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Abstract

We consider linear dynamic models with rational expectations in
case of incomplete and asymmetric information as well as agents het-
erogeneity. This problem requires solving infinite dimensional matrix
equations. We propose asymptotic expansion method to reduce this
problem to the finite dimensional problem.
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1 Introduction
We consider linear dynamic models with rational expectations in case of

incomplete and asymmetric information as well as agents heterogeneity.
Standard rational expectations approach in Lucas spirit, where agents

perfectly observe all variables in the economy, while offering very convenient
and powerful framework, lacks of realism, since in the economy most of the
variables are unobservable or can be observed only with noise. On can how-
ever easily reconcile rational expectations with imperfect knowledge within
bayesian inference framework, where agents gradually and optimally learn
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about the true values of variables in the economy over time based on avail-
able information. Unfortunately introducing incomplete information or, more
generally, bayesian inference greatly complicates model solution techniques.

There exists few algorithm of solving models with imperfect information
e.g. Svensson and Woodford (2004), Dellas (2004), Gerali and Lippi (2003).
These algorithms concentrate however only on case of symmetric informa-
tion, when all agents observe the same small set of economic variables, or
on the special case of asymmetric information or when agents can be ranked
with respect to information set they have1. The second important drawback
of existing methods of solving models with imperfect information is microeco-
nomic incoherence. Only observed variables may influence agents’ decisions.
Thus, if some variable influences the economy, then at least one agent must
perfectly observe this variable. But this is inconsistent with the assump-
tion that only fraction of variables is observed in the economy. Additionally,
since all agents observe their individual states and controls, and these vari-
ables generally are informative with respect to aggregated variables, hence
current algorithms are not well suited for rigorous microeconomic analysis of
macroeconomic phenomena.

In this paper we present a new method of solving models with incom-
plete and asymmetric information. We analyze each agent individually and
allow for quite a large form of heterogeneity, in particular agents may differ
with respect to type, individual state, and information set. Agents observe
variables in the economy with individual and aggregated noise. All agents
observe their individual state.

This problem requires solving infinite dimensional matrix equations and
cannot be solved exactly. We propose asymptotic expansion method around
full information case to reduce this problem to finite dimensional problem.
In this paper we concentrate on first order expansion. Proposed algorithm
requires solving matrix equations witch are standard in linear rational ex-
pectations problems. Moreover we avoid necessity of recursive computations,
which typically arise in models with asymmetric information.

In section 2 we outline the model structure, section 3 presents matrix
equations, which determine solution, in sections 4-6 we formulate and solve
asymptotic expansion of the optimal policy function, section 7 discusses com-
putational issues, finally section 8 concludes.

1Let i and j are any two agents in the economy and Ii
t , Ij

t are information sets of agents
i and j respectively. Then Ii

t ⊂ Ij
t or Ij

t ⊂ Ii
t .
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2 The problem
Consider an economy with I types of agents. For i ∈ I let us denote set of

type i agents as Ωi. Each agent α ∈ Ωi faces the same optimization problem.
Different agents belonging to set Ωi may however differ in their states xα,i

t

and information set I i,α
t . An agent α of type i in state xα,i

t makes decisions
about variables yα,i

t taking aggregate variables, wt, as given. We assume that
optimization problem of the agent leads to linearized first order conditions
in the form

xi,α
t+1 = Ai

1x
i,α
t + Ai

2y
i,α
t + Ai

3ε
i,α
t+1 + Bi

1wt + Bi
3εt+1

0 = E{Ci
1x

i,α
t + Ci

2y
i,α
t + Di

1wt|Iα,i
t }+ E{Gi

1x
i,α
t+1 + Gi

2y
i,α
t+1 + H i

1wt+1|Iα,i
t }
(1)

Information set Iα,i
t determines information available to agent α of type i

in period t. This information set will be described later. The variable εi,α
t

represents individual shocks, the variable εt represents aggregated shocks.
We assume that for each i ∈ I, α ∈ Ωi, {εα,i

t } and {εt} are martingale
difference sequences with respect to any information set Iβ,j

t−1 with increments
normally distributed, var(εt) = I, var(εi,α

t ) = I, where I is an identity matrix,
and EΩi{εα,i

t } = 0.
We allow for incomplete information. Agent α ∈ Ωi does not observe all

variables in the economy but imperfectly observes only a fraction of variables.
However each agent perfectly observes individual state and control variables.
The agent α ∈ Ωi information set Iα,i

t consists of all model parameters and
set of variables Ξi,α

t where

Ξi,α
t = {Zi,α

τ , xi,α
τ ; τ ≤ t}

and variable Zi
τ is given by

Zi,α
τ = wτ + Li

1υτ + Li
2υ

i,α
τ (2)

Information set contain all private state variables, and thus, all private vari-
ables, and a fraction of aggregated variables possibly observed with indi-
vidual as well as aggregated noise. Variables {υt} and {υi,α

t } are martingale
difference sequences with respect to any information set Iβ,j

t−1 with increments
normally distributed, var(υt) = µI, var(υi,α

t ) = µI and EΩi{υi,α
t } = 0, and

µ is a small variance scaling parameter. Additionally let cov(υt, εt) =
√

µV

and cov(υi,α
t , εi,α

t ) =
√

µW .
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2.1 Aggregate variables

Let us denote by xi
t mean state of agents of type i, xi

t = EΩi{xα,i
t }.

Similarly, yi
t = EΩi{yα,i

t }. Let us denote concentration of vectors or matrices,
zi, indexed by elements of set I as col zi, and block-diagonal matrix composed
with vectors or matrices, zi, indexed by elements of set I as diag zi

col(zi) ≡




z1

z2

. . .
zI


 diag(zi) ≡




z1 0 · · · 0

0 z2 . . . ...
... . . . . . . 0
0 · · · 0 zI




We have xt = col(xi
t) and yt = col(yi

t).
To close the model we must yet specify evolution of aggregate variables,

wt. We assume that

wt =




xt

yt

pt


 (3)

and

pt+1 = N1pt + N2wt + N3εt+1 (4)

where pt is a vector of aggregated variables, which does not come from ag-
gregation of individual variables.

3 Solution
In this paper we are going to find some solution to (1) but not all. Thus,

we use a method "guess and verify". Besides the constructed solution there
may exists many other, e.g. possibly even infinite set of sunspot dynamics.

We are going to solve the problem (1) using the method of undetermined
coefficients. In particular, we are going to find solution to (1) in the form

yi,α
t =

∞∑

k=0

P i
kx

i,α
t−k +

∞∑

k=0

Qi
kZ

i,α
t−k (5)

Agents are heterogenous with respect to information sets. This heterogeneity
has two sources – individual states, not observable for other agents in the
economy, and individual shocks in observation of aggregate variables. The
first source of this heterogeneity leads to infinite dimension of the problem
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since it generally would required to take into account all historical informa-
tion concerning individual states to make forecasts about aggregated states.
Since agents have different information sets their must forecast other agents
forecasts too. These forecasts usually have different updating schemes which
prohibits existing low dimensional markovian representation of the solution
to (1). Observe that if we assume that only current individual state and new
information, Zi,α

t−k matter, then we can express the second equation under (1)
as

0 = Aixi,α
t + BiZi,α

t + CE{wt|I i,α
t }+ DE{wt+1|I i,α

t } (6)

where A, B, C, D are appropriate matrices. In case of imperfect information
E{wt|I i,α

t } generally depends on all past individual states and information
as is shown later. Then equation (6) cannot hold for all sequence of shocks
{εt}, {εi,α

t }, {υt}, {υi,α
t } and the method of undetermined coefficients breaks

down. Thus, such a low dimensional representation is impossible.
Only observed variables matter for policy rule (5). Any observed variable

under information set I i,α
t may be expressed as a weighted sum of all current

and lagged variables in the information set, thus, may have representation in
the form (5).

We can express the second condition under (1) using (2) as

0 =
∞∑

k=0

T i
kx

i,α
t−k +

∞∑

k=0

U i
kZ

i,α
t−k +

(
Di

1 + (Gi
1 + Gi

2P
i
0)B

i
1

)
E{wt|I i,α

t }

+ (H i
1 + Gi

2Q
i
0K

i
1)E{wt+1|I i,α

t }
(7)

where

T i
0 = Ci

1 + Ci
2P

i
0 + (Gi

1 + Gi
2P

i
0)(A

i
1 + Ai

2P
i
0) + Gi

2P
i
1

T i
k = Ci

2P
i
k + (Gi

1 + Gi
2P

i
0)A

i
2P

i
k + Gi

2P
i
k+1

U i
m = Ci

2Q
i
m + (Gi

1 + Gi
2P

i
0)A

i
2Q

i
m + Gi

2Q
i
m+1

(8)

for k > 0 and m ≥ 0.
Now, we are going to expand expressions E{xt−k|Iα,i

t }, E{υt−k|Iα,i
t } in

equation (7). Using (37) we can express expectations under private informa-
tion set Iα,i

t as

E{wt+1−k|I i,α
t } =

∞∑
m=0

Φi
k,mxi,α

t−m +
∞∑

m=0

Ψi
k,mZi,α

t−m (9)
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for any k ≥ 0 and i ∈ I where matrices Φi
k,m and Ψi

k,m satisfy

∞∑
p=0

Φi
k,p cov(xi,α

t−p, x
i,α
t−m) +

∞∑
p=0

Ψi
k,p cov(Zi,α

t−p, x
i,α
t−m) = cov(wt+1−k, x

i,α
t−m)

∞∑
p=0

Φi
k,p cov(xi,α

t−p, Z
i,α
t−m) +

∞∑
p=0

Ψi
k,p cov(Zi,α

t−p, Z
i,α
t−m) = cov(wt+1−k, Z

i,α
t−m)

(10)

thus

0 =
∞∑

m=0

(
T i

m + (Di
1 + (Gi

1 + Gi
2P

i
0)B

i
1)Φ

i
1,m + (H i

1 + Gi
2Q

i
0K

i
1)Φ

i
0,m

)
xi,α

t−m

+
∞∑

m=0

(
U i

m + (Di
1 + (Gi

1 + Gi
2P

i
0)B

i
1)Ψ

i
1,m + (H i

1 + Gi
2Q

i
0K

i
1)Ψ

i
0,m

)
Zi,α

t−m

In this way we have a system of matrix equations

0 ≡ T i
m + (Di

1 + (Gi
1 + Gi

2P
i
0)B

i
1)Φ

i
1,m + (H i

1 + Gi
2Q

i
0K

i
1)Φ

i
0,m

0 ≡ U i
m + (Di

1 + (Gi
1 + Gi

2P
i
0)B

i
1)Ψ

i
1,m + (H i

1 + Gi
2Q

i
0K

i
1)Ψ

i
0,m

(11)

for i ∈ I and m ≥ 0 which determine matrices P i
m and Qi

m.

3.1 Aggregated states

Let us assume that dynamics of aggregate variables is

wt+1 =
∞∑

k=0

P̄kwt−k +
∞∑

k=0

Q̄kυt−k + R̄υt+1 + S̄εt+1 (12)

We must find yet matrices P̄k, Q̄k, R̄, S̄. From (4) we have

pt+1 =
(
N1J3 + N2

)
wt + N3εt+1 (13)

where J1, J2, J3 are selecting matrices such that J1wt = xt, J2wt = yt,
J3wt = pt. From (1)

xt+1 =
(
diag(Ai

1)J
1 + diag(Ai

2)J
2 + col(Bi

1)
)
wt + col(Bi

3)εt+1 (14)

6



From (5), (2) and (12) we have

yt+1 =
∞∑

k=0

(Λ0P̄k + Λk+1)wt−k +
∞∑

k=0

(
diag(Qi

k+1) col(Li
1) + Λ0Q̄k

)
υt−k

+ Λ0S̄εt+1 +
(
Λ0R̄ + diag(Qi

0) col(Li
1)

)
υt+1

(15)

where

Λk = diag(P i
k)J1 + diag(Qi

k) (16)

thus, from (3), (13), (14), (15) and (12) we have

R̄ =




0
Λ0R̄ + diag(Qi

0) col(Li
1)

0


 S̄ =




col(Bi
3)

Λ0S̄
N3


 (17)

P̄0 =




diag(Ai
1)J

1 + diag(Ai
2)J

2 + col(Bi
1)

Λ0P̄0 + Λ1

N1J3 + N2


 P̄k =




0
Λ0P̄k + Λk+1

0




(18)

and for k ≥ 0

Q̄k =




0
diag(Qi

k+1) col(Li
1) + Λ0Q̄k

0


 (19)

4 Asymptotic expansion
In this section we are going to construct asymptotic expansion of general

solution to (1) around µ → 0. We are looking for solution to (1) in the form

yi,α
t =

∞∑

k=0

P i
k(µ)xi,α

t−k +
∞∑

k=0

Qi
k(µ)Zi,α

t−k

and we are going to find asymptotic series

yi,α
t ∼

∞∑

k=0

(
P i,0

k + P i,1
k µ +

1

2
P i,2

k µ2 + . . .
)
xi,α

t−k

+
∞∑

k=0

(
Qi,0

k + Qi,1
k µ +

1

2
Qi,2

k µ2 + . . .
)
Zi,α

t−k

(20)
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for µ → 0. Let us express (11) as

0 ≡ T i
m(µ)

+
(
Di

1 + (Gi
1 + Gi

2P
i
0(µ))Bi

1

)
Φi

1,m(µ) +
(
H i

1 + Gi
2Q

i
0(µ)

)
Φi

0,m(µ)

0 ≡ U i
m(µ)

+
(
Di

1 + (Gi
1 + Gi

2P
i
0(µ))Bi

1

)
Ψi

1,m(µ) +
(
H i

1 + Gi
2Q

i
0(µ)

)
Ψi

0,m(µ)

(21)

5 Zero order terms
Assume that µ = 0. Then the problem (1) reduces to the full information

case. In this case Zi,α
t = wt, thus E{wt−k|I i,α

t } = wt−k for k ≥ 0 and from
(9) for any k, m ≥ 0 we have

Φi
k+1,m(0) = 0 Ψi

k+1,m(0) = Iδk,m

Let us suppose that P i,0
k = 0 and Qi,0

k = 0 for k > 0. Then, from (16),
Λk(0) = 0 and P̄k(0) = 0 for k > 0, Q̄k(0) = 0 for k ≥ 0. Thus, for µ = 0
E{wt+1|I iα

t } = P̄0(0)wt since υt+1−k(0) = 0, for any k ≥ 0 and

Φi
0,m(0) = 0 Ψi

0,m(0) = P̄0(0)δ0,m

Hence, (21) reduces to

0 ≡ T i
m(0)

0 ≡ U i
m(0) +

(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1

)
δ0,m +

(
H i

1 + Gi
2Q

i,0
0

)
P̄0(0)δ0,m

and using (8) for m > 0 we have

0 ≡ Ci
2P

i,0
m + (Gi

1 + Gi
2P

i,0
0 )Ai

2P
i,0
m + Gi

2P
i,0
m+1

0 ≡ Ci
2Q

i,0
m + (Gi

1 + Gi
2P

i,0
0 )Ai

2Q
i,0
m + Gi

2Q
i,0
m+1

(22)

and

0 ≡ Ci
1 + Ci

2P
i,0
0 + (Gi

1 + Gi
2P

i,0
0 )(Ai

1 + Ai
2P

i,0
0 ) + Gi

2P
i,0
1

0 ≡ Ci
2Q

i,0
0 + (Gi

1 + Gi
2P

i,0
0 )Ai

2Q
i,0
0 + Gi

2Q
i,0
1

+
(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1

)
+

(
H i

1 + Gi
2Q

i,0
0

)
P̄0(0)

(23)

Matrices P i,0
k = 0, Qi,0

k = 0 for k > 0 satisfy (22). Then the fist condition
under (23) determines P i,0

0 , the second one determines Qi,0
0 .
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6 First order terms
Differentiating (21) with respect to µ yields

0 ≡ d

dµ
T i

m(0) +
(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1

) d

dµ
Φi

1,m(0) +
(
H i

1 + Gi
2Q

i,0
0

) d

dµ
Φi

0,m(0)

0 ≡ d

dµ
U i

m(0) +
(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1

) d

dµ
Ψi

1,m(0) +
(
H i

1 + Gi
2Q

i,0
0

) d

dµ
Ψi

0,m(0)

+ Gi
2Q

i,1
0 P̄0(0)δ0,m

(24)

We have

E{wt+1|I i,α
t } =

∞∑

k=0

P̄kE{wt−k|I i,α
t }+

∞∑

k=0

Q̄kE{υt−k|I i,α
t }

=
∞∑

k=0

∞∑
m=0

P̄kΦ
i
k+1,mxi,α

t−m +
∞∑

k=0

∞∑
m=0

P̄kΨ
i
k+1,mZi,α

t−m +
∞∑

k=0

Q̄kE{υt−k|I i,α
t }

differentiating with respect µ, and taking into account that Q̄k(0) = 0 for
k ≥ 0, yields

d

dµ
E{wt+1|I i,α

t }(0) =
∞∑

m=0

P̄0(0)
d

dµ
Φi

1,m(0)xi,α
t−m(0)

+
∞∑

k=0

d

dµ
P̄k(0)Zi,α

t−k(0) +
∞∑

m=0

P̄0(0)
d

dµ
Ψi

1,m(0)Zi,α
t−m(0)

+ P̄0(0)
d

dµ
Zi,α

t (0)

since value of the variables may depend on µ we explicitly denote that we
consider value of given variable under µ = 0. On the other hand

d

dµ
E{wt+1|I i,α

t }(0) =
∞∑

m=0

d

dµ
Φi

0,m(0)xi,α
t−m(0) +

∞∑
m=0

d

dµ
Ψi

0,m(0)Zi,α
t−m(0)

+ P̄0(0)
d

dµ
Zi,α

t (0)

d

dµ
E{wt|I i,α

t }(0) =
∞∑

m=0

d

dµ
Φi

1,m(0)xi,α
t−m(0) +

∞∑
m=0

d

dµ
Ψi

1,m(0)Zi,α
t−m(0)

+ P̄0(0)
d

dµ
Zi,α

t (0)
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hence for m ≥ 0

d

dµ
Φi

0,m(0) = P̄0(0)
d

dµ
Φi

1,m(0)

d

dµ
Ψi

0,m(0) = P̄0(0)
d

dµ
Ψi

1,m(0) +
d

dµ
P̄m(0)

(25)

From (10) we have

0 = cov(W i,α
t , xi,α

t−m)(0) +
d

dµ
cov(Li

1υt + Li
2υ

i,α
t , xi,α

t−m)(0)

0 = cov(W i,α
t , Z i,α

t−m)(0) +
d

dµ
cov(Li

1υt + Li
2υ

i,α
t , Z i,α

t−m)(0)

(26)

where

Wt =
∞∑

p=0

d

dµ
Φi

1,px
i,α
t−p +

∞∑
p=0

d

dµ
Ψi

1,pZ
i,α
t−p

thus, for m > 0, E{W i,α
t |I i,α

t−m} = 0 and there exists matrices Ξi
1, Ξi

2, Ξ̄i
1, Ξ̄i

2

such that Wt = Ξi
1εt + Ξi

2ε
i,α
t + Ξ̄i

1υt + Ξ̄i
2υ

i,α
t , thus for m > 0

d

dµ
Φi

1,m(0) = 0
d

dµ
Ψi

1,m(0) = 0

and (26) reduces to

0 =
d

dµ
Φi

1,0(0) var(xi,α
t )(0) +

d

dµ
Ψi

1,0(0) cov(Zi,α
t , xi,α

t )(0)

+
d

dµ
cov(Li

1υt + Li
2υ

i,α
t , xi,α

t )(0)

0 =
d

dµ
Φi

1,0(0) cov(xi,α
t , Z i,α

t )(0) +
d

dµ
Ψi

1,0(0) var(Zi,α
t )(0)

+
d

dµ
cov(Li

1υt + Li
2υ

i,α
t , Z i,α

t )(0)

We have from (12) and (1) that

cov(Li
1υt + Li

2υ
i,α
t , Z i,α

t ) = µ(Li
1 + Li

2I
i)R̄′ + µLi

1L
i′
1 + µLi

2L
i′
2

cov(Li
1υt + Li

2υ
i,α
t , xi,α

t ) = 0

where I iυt = EΩi{υi,α
t }. Hence

d

dµ
cov(Li

1υt + Li
2υ

i,α
t , Z i,α

t ) = (Li
1 + Li

2I
i)R̄′ + Li

1L
i′
1 + Li

2L
i′
2

d

dµ
cov(Li

1υt + Li
2υ

i,α
t , xi,α

t ) = 0

10



and

d

dµ
Ψi

1,0(0) =
(
(Li

1 + Li
2I

i)R̄(0)′ + Li
1L

i′
1 + Li

2L
i′
2

)

×
(
cov(Zi,α

t , xi,α
t )(0) var(xi,α

t )(0)−1 cov(xi,α
t , Z i,α

t )(0)− var(Zi,α
t )(0)

)−1

d

dµ
Φi

1,0(0) = − d

dµ
Ψi

1,0(0) cov(Zi,α
t , xi,α

t )(0) var(xi,α
t )(0)−1

(27)

Observe that matrices d/µΨi
1,0(0) and d/dµΦi

1,0(0) are already known. Con-
ditions (24) take now the form for m > 0

0 ≡ d

dµ
T i

m(0)

0 ≡ d

dµ
U i

m(0) +
(
H i

1 + Gi
2Q

i,0
0

) d

dµ
P̄m(0)

(28)

from (8) we have

d

dµ
T i

0(0) = C i
2P

i,1
0 + Gi

2P
i,1
0 (Ai

1 + Ai
2P

i,0
0 ) + (Gi

1 + Gi
2P

i,0
0 )Ai

2P
i,1
0 + Gi

2P
i,1
1

d

dµ
T i

k(0) = C i
2P

i,1
k + Gi

2P
i,1
0 Ai

2P
i,0
k + (Gi

1 + Gi
2P

i,0
0 )Ai

2P
i,1
k + Gi

2P
i,1
k+1

d

dµ
U i

m(0) = C i
2Q

i,1
m + Gi

2P
i,1
0 Ai

2Q
i,0
m + (Gi

1 + Gi
2P

i,0
0 )Ai

2Q
i,1
m + Gi

2Q
i,1
m+1

and from (18), for k ≥ 0

J2
d

dµ
P̄k = (I− Λ0)

−1(diag(P i,1
k+1)J1 + diag(Qi,1

k+1)) (29)

the first equation under (28) takes now the form

0 ≡ C i
2P

i,1
k + Gi

2P
i,1
0 Ai

2P
i,0
k + (Gi

1 + Gi
2P

i,0
0 )Ai

2P
i,1
k + Gi

2P
i,1
k+1

this equation is fulfilled by

P i,1
k = 0 for k > 0

suppose that d/dµP̄k(0) = 0 for k ≥ 0. Then, the second equation under
(28) takes the form

0 ≡ Ci
2Q

i,1
m + (Gi

1 + Gi
2P

i,0
0 )Ai

2Q
i,1
m + Gi

2Q
i,1
m+1
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this equation is fulfilled by

Qi,1
k = 0 for k > 0

thus, indeed d/dµP̄k(0) = 0 for k ≥ 0.
Let us now consider the case k = 0. Equations (24) take the form

0 ≡
(
Ci

2 + (Gi
1 + Gi

2P
i,0
0 )Ai

2

)
P i,1

0 + Gi
2P

i,1
0 (Ai

1 + Ai
2P

i,0
0 )

+
(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1 + (H i
1 + Gi

2Q
i,0
0 )P̄0(0)

) d

dµ
Φi

1,0(0)

0 ≡
(
Ci

2 + (Gi
1 + Gi

2P
i,0
0 )Ai

2

)
Qi,1

0 + Gi
2Q

i,1
0 P̄0 + Gi

2P
i,1
0 Ai

2Q
i,0
0

+
(
Di

1 + (Gi
1 + Gi

2P
i,0
0 )Bi

1 + (H i
1 + Gi

2Q
i,0
0 )P̄0(0)

) d

dµ
Ψi

1,0(0)

(30)

Equations (30) determine P i,1
0 and Qi,1

0 and finish computation of first order
correction terms.

7 Notes on computational issues
The first equation under (23) is fairly standard and appears while ana-

lyzing linear dynamic rational models. This matrix equation can be reduced
to appropriate generalized eigenvalue-eigenvector problem and then solved
using generalized Schur decomposition, see Kowal (2005) for further details.
Generalized Schur decomposition is available e.g. in Lapack library.

After solving the first equation under (23) we can determine the matrix
P̄0(0) using (18). Thus, the second equation under (23) becomes generalized
Sylvester matrix equation. This equation is a special case of the generalized
Lyapunov matrix equation

AX − Y B = C

DX − Y E = F
(31)

Equation (31) can be solved using e.g. Slicot library. Having determined
matrices P i,0

0 and Qi,0
0 we can find all covariance matrices required by the

equation (27) and thus also matrices d/dµΦi
1,0(0) and d/dµΨi

1,0(0). Now
equations under (30) become generalized Sylvester matrix equation. Notice
that we can determine full information solution as well as first order correc-
tion terms without using any recursive computations.
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8 Conclusions
In this paper we have presented a method of solving linear rational models

with imperfect and asymmetric information. General imperfect information
problem even in linear framework requires solving infinite dimensional prob-
lems. Proposed asymptotic expansion method is able to deliver approximate
to such problems. We have concentrated on expansion around full informa-
tion case since it allows for direct comparisons with full information case and
thus for assessment of influence of imperfect information on the economy.
Additionally such an expansion allows for relatively easy solution. We have
limited ourselves to first order terms only, but higher order expansions seems
to be possible.
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A Conditional expectations
In this section we closely follow Pollock (1999). Let x and y are random

vectors whose joint distribution is normal. Then there exists a vector α and
a matrix B such that

E(y|x) = α + B′x (32)

thus E(y|x) is also normally distributed. We are going to find α and B.
Multiplying E(y|x) by the marginal density function of x and by integrating
with respect to x yields

E{E(y|x)} = E(y)

On applying this condition to (32) we find that

E(y) = α + B′E(x), or α = E(y)−B′E(x) (33)

Next, by multiplying E(y|x) by x′ and by the marginal density function of
x, and by integrating with respect to x, we obtain the joint moment E(xy′).
Thus, from equation (32), we get

E(yx′) = αE(x) + B′E(xx′) (34)

multiplying the first equation under (33) by E(x′) gives

E(y)E(x′) = αE(x′) + B′E(x)E(x′) (35)

substracting (35) form (34) yields

cov(y, x) = B′{E(xx′)− E(x)E(x′)} = B′ var(x)

where cov(y, x) ≡ E(yx′)− E(y)E(x′) and var(x) ≡ cov(x, x). Thus

B′ = cov(y, x)× var(x)−1 (36)

Substituting (36) and the second equation under (33) to (32) yields

E(y|x) = E(y) + Ψ× (x− E(x))

Ψ = cov(y, x)× var(x)−1 (37)

substracting y form both sides of equation (37) and multiplying by z′−E(z|x)′

yields

cov(y, z|x) = cov(y, z)− cov(y, x) var(x)−1 cov(x, z) (38)

where cov(y, z|x) ≡ cov((y − E(y|x))(z − E(z|x))′).
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