iterated expectations, we have for i.i.d. Yj’s:

E[wt] = E
[
eX0+Y1+...+Yt

]

= eX0E
[
eY1

]
. . . E

[
eYt

]

= w0E[w1/w0] . . . E[wt/wt−1].

Therefore,
∞∑

t=0

βtE[wt] = w0

∞∑
t=0

βtE[w1/w0]
t =

w0

1− βE[w1/w0]
< ∞

if and only if (2.2) holds. Hence if (2.2) is satisfied, the value function
(2.1) is finite. It can be shown that if (2.2) fails, then the value function
is infinite.

If the wage offer is sufficiently low, then it is advantageous to remain
unemployed. Define w∗ to be the smallest wage offer such that the
unemployed worker is better off accepting than rejecting the offer; w∗

is known as the reservation wage. That is, the worker accepts the
offer w if and only if w ≥ w∗. Let w be the current wage offer, and
V (w; ŵ) be the value of the offer when ŵ is chosen as a candidate for
the reservation wage. If the offer is accepted, the worker gets w from
now on, therefore

V (w; ŵ) =
w

1− β
, if w ≥ ŵ; (2.3)

otherwise, the worker gets b this period and a new offer next period,
hence

V (w; ŵ) = b + βE[V (w1; ŵ) | w0 = w], if w < ŵ. (2.4)

Notice that in the traditional labor search model, the continuation
payoff in (2.4) is E[V (w; ŵ)]. This implies that current prices/wages
do not convey any information about expected future payoffs, which is
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unrealistic. In that model, the value of rejecting an offer is indepen-
dent of w, and the value of accepting is increasing in w, therefore the
reservation wage is the one that equates these two values.

2.2. Reservation wage and value of an offer. We want to find the
reservation wage, w∗, that maximizes the value function:

V (w; w∗) ≥ V (w; ŵ), ∀ w and ŵ. (2.5)

To this end, we fix an arbitrary ŵ and solve equations (2.3) and (2.4) for
V . By comparing solutions for various ŵ, we find a unique w∗ satisfying
(2.5). In this subsection, we present and discuss the formulas for w∗

and V (w; w∗). The rigorous derivation of the formulas is presented in
Section 3.

Introduce

wt = min
0≤s≤t

ws and w̄t = max
0≤s≤t

ws,

the processes w = {wt} and w̄ = {w̄t} will be called the infimum and
supremum wage processes respectively. Let T be an exponentially dis-
tributed random variable, independent of {Yt}, with the mean β/(1−β)
(in other words, T takes values t = 0, 1, . . . with probability (1−β)βt).
The reservation wage is given by

w∗

b
= E[w̄T | w0 = 1] = E[w̄T | w0 = w]/w, (2.6)

or equivalently,

w∗

b
= (1− β)

∞∑
t=0

βtE[w̄t| w0 = 1] =

∑∞
t=0 βtE[w̄t| w0 = w]∑∞

t=0 βtw
. (2.7)

If there is no uncertainty, then trivially, w∗ = b. If wages follow
a stochastic process, then there is a risk: if the worker accepts the
offer b ≤ w, she misses the opportunity of receiving higher offers in
the future. Hence there is the hurdle w∗/b the wage offer must clear
in order to be accepted. By (2.6), the hurdle equals the ratio of the
expected wage accepted at random time T , given the wages follow
the supremum process, and the current wage w. According to (2.7),
the hurdle is the ratio of two expected present values of wage income
streams: the one in the numerator is for supremum wages while the
value in the denominator is calculated for the constant stream wt = w.
If the probability of negative jumps in wages increases, E[w̄t] decreases,
hence the hurdle decreases as well. This agrees with the fact that
people are willing to take lower paid jobs when they expect wages
to drop. Similarly, if the probability of positive jumps increases, the
hurdle increases as well, hence increasing upward uncertainty in wages
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may cause reduction in the supply of labor. Recall that in the standard
job search model (see, e.g., Sargent (1987)),

w∗ = b +
β

1− β

∫ ∞

w∗
(w′ − w∗)dw′.

This is a non-linear equation which does not admit a closed form solu-
tion except for special cases. Our approach provides an explicit formula
for the reservation wage together with the natural interpretation of the
formula.

Our next result is the formula for the value function in the region
w < w∗. The value function admits the following decomposition:

V (w; w∗) =
w

1− β
+ Vs(w; w∗), w < w∗, (2.8)

where the first term is the value of accepting the current offer, and
Vs(w; w∗) is the option value of searching. The option value Vs(w; w∗)
is given by (see Section 3)

Vs(w; w∗) =
w

E[w̄T | w0 = w]
· E[(w∗ − w̄T )+| w0 = w]

1− β
, (2.9)

where (w∗ − w̄T )+ ≡ max{w∗ − w̄T , 0}. We see that the first factor
in (2.9) is the reciprocal of the hurdle introduced by (2.6), and the
second factor is proportional to the expected value of the European
put option on the supremum of wage with the strike price w∗ and the
random expiration date T . Equivalently, we can write (2.9) as

Vs(w; w∗) =
w

E[w̄T | w0 = w]

∞∑
t=0

βtE[(w∗ − w̄t)+| w0 = w]. (2.10)

The last equation makes it clear that the option value of searching is
positive as long as the supremum of wage is below the reservation wage,
and at the reservation wage, the option value of searching vanishes.

Alternatively, the value of the offer can be decomposed as

V (w; w∗) =
b

1− β
+ Ve(w; w∗), w < w∗; (2.11)

here the first summand is the value of staying unemployed forever, and
Ve(w; w∗) is the option value of future employment opportunities. The
option value is

Ve(w; w∗) =
w

E[w̄T | w0 = w]
· E[(w̄T − w∗)+| w0 = w]

1− β
. (2.12)

The second factor in (2.12) is determined by the expected value of the
European call option on the supremum of wage with the strike price
w∗ and the random date of expiry T .
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Finally, we can write

Ve(w; w∗)− Vs(w; w∗) =
w − b

1− β
.

The last equation says that the difference between the option value
of future employment opportunities and the option value of searching
equals the present value of the gain of accepting the current offer.

3. Benchmark model: proofs

3.1. Reduction to the Wiener-Hopf equation. Here we present
the rigorous derivation of the results described in Section 2; the most
technical parts of the proof are delegated to the Appendix. In Section
2, we used the current wage as the state variable, which is non-negative,
therefore the state space there is R+. In order to prove the results, we
use the state space for log-wages, which is R, because the choice of the
half-line as the state space requires much more difficult technique. So,
instead of characterizing the state by w, we use x = ln w as a generic
state variable; and w(x) = ex is the current wage offer. Fix a candidate
for the log-reservation wage, h ∈ R, and set W (x; h) = V (w(x); w(h)),
We(x; h) = Ve(w(x); w(h)), Ws(x; h) = Vs(w(x); w(h)).

In order to find the value function W (·; h), we want to reduce the
original optimization problem to the Wiener-Hopf equation and solve
the latter by the Wiener-Hopf factorization method. This method
can be applied and explained in the easiest way when one deals with
bounded functions. However in our model, the value function is un-
bounded because with the optimal choice of the reservation wage,
the value function grows in the same way as the wage, that is ex-
ponentially. To deal with the problem, we introduce the wage ceiling
wn(x) ≡ min{w(x), w(n)}, where n > ln b. Let W n be the value func-
tion defined by (2.1) for the case when the worker faces the wage offer
wn, and w(h) is chosen as a candidate for the reservation wage. Since
the instantaneous utility of the worker cannot be greater than w(n),
function W n is bounded by w(n)/(1−β). Clearly, for each x, W n(x; h)
increases with n, and by the monotone convergence theorem,

lim
n→∞

W n(x; h) = W (x; h).

After the analytic expression for W n(x; h) is obtained, we will pass to
the limit and find W (x; h).

For a Markov process X, denote a family of operators, {Pt}, acting
in L∞(R) as follows:

Ptf(x) = E[f(Xt) | X0 = x].
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Set P ≡ P1. Clearly, ‖Pt‖ = 1, ∀ t, and by the law of iterated ex-
pectations, Pt = P t. Following the same reasoning as in Section 2, we
conclude that W n satisfies the following system:

W n(x; h) =
wn(x)

1− β
, if x ≥ h; (3.1)

W n(x; h) = b + βPW n(x; h), if x < h. (3.2)

As before, define the option value of searching by

W n
s (x; h) = W n(x; h)− wn(x)

1− β
. (3.3)

Notice that W n
s is bounded and

lim
n→∞

W n
s (x; h) = W (x; h)− w(x)

1− β
= Ws(x; h).

Equations (3.1)–(3.3) imply that

(I − βP )W n
s (x; h) = −(I − βP )gn

0 (x), x < h; (3.4)

W n
s (x; h) = 0, x ≥ h, (3.5)

where gn
0 (x) ≡ (wn(x)− b)/(1− β). Introduce

gn(x) ≡ gn
0 (x + h), (3.6)

W̃ n(x) ≡ W n
s (x + h; h), (3.7)

and rewrite the problem (3.4)–(3.5) as

(I − βP )W̃ n(x) = −(I − βP )gn(x), x < 0; (3.8)

W̃ n(x) = 0, x ≥ 0. (3.9)

Equation (3.8) subject to (3.9) is called the Wiener-Hopf equation; it
can be solved by the Wiener-Hopf factorization method. The method
can be applied in different (essentially equivalent) analytical and sto-
chastic forms - see the discussion in Boyarchenko and Levendorskǐi
(2002). Unlike in the above monograph, here we use the stochastic
form till the end when it is necessary to obtain explicit formulas and
the analytical tools become indispensable. We believe that this form
is more suitable for applications in Economics.

We know that W̃ n and gn are bounded, therefore we may look for
a solution to the system (3.8)–(3.9) in L∞(R). For W̃ n, a solution to
(3.8)–(3.9), define function g1 by

(I − βP )W̃ n = −(I − βP )gn + g1. (3.10)
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By construction, g1 ∈ L∞(R) and vanishes on R−; hence g1 ∈ L∞(R+).
3 It is obvious that the problem (3.8)–(3.9) is equivalent to the following
problem: find W ∈ L∞(R−) and g1 ∈ L∞(R+) which satisfy (3.10).

3.2. Expected present value and resolvent. If g1 in (3.10) had
been known, W̃ n could have been found easily by using the inverse to
I − βP :

(I − βP )−1 = I + βP + β2P 2 + · · · =
∞∑

t=0

βtP t. (3.11)

The series converges because ‖βP‖ = β‖P‖ = β ∈ (0, 1). By applying
(3.11) to (3.10) we would have obtained

W̃ n = −gn + (I − βP )−1g1 = −gn +
∞∑

t=0

βtP tg1. (3.12)

Recall that P tg1 = E[g1(Xt)| X0 = x], hence we can rewrite the last
equation as

W̃ n = −gn + Uβ
Xg1,

where Uβ
X is the resolvent operator of the process X, defined by

(Uβ
Xf)(x) ≡ E

[ ∞∑
t=0

βtf(Xt)| X0 = x

]
=

∞∑
t=0

βtE[f(Xt)| X0 = x].

In other words, the resolvent operator applied to a function f gives the
expected present value of the stochastic stream f(Xt). The argument
above shows that for the random walk X,

Uβ
X(I − βP ) = (I − βP )Uβ

X = I or

Uβ
X = (I − βP )−1 and (Uβ

X)−1 = I − βP. (3.13)

3.3. Infimum and supremum processes and Wiener-Hopf fac-
torization. If g1 had been known, to find W̃ n, it would have sufficed
to compute the expected present value of the stream g1(Xt). Unfor-
tunately, g1 is unknown, so (3.12) does not help. Nevertheless, W̃ n

can be written in terms of resolvents (expected present values) not
of the random walk X, but of the processes Nt = min0≤s≤t Xs and
Mt = max0≤s≤t Xs which are called the infimum and supremum pro-
cesses respectively, as their analogs in continuous time. The Wiener-
Hopf factorization theorem (see the Appendix) allows one to factorize

3Recall that one writes f ∈ L∞(R∓), if f ∈ L∞(R) vanishes on R±. Clearly,
L∞(R∓) ⊂ L∞(R) is a subspace.
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Uβ
X into the product of resolvents of the processes N = {Nt} and

M = {Mt}:
(1− β)−1Uβ

X = Uβ
MUβ

N = Uβ
NUβ

M . (3.14)

Using (3.13) and (3.14) we can rewrite (3.10) as

(Uβ
N)−1(Uβ

M)−1W̃ n = −(Uβ
N)−1(Uβ

M)−1gn + (1− β)g1. (3.15)

Notice that to justify (3.15), we need to know that Uβ
N and Uβ

M are

invertible in L∞(R). We prove the boundedness of the inverses to Uβ
M

and Uβ
N as follows: first, I − βP is bounded. Second, Uβ

M and Uβ
N are

bounded (it suffices to notice that |E[f(x + Mt)]| ≤ ||f ||, hence the

norm of Uβ
M is bounded by 1 + β + β2 + · · · = (1− β)−1, and the same

holds with N instead of M), and finally, on the strength of (3.14), the
inverses

(Uβ
M)−1 = (1− β)(I − βP )Uβ

N (3.16)

and
(Uβ

N)−1 = (1− β)(I − βP )Uβ
M

are bounded as well.
For the next step, we need the following lemma.

Lemma 1. Let z ∈ (0, 1). Then
a) For any f ∈ L∞(R−), we have U z

Mf ∈ L∞(R−), and moreover,
U z

M : L∞(R−) → L∞(R−) is invertible;
b) For any f ∈ L∞(R+), we have U z

Nf ∈ L∞(R+), and moreover,
U z

N : L∞(R+) → L∞(R+) is invertible.

Proof. a) Let x > 0. Then for each t, and each realization Mt(ω),
ω ∈ Ω, of Mt, we have f(x + Mt(ω)) = 0, and hence E[f(x + Mt)] = 0.
Thus, U z

Mf(x) = 0. To prove that (U z
M)−1f(x) = 0 as well, a more

detailed study of the structure of U z
M is needed (see the Appendix).

b) is proved similarly. ¤
Now we can explicitly solve (3.15). We have g1 ∈ L∞(R+), hence by

applying Uβ
N to (3.15), we get

(Uβ
M)−1W̃ n = −(Uβ

M)−1gn + g2, (3.17)

where g2 ∈ L∞(R+). By construction, W̃ n ∈ L∞(R−), and on the
strength of Lemma 1, the LHS in (3.17) belongs to L∞(R−). Hence,
by multiplying (3.17) with 1(−∞,0), the indicator function of (−∞, 0),
we obtain

(Uβ
M)−1W̃ n = −1(−∞,0)(U

β
M)−1gn. (3.18)

Next, we apply Uβ
M to (3.18):

W̃ n = −Uβ
M1(−∞,0)(U

β
M)−1gn,
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and using (3.6) and (3.7), we obtain

W n
s (x; h) = −

(
Uβ

M1(−∞,h)(U
β
M)−1gn

0

)
(x). (3.19)

We have found a unique bounded solution to the Wiener-Hopf equation;
hence, it is the option value of searching W n

s . In the Appendix, we show
that

lim
n→∞

W n
s (x; h) = −

(
Uβ

M1(−∞,h)(U
β
M)−1g0

)
(x). (3.20)

Hence, the option value of searching for the original problem is given
by

Ws(x; h) = −
(
Uβ

M1(−∞,h)((1− β)Uβ
M)−1(e· − b)

)
(x). (3.21)

To derive explicit formulas for the reservation wage and value func-
tion, we introduce

φ+(β, ξ) = E
[
eiξMT | X0 = 0

]
= (1− β)Uβ

M(eiξx)|x=0

Notice that

(1− β)Uβ
Meγx = (1− β)

∞∑
t=0

βtE
[
eγXt | X0 = x

]

= eγx(1− β)
∞∑

t=0

βtE
[
eγXt | X0 = 0

]

= eγx(1− β)Uβ
Meγx|x=0,

whence
(1− β)Uβ

Meγx = φ+(β,−iγ)eγx, (3.22)

and one easily derives that ((1− β)Uβ
M)−1eγx = φ+(β,−iγ)−1eγx. Now

we can rewrite (3.21) as

Ws(x; h) =
(
Uβ

M1(−∞,h)(b− φ+(β,−i)−1e·)
)

(x). (3.23)

Theorem 2. Let h∗ be a (unique) solution to

φ+(β,−i)−1eh − b = 0. (3.24)

Then w∗ = eh∗ is the reservation wage.

Proof. First notice that the optimality condition (2.5) can be written
in terms of log-wages and the option value of searching as

W (x; h∗) ≥ W (x; h) ∀ x and h (3.25)

or equivalently,
w

1− β
+ Ws(x; h∗) ≥ w

1− β
+ Ws(x; h) ∀ x and h.
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Therefore to prove the optimality of the choice of h = h∗, we need
to check condition (3.25). If in addition, we show that (3.25) holds
as a strict inequality for some x and h 6= h∗, then the choice of the
reservation wage is unique. Let y(x) = b − φ+(β,−i)−1ex. Consider
the difference

W (x; h∗)−W (x; h) = Ws(x; h∗)−Ws(x; h)

=
(
Uβ

M(1(−∞,h∗) − 1(−∞,h))y
)

(x).

Notice that y(x) is positive for x < h∗ and negative for x > h∗. Hence
the function

(
(1(−∞,h∗) − 1(−∞,h))y

)
(x) is non-negative and positive on

(h, h∗) if h < h∗ (or on (h∗, h) if h > h∗)). Since the resolvent operator
maps non-trivial non-negative functions into non-trivial non-negative
ones, we conclude that h∗ satisfies the optimality condition (3.25) which
holds as a strict inequality for some x and h 6= h∗.

¤
It remains to substitute

φ+(β,−i) = E[eMT | X0 = 0] = E[w̄T | w0 = 1]

into (3.24) to get (2.6). Thus the first main result obtains.
To derive the formula for the option value of searching, we use (3.24)

to rewrite (3.23) as

Ws(x; h∗) = φ+(β,−i)−1
(
Uβ

M1(−∞,h)(e
h∗ − e·)

)
(x).

Using the definition of φ+(β,−i) and that of the resolvent, one obtains
the following formula:

Ws(x; h∗) = E
[
eMT | X0 = 0

]−1
∞∑

t=0

βtE
[(

eh∗ − eMt
)
+
| X0 = x

]

=
ex

E [eMT | X0 = x]
·
E

[(
eh∗ − eMT

)
+
| X0 = x

]

1− β

Substituting wages for the log-wages in the last equation, one gets (2.9).
Finally, recall that

We(x; h) = W (x; h)− b

1− β
= Ws(x; h) +

ex − b

1− β
,

and use (3.21) to derive

We(x; h) =
ex − b

1− β
−

(
Uβ

M1(−∞,h)((1− β)Uβ
M)−1(e· − b)

)
(x)

=
(
Uβ

M1[h,∞)((1− β)Uβ
M)−1(e· − b)

)
(x).



14 S. BOYARCHENKO

Following the same steps as before, we arrive at

We(x; h∗) =
ex

E [eMT | X0 = x]
·
E

[(
eMT − eh∗

)
+
| X0 = x

]

1− β
.

Thus, the formulas for the option value of searching and option value
of the future employment opportunities obtain.

4. Model with layoffs

Suppose that each period after the first period on the job, the worker
faces a probability 0 < λ < 1 of being laid off. The probability λ of
being laid off next period is assumed to be independent of tenure. If
the worker is laid off, she gets the unemployment income b immediately
and sits out a period before a new offer may arrive. As in Section 2,
we look for the reservation wage w∗. Fix an arbitrary ŵ, a candidate
for the reservation wage. Let A(w; ŵ) be the value of accepting the
current offer w and U(w; ŵ) be the value of rejecting the offer. Then
the value function of the worker is given by

V (w; ŵ) = max{A(w; ŵ), U(w; ŵ)}.
Now we specify U(w; ŵ) and A(w; ŵ). if the worker rejects the offer,
she receives b this period and a new offer next period, therefore the
value of rejecting the offer is

U(w; ŵ) = b + βE[V (w1; ŵ)| w0 = w]. (4.1)

If the worker accepts the offer, she receives w immediately; with prob-
ability λ she is laid off the next period and becomes unemployed, and
with probability 1 − λ she remains on the job. Therefore the value of
accepting is

A(w; ŵ) = w + λβE[U(w1; ŵ)| w0 = w] + (1− λ)βA(w; ŵ).

Substituting (4.1) for U , we can solve the last equation for A(w; ŵ):

A(w; ŵ) =
w + λβb

1− β(1− λ)
+

λβ2

1− β(1− λ)
E[V (w2; ŵ)| w0 = w]. (4.2)

Here we used the law of iterated expectations:

E [E[V (w2; ŵ)| w1]| w0 = w] = E[V (w2; ŵ)| w0 = w].

Write (4.1) and (4.2) as

V (w; ŵ) = b + βE[V (w1, ŵ)| w0 = w], if w < ŵ;

V (w; ŵ) =
w + λβb

1− β(1− λ)
+ β̃E[V (w2, ŵ)| w0 = w], if w ≥ ŵ,
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where β̃ ≡ λβ2

1−β(1−λ)
. Introduce, as before, the option value of searching

Vs(w; ŵ) = V (w; ŵ)− A(w; ŵ).
Further we proceed as in Section 3. We change the state space from

R+ to R, the state space of log-wages, and keep the notation for the
value functions as in Section 3. Next, we consider the value function
W n(x; h) for the optimization problem with the wage ceiling wn(x) (see
Section 3). This value function satisfies the following equations:

W n(x; h) = b + βPW n(x; h), if x < h; (4.3)

W n(x; h) =
wn(x) + λβb

1− β(1− λ)

+ β̃E[W n(x + Y1 + Y2; h)], if x ≥ h. (4.4)

On the RHS of (4.4), we see the sum of two copies of i.i.d. Yj; hence
it is natural to consider not only the process X = {Xt}t≥0, but the

process X̃ ≡ {X2t}t≥0 as well. Let {P̃t} be the corresponding family of

operators: P̃tf(x) = E[f(X̃t)| X0 = x]. Set P̃ = P̃1 and notice that by
the law of iterated expectations, P̃ = P 2.

For the problem with the wage ceiling, the option value of searching
is defined by

W n
s (x; h) = W n(x; h)− An(x; h),

which (on the strength of (4.4)) is equivalent to

W n
s (x; h) = (I − β̃P̃ )W n(x; h)− gn

1 (x), (4.5)

where gn
1 (x) = (wn(x) − b)/(1 − β(1 − λ)). As in Section 3, we will

solve the problem (4.3)–(4.4) for the option value of searching. First,
by (4.5),

W n(x; h) = (I − β̃P̃ )−1W n
s + (I − β̃P̃ )−1gn

1 (x), (4.6)

next, by substituting (4.6) into (4.3)–(4.4) we arrive at the system

(I − βP )(I − β̃P̃ )−1W n
s (x; h) = −(I − βP )(I − β̃P̃ )−1gn

1 (x), x < h;

W n
s (x; h) = 0, x ≥ h.

Set

gn(x) = gn
1 (x + h); (4.7)

W̃ n(x) = W n
s (x + h; h), (4.8)

then W̃ n
s (x) is a solution to

(I−βP )(I− β̃P̃ )−1W̃ n(x) = −(I−βP )(I− β̃P̃ )−1gn(x), x < 0; (4.9)

W̃ n(x) = 0, x ≥ 0. (4.10)
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Problem (4.9)–(4.10) is equivalent to; find W̃ n ∈ L∞(R−) and g2 ∈
L∞(R+) satisfying

(I−βP )(I−β̃P̃ )−1W̃ n(x) = −(I−βP )(I−β̃P̃ )−1gn(x)+g2(x). (4.11)

Let U β̃

X̃
be the resolvent and M̃ , Ñ be the supremum and infimum

processes for X̃. Then

(I − β̃P̃ )−1 = U β̃

X̃
, (4.12)

and by the Wiener-Hopf factorization,

(1− β̃)−1U β̃

X̃
= U β̃

M̃
U β̃

Ñ
= U β̃

Ñ
U β̃

M̃
.

Also, we have

(U β̃

M̃
)−1 = (1− β̃)(I − β̃P̃ )U β̃

Ñ
. (4.13)

Therefore, we may rewrite (4.11) as

(Uβ
N)−1(Uβ

M)−1U β̃

Ñ
U β̃

M̃
W̃ n(x) = −(Uβ

N)−1(Uβ
M)−1U β̃

Ñ
U β̃

M̃
gn(x)

+ (1− β)(1− β̃)−1g2(x). (4.14)

Using Lemma 1, we can explicitly solve (4.14). First, notice that the
resolvents of the supremum and infimum processes of X and X̃ com-
mute (see the Appendix), hence the factors in (4.14) do. Second, recall

that g2 ∈ L∞(R+), hence by applying Uβ
N and (U β̃

Ñ
)−1 to (4.14), we

obtain

(Uβ
M)−1U β̃

M̃
W̃ n(x) = −(Uβ

M)−1U β̃

M̃
gn(x) + G2(x), (4.15)

where G2 ∈ L∞(R+). By construction, W̃ n ∈ L∞(R−), and therefore
by Lemma 1, the LHS in (4.15) belongs to L∞(R−). Hence, multiplying
(4.15) by 1(−∞,0), we arrive at

(Uβ
M)−1U β̃

M̃
W̃ n(x) = −1(−∞,0)(U

β
M)−1U β̃

M̃
gn(x),

whence we derive

W̃ n(x) = −(U β̃

M̃
)−1Uβ

M1(−∞,0)(U
β
M)−1U β̃

M̃
gn(x). (4.16)

Finally, we return to the original variables and on the strength of (4.7)
and (4.8) obtain from (4.16)

W n
s (x; h) = −(U β̃

M̃
)−1Uβ

M1(−∞,h)(U
β
M)−1U β̃

M̃
gn
1 (x). (4.17)

Thus, we have got a unique bounded solution to the Wiener-Hopf equa-
tion (4.9)–(4.10), therefore W n

s is the option value of searching in the
problem with the wage ceiling. Similarly as it was done in Section 3,
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it is possible to show that one can use (3.16), (4.13), and the mono-
tone convergence theorem and pass to the limit in (4.17) as n →∞ to
compute the option value of searching in the original problem:

Ws(x; h) = −(U β̃

M̃
)−1Uβ

M1(−∞,h)(U
β
M)−1U β̃

M̃
g1(x)

= −
(

(U β̃

M̃
)−1Uβ

M1(−∞,h)(U
β
M)−1U β̃

M̃

e· − b

1− β(1− λ)

)
(x).

Notice that (1 − β(1 − λ))−1 = (1 − β̃)(1 − β)−1(1 + λβ)−1, hence we
can rewrite the last equation as

(1 + λβ)Ws(x; h) =

= −
(
(U β̃

M̃
)−1Uβ

M1(−∞,h)((1− β)Uβ
M)−1(1− β̃)U β̃

M̃
(e· − b)

)
(x).

Introduce

φ̃+(β̃, ξ) = (1− β̃)U β̃

M̃
eiξx|x=0,

and use (3.22) to derive the following formula:

Ws(x; h) = (1+λβ)−1(U β̃

M̃
)−1Uβ

M1(−∞,h)(b−φ+(β,−i)−1φ̃(β̃,−i)e·)(x).

By (4.13), the last formula is equivalent to

Ws(x; h) = (1 + λβ)−1(1− β̃)(I − β̃P̃ )U β̃

Ñ
Uβ

M1(−∞,h)(b−
− φ+(β,−i)−1φ̃(β̃,−i)e·)(x). (4.18)

Also, we may pass to the limit as n → ∞ in (4.6) and using (4.12),
derive

W (x; h) = (I − β̃P̃ )−1Ws +

(
U β̃

X̃

(
w(·) + λβb

1− β(1− λ)

))
(x), (4.19)

whence we obtain the value of the offer using (4.18) and the definition
of the resolvent:

W (x; h) =
λβb

(1− β)(1 + λβ)
+

U β̃

X̃
w(x)

1− β(1− λ)

+
1− β

1− β(1− λ)
U β̃

Ñ
Uβ

M1(−∞,h)(b− φ+(β,−i)−1φ̃(β̃,−i)e·)(x). (4.20)

Theorem 3. Let h∗ be a (unique) solution to

φ+(β,−i)−1φ̃(β̃,−i)eh − b = 0. (4.21)

Then w∗ = eh∗ is the reservation wage.

Proof. Is similar to the proof of Theorem 2, and the same uniqueness
(of the reservation wage) result obtains. ¤
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Substituting the values of factors φ(β,−i) and φ̃(β̃,−i) into (4.21),
one gets

w∗

b
=

(1− β)
∑∞

t=0 βtE
[
eMt | X0 = 0

]

(1− β̃)
∑∞

t=0 β̃tE
[
eM̃t | X0 = 0

] . (4.22)

Let $t = eM̃t be the supremum of the wage process with two time units
as a basic time unit. Then in terms of wages,

w∗

b
=

(1− β)
∑∞

t=0 βtE [w̄t| w0 = 1]

(1− β̃)
∑∞

t=0 β̃tE [$t| w0 = 1]
. (4.23)

The last equation says that in the model with layoffs, the hurdle is
proportional to the ratio of two expected present values: the one in the
numerator is computed for the stream of payoffs of the supremum of
wages, and the value in the denominator is calculated for the stream
of payoffs of the supremum of wages offered every other period and
discounted by β̃.

Equivalently, one can write the reservation wage equation (4.23) as
follows:

w∗

b
=

∑∞
t=0 βtE [w̄t| w0 = w]∑∞

t=0 βtw
·

∑∞
t=0 β̃tw∑∞

t=0 β̃tE [$t| w0 = w]
.

Hence the hurdle can be written as a product of two factors: the first
one accounts for the risk of future positive jumps in wage offers (it is the
hurdle in the benchmark model). The second factor is the reciprocal

of the hurdle in the benchmark model with the discount factor β̃ and
wage offers arriving every other period. This factor compensates the
risk of future positive jumps in wages because the worker can be laid
off with positive probability, and if this happens, the worker gets a new
offer in a period from the moment of layoff.

To obtain the formula for the value function, we introduce

V(w) =
∞∑

t=0

βtE[(w∗ − w̄t)+| w0 = w],

which is one of the factors in the option value of searching in the bench-

mark model (see (2.10)). Let {w̃t} = {w2t} and ωt = eÑt be respec-
tively the wages and the infimum of wages which are offered every other
period. Set

Υ(w) =
∞∑

t=0

β̃tE[V(ωt)| w0 = w].
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From (4.20) and (4.22), one derives

V (w; w∗) =
λβb

(1− β)(1 + λβ)
+

∑∞
t=0 β̃tE[w̃t| w0 = w]

1− β(1− λ)

+
b(1− β)

w∗(1− β(1− λ))
Υ(w). (4.24)

If λ = 0, then (4.22) and (4.24) reduce to (2.7) and (2.8) and (2.10) for
the reservation wage and value function in the benchmark model.

5. Numerical example

Consider the random walk with the probability distribution P (dx) =
p(x)dx, where

p(x) = c−(−λ−)eλ−x1[0,+∞)(x) + c+λ+eλ+x1(−∞,0)(x), (5.1)

and λ− < −1 < 0 < λ+, c± > 0, c++c− = 1. Here c+ and c− character-
ize the intensity of negative and positive jumps in wages respectively,
and the relative intensity of large positive (respectively negative) jumps
increases in −λ−1

− (respectively, λ−1
+ ). Denote by p̂ the Fourier trans-

form of p, and calculate

p̂(−ξ) =

∫ +∞

−∞
eixξp(x)dx

= c−(−λ−)

∫ ∞

0

eixξ+λ−xdx + c+λ+

∫ 0

−∞
eixξ+λ+xdx

=
c−(−λ−)

−λ− − iξ
+

c+λ+

λ+ + iξ

=
−λ−λ+ − iξ(c−λ− + c+λ+)

(−λ− − iξ)(λ+ + iξ)
.

Let z ∈ (0, 1). To calculate φ+(z,−i), which enters the reservation
wage equation (3.24) for z = β in the benchmark model, we need to
factorize

1− zp̂(−ξ) =
(1− z)(−λ−λ+)− iξ(λ+ + λ− − z(c−λ− + c+λ+)) + ξ2

(−λ− − iξ)(λ+ + iξ)

Set ξ = −iα, then the equation

1− zp̂(−ξ) = 0 (5.2)

turns into

α2 + α(λ+ + λ− − z(c−λ− + c+λ+))− (−λ−λ+)(1− z) = 0. (5.3)
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The roots of (5.3) are

α±(z) =
1

2
[−(λ− + λ+) + z(c−λ− + c+λ+)±

√
D], (5.4)

where

D = [(λ− + λ+)− z(c−λ− + c+λ+)]2 + 4(1− z)(−λ−λ+).

Since z < 1 and −λ−λ+ > 0, we conclude that α+(z) > 0 and α−(z) <
0, hence (5.2) has one root−iα+(z) in the lower half-plane, and one root
−iα−(z) in the upper half-plane. Recall the Wiener-Hopf factorization
formula (A.7)

1− z

1− zp̂(−ξ)
= φ+(z, ξ)φ−(z, ξ).

Since the LHS in the last formula is a rational function, it is possible to
show that φ+(z, ξ) (respectively, φ−(z, ξ)) is a rational function which
has neither zeros nor poles in the half-plane =ξ > 0 (respectively,
=ξ < 0), and φ±(z, 0) = 1 (see, e.g., Boyarchenko and Levendorskǐi
(2002), Chapter 13). Therefore,

φ+(z, ξ) =
(−λ− − iξ)α+(z)

−λ−(α+(z)− iξ)
, (5.5)

and

φ−(z, ξ) =
(λ+ + iξ)(−α−(z))

λ+(−α−(z) + iξ)
. (5.6)

Now, for the benchmark model, z = β, hence by (3.24),

w∗
b

= φ+(β,−i) =
(−λ− − 1)α+(β)

−λ−(α+(β)− 1)
. (5.7)

Recall, that in the model with layoffs P̃ = P 2, therefore in this
model, we have to factorize

1− β̃

1− β̃p̂(−ξ)2
=

(
1− β̃1/2

) (
1 + β̃1/2

)
(
1− β̃1/2p̂(−ξ)

) (
1 + β̃1/2p̂(−ξ)

)

= φ̃+(β̃, ξ)φ̃−(β̃, ξ).

By the same reasoning as above, we conclude that

φ̃+(β̃, ξ) = φ+
(
β̃1/2, ξ

)
φ+

(
−β̃1/2, ξ

)
, (5.8)

and

φ̃−(β̃, ξ) = φ−
(
β̃1/2, ξ

)
φ−

(
−β̃1/2, ξ

)
. (5.9)
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Using (4.21), we derive

w∗

b
=

φ+(β,−i)

φ̃+(β̃,−i)

=
φ+(β,−i)

φ+
(
β̃1/2,−i

)
φ+

(
−β̃1/2,−i

)

=
(−λ− − 1)α+(β)(α+(β̃1/2)− 1)(α+(−β̃1/2)− 1)

−λ−α+(β̃1/2)α+(−β̃1/2)(α+(β)− 1)
. (5.10)

Notice that (5.1) can be viewed as the simplest way of approximation of
the empirical probability density of log-wages by exponential polynomi-
als. More sophisticated approximations with exponential polynomials
can be used as well which still keep the model analytically tractable.
Even the simple four parameter family of processes considered here
contains jumps in both directions and allows to control sizes of large
and small jumps. At the same time, the factors in the Wiener-Hopf
factorization formula can be calculated explicitly in terms of roots of
a quadratic equation. The analytical formulas (5.7) and (5.10) for the
reservation wages in the benchmark model and the model with layoffs
can be used for comparative statics analysis. By the latter, one can
infer how unemployed workers respond to the changes in parameters
of the underlying stochastic process. Moreover, in the next section, for
the same PDF, we derive an explicit formula for the expected waiting
time till a job offer is accepted, which also depends on the parameters
of the process for log-wages.

6. Expected waiting time

Assume that the current wage offer w is less than w∗, set y = ln w∗−
ln w = h∗ − x, and consider the waiting time Ry till the job offer is
accepted. This is the random variable defined by

Ry = min{t > 0 | Xt ≥ h∗}.
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The expected waiting time can be calculated as follows:

E[Ry] = E

[ ∞∑
t=0

1(−∞,h∗)(Mt)| X0 = x

]

= E

[ ∞∑
t=0

1(−∞,y)(Mt)| X0 = 0

]

=
∞∑

t=0

E
[
1(−∞,y)(Mt)| X0 = 0

]

= lim
β→1−0

∞∑
t=0

βtE
[
1(−∞,y)(Mt)| X0 = 0

]
,

and finally,
E[Ry] = lim

β→1−0
(Uβ

M1(−∞,y))(0). (6.1)

An analytical form for the last expression can be derived for wide classes
of random walks, but in general, the resulting formula is rather cumber-
some, and uses the explicit formulas for the factors in the Wiener-Hopf
factorization formulas. Here we restrict ourselves to a special case when
the probability density is given by (5.1).

Theorem 4. a) The expected waiting time till a job offer is accepted
is finite if and only if

C0 ≡ λ+(1− c+) + λ−(1− c−) > 0. (6.2)

b) If C0 > 0 then

E[Ry] =
−λ−λ+

C0

(y − 1/λ−). (6.3)

Proof. See the Appendix. ¤
In the case of a continuous probability density, when the tails of

probability density p match at the origin, we have c+ = c− = 1/2, and
(6.2) and (6.3) become simpler:

λ+ + λ− > 0,

equivalently,

m ≡ E[X1] = 1/(−2λ−)− 1/(2λ+) > 0, (6.4)

and

E[Ry] =
1

m
(y − 1/λ−). (6.5)

Condition (6.4) has a simple interpretation: the expected waiting time
is finite if and only if the drift of the log-wage, m, is positive, and if
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it is positive, then (6.5) says that the expected waiting time is inverse
proportional to the drift, as in the deterministic continuous time model.
Notice however that neither the term −1/λ− nor the answer in the
generic case c+ 6= c− admit such simple interpretations.

7. Conclusion

The paper is the first attempt to model wage offers evolving as a geo-
metric random walk as opposed to random draws from independent dis-
tribution in the conventional job-search models. Such non-stationarity
may be due to business cycle effects or idiosyncratic effects (if a worker
remains unemployed for sufficiently long time, the job market may start
viewing her as a loser, which may result in lower wages) or both. From
our point of view, the suggested modeling is more realistic, because the
state of the model today affects its state tomorrow. Hence the agents
when deciding whether to work or not have to take into consideration,
what wages they may be offered tomorrow, given the offers they are
facing today. For the job-search models with and without layoffs, we
obtained closed form solutions for reservation wages, value functions
and the expected waiting time before a job offer is accepted. The re-
sults admit meaningful economic interpretation in terms of expected
present values of relevant payoff streams. The results are mainly driven
by the supremum process for wages, which indicates that for a worker’s
decision whether to accept an offer or not, record setting wages rather
than all wage movements matter.

For a special case of the PDF given by an exponential polynomial,
simple analytical formulas for reservation wages and the expected wait-
ing time are derived, which are suitable for comparative statics analysis.
Nobody would argue that it is crucial to study how labor force partici-
pants respond to variations in exogenous factors. The determination of
the factors affecting the length of time spent out of work by unemployed
individuals is an important matter with significant applications for the
design and impact of policies such as unemployment compensation, for
instance.

We restricted the analysis for the case of linear utility function for
expositional simplicity. The model can be easily generalized for the
case of Cobb-Douglas utility, which is one of the ways to depart from
a representative agent. By varying parameters of the utility function,
one can introduce heterogeneous workers in the job-search models and
consider aggregate labor force fluctuations, which is a prerequisite for
understanding how fluctuations in the nation’s output of goods and
services propagate over time.
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To be more consistent with Macro Economic Theory, it would be
necessary to model log-wages not as a random walk, but as an AR(1)
process. Such extension of our model is also feasible; the solution
is accessible only by quantitative methods, including the finite time
horizon case.

Appendix A

A.1. The Wiener-Hopf factorization. Let z ∈ (0, 1), let Y1, Y2, · · ·
be i.i.d. random variables with the probability distribution µ(dx). Let
Xt = X0 + Y1 + · · · + Yt be the random walk started at 0: X0 = 0,
and denote by µt(dx) the probability distribution of Xt. Let T be a
random variable independent of X and taking values in {0, 1, . . .}, with
P (T = t) = (1− z)zt. Consider the random variable XT .

Theorem 5. (Spitzer (1964))

E
[
eiξXT

]
= E

[
eiξMT

]
E

[
eiξNT

]
. (A.1)

Moreover, we have the Spitzer identities

E
[
eiξMT

]
= exp

[ ∞∑
t=1

zt

t

∫ ∞

0

(eixξ − 1)µt(dx)

]
, (A.2)

and

E
[
eiξNT

]
= exp

[ ∞∑
t=1

zt

t

∫ 0

−∞
(eixξ − 1)µt(dx)

]
. (A.3)

Set

φ+(z, ξ) ≡ E
[
eiξMT

] ≡ (1− z)U z
M(eixξ)|x=0, (A.4)

φ−(z, ξ) ≡ E
[
eiξNT

] ≡ (1− z)U z
N(eixξ)|x=0. (A.5)

Denote by µ̂(ξ) the Fourier transform of µ(dx):

µ̂(ξ) =

∫ +∞

−∞
e−ixξµ(dx).

Since Yj are i.i.d., we have

E
[
eiξXt

]
= µ̂(−ξ)t,
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and therefore

E
[
eiξXT

]
= (1− z)

∞∑
t=0

ztE
[
eiξXt

]
(A.6)

= (1− z)
∞∑

t=0

ztµ̂(−ξ)t

= (1− z)/[1− zµ̂(−ξ)].

By using (A.6), (A.4) and (A.5), we can rewrite (A.1) as

(1− z)/[1− zµ̂(−ξ)] = φ+(z, ξ)φ−(z, ξ). (A.7)

The factors φ± enjoy the following important property.

Lemma 6. For any z ∈ (0, 1), φ±(z, ξ) and 1/φ±(z, ξ) are holomor-
phic and bounded in the half-plane ±=ξ > 0 and continuous up to the
boundary of the half-plane.

Proof. It suffices to notice that the expression under the exponent sign
in (A.2) (resp., (A.3)) is holomorphic in the half-plane =ξ > 0 (resp.,
=ξ < 0) and bounded up to the boundary of the half-plane. ¤

A.2. Resolvents as PDO. Let u be a sufficiently regular function,
say, u ∈ S(R) (that is, u(x) and each of its derivatives decay at infinity
faster than any power of x). Let û be the Fourier transform of u:

û(ξ) =

∫ +∞

−∞
e−ixξu(ξ)dξ.

By the Fourier inversion formula,

u(x) = (2π)−1

∫ +∞

−∞
eixξû(ξ)dξ, (A.8)

therefore

(U z
Xu)(x) = Ex

[ ∞∑
t=0

zt(2π)−1

∫ +∞

−∞
eiXtξû(ξ)dξ

]

= (2π)−1

∫ +∞

−∞
eixξ

∞∑
t=0

ztE[eiXtξ]û(ξ)dξ

= (2π)−1

∫ +∞

−∞
eixξ

∞∑
t=0

ztp̂(−ξ)tû(ξ)dξ

= (2π)−1

∫ +∞

−∞
eixξ(1− zp̂(−ξ))−1û(ξ)dξ.
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Let an operator A be defined by

Au(x) = (2π)−1

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ.

Then one says that A is a pseudo-differential operator (PDO) with the
symbol a and writes A = a(D) (in some cases, the integration along
a different line =ξ = σ in the complex plane must be used - see e.g.
Boyarchenko and Levendorskǐi (2002)). Thus, the resolvent U z

X is a
PDO with the symbol (1− zp̂(−ξ))−1:

U z
X = (1− zp̂(−D))−1.

By using (A.4) and (A.5), we similarly conclude that

(1− z)U q
M = φ+(z, D), (1− z)U q

N = φ−(z, D). (A.9)

A.3. Proof of (3.14). Now we can rewrite (A.7) as

(1− z)(1− zp̂(−D))−1 = φ+(z, D)φ−(z,D),

or equivalently,

(1− z)U z
X = (1− z)U z

M(1− z)U z
N .

Which gives (3.14).

A.4. Proof of Lemma 1. To finish the proof for U z
M , we have to show

that for any f ∈ L∞(R−) and any g ∈ C∞
0 ((0, +∞)),

((U z
M)−1f, g) ≡

∫ +∞

−∞
(U z

M)−1f(x)g(x)dx = 0.

Let −M be the infimum process for the dual process −X; then
∫ +∞

−∞
((U z

M)−1f)(x)g(x)dx =

∫ +∞

−∞
f(x)((U z

−M)−1g)(x),

therefore it suffices to show that for any x < 0,

(1− z)−1((U z
−M)−1g)(x) ≡ (φ̃−(z, D)−1g)(x) = 0,

where φ̃− is the minus-factor in the Wiener-Hopf factorization formula
for the resolvent of the process −X (the reader should not confuse the

notation φ̃− here with the same notation introduced for the process X̃
in the main body of the paper). By using the definition of PDO, we
have

φ̃−(z, D)−1g(x) = (2π)−1

∫ +∞+iσ

−∞+iσ

eixξφ̃−(z, ξ)ĝ(ξ)dξ, (A.10)
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where σ = 0. Since g ∈ C∞
0 ((0, +∞)), its Fourier transform admits

the analytic continuation into the half-space =ξ < 0, and in the closed
half-plane, it satisfies an estimate

|ĝ(ξ)| ≤ CN(1 + |ξ|)−N , (A.11)

for any N , where CN depends on N but not on ξ. By Lemma 6,
φ̃−(z, ξ)−1 is bounded in the same closed half-plane, therefore the inte-
grand in (A.10) admits the estimate (A.11). By the Cauchy theorem,
we may push the line of integration in (A.10) down: σ → −∞; in the
limit, the integral (A.10) vanishes, and we are done.

A.5. Proof of (3.20). First, we use (3.16) to rewrite (3.19) as

W n
s (x; h) = β(1− β)Uβ

M1(−∞,h)PUβ
Ngn

0 (x)

−(1− β)Uβ
M1(−∞,h)U

β
Ngn

0 (x).

By construction, gn
0 (x) ≤ w(x) = ex, therefore, on the strength of

(A.5), Uβ
Ngn

0 (x) ≤ (1− β)−1φ−(β,−i)ex. Using (A.4), one gets

(1− β)Uβ
M1(−∞,h)U

β
Ngn

0 (x) ≤ (1− β)−1φ+(β,−i)φ−(β,−i)ex. (A.12)

Notice that φ−(β,−i) < ∞ by Lemma 6, and using (A.2) and (A.4),
it is straightforward to show that φ+(β,−i) < ∞ due to (2.2). Since

both Uβ
M and Uβ

N are operators with non-negative kernels, and (A.12)
holds, we can use the monotone convergence theorem to get

lim
n→∞

Uβ
M1(−∞,h)U

β
Ngn

0 (x) = Uβ
M1(−∞,h)U

β
Ng0(x) < ∞.

Similarly,

lim
n→∞

Uβ
M1(−∞,h)PUβ

Ngn
0 (x) = Uβ

M1(−∞,h)PUβ
Ng0(x) < ∞,

hence (3.20) obtains.

A.6. Commutativity of resolvents of supremum and infimum
processes of M , N , M̃ and Ñ . Each of these resolvents is a PDO
on R with the symbol independent of the state variable. By applying
the Fourier transform, we see that the product of such two PDO’s is a
PDO whose symbol is the product of the symbols. Hence, these PDO’s
commute.
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A.7. Proof of Theorem 4. Fix y > 0, and define the function u(z) =
1(−∞,y)(z). Let û(ξ) be the Fourier transform of u. It is defined in the
half-plane =ξ > 0, therefore the Fourier inversion formula reads

u(z) = (2π)−1

∫ +∞+iσ

−∞+iσ

eizξû(ξ)dξ, (A.13)

where σ > 0 is arbitrary. By applying Uβ
M to (A.13), and using the

formula Uβ
M = (1−β)−1φ+(β,D) and the definition of PDO, we obtain

(Uβ
M1(−∞,y))(0) =

1

(1− β)2π

∫ +∞+iσ

−∞+iσ

e−iyξφ+(β, ξ)

−iξ
dξ, (A.14)

Then use the explicit formula (5.5) for the factor φ+(β, ξ) and substi-
tute (A.14) into (6.1):

E[Ry] = lim
β→1−0

1

(1− β)2π

∫ +∞+iσ

−∞+iσ

e−iyξφ+(β, ξ)

−iξ
dξ

= lim
β→1−0

1

(1− β)2π

∫ +∞+iσ

−∞+iσ

e−iyξ(−λ− − iξ)α+(β)

(−λ−)(α+(β)− iξ)(−iξ)
dξ.

We can push the line of integration down. It crosses two poles of the
integrand at ξ = 0 and ξ = −iα+(β), and by using the residue theorem,
we obtain for any σ1 < −α+(β):

E[Ry] = lim
β→1−0

1

1− β

(
1− e−yα+(β)−λ− − α+(β)

−λ−

)
(A.15)

+ lim
β→1−0

1

(1− β)2π

∫ +∞+iσ1

−∞+iσ1

e−iyξ(−λ− − iξ)α+(β)

(−λ−)(α+(β)− iξ)(−iξ)
dξ.

By integrating by part in the last integral, we obtain an absolutely
converging integral; moreover, the new integrand admits the bound
via

y−1

∣∣∣∣e−iyξ ∂

∂ξ

(
(−λ− − iξ)α+(β)

(−λ−)(α+(β)− iξ)(−iξ)

)∣∣∣∣ ≤
Ceyσ1

1 + |ξ|2 .

Hence, the integral in (A.15) vanishes in the limit σ1 → −∞, and we
conclude that the last term in (A.15) is zero.

If C0 < 0, then from (5.4), we conclude that α+(β) > 0 remains
bounded away from 0 as β → 1 − 0: α+(β) ≥ d, where d > 0 is
independent of β. Hence,

E[Ry] ≥ lim
β→1−0

1− e−yd

1− β
= +∞.
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If C0 = 0, then from (5.4), α+(β) ∼ d
√

1− β, where d > 0, and hence,

E[Ry] = lim
β→1−0

1− e−yd
√

1−β

1− β
= +∞.

Finally, if C0 > 0, then α+(β) → 0 as β → 1− 0, and moreover,

α+(β)

1− β
→ 4(−λ−λ+)

2(C0 +
√

C2
0 + 0)

=
−λ−λ+

C0

.

Hence,

1

1− β

(
1− e−yα+(β)−λ− − α+(β)

−λ−

)
∼ 1− e−yα+(β)

1− β
+

α+(β)

(1− β)(−λ−)

∼ (y + 1/(−λ−))
α+(β)

1− β

∼ (y + 1/(−λ−))
−λ−λ+

C0

.

Theorem 4 has been proved.
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