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Abstract

We use CEX repeated cross-section data on consumption and income, to evalu-
ate the nature of increased income inequality in the 1980s and 90s. We decompose
unexpected changes in family income into transitory and permanent, and idiosyn-
cratic and aggregate components, and estimate the contribution of each component
to total inequality. The model we use is a linearized incomplete markets model,
enriched to incorporate risk-sharing while maintaining tractability. Our estimates
suggest that taking risk sharing into account is important for the model Þt; that
the increase in inequality in the 1980s was mainly permanent; and that inequality
is driven almost entirely by idiosyncratic income risk. In addition we Þnd no ev-
idence for cyclical behavior of consumption risk, casting doubt on Constantinides
and Duffie�s (1995) explanation for the equity premium puzzle.
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1 Introduction

There is much and uncontroversial evidence that earnings and income inequality in the
US increased over the last two decades.1 In this paper we try to gain some insight in the
type of income risk that was mainly responsible for this increase. In a series of papers,
Gottschalk and Moffitt (1994, Moffitt and Gottschalk 1995, 2002) try to measure the
extent to which the increase in earnings inequality could have been merely an increase
in �churning� or transitory movement in earnings. The welfare implications of such an
increase in transitory inequality would be very different from the implications of an
increase in the variance of permanent income.

Using a very different approach, Blundell and Preston (1998) elaborate on this last
issue, using consumption inequality as a better measure for welfare comparison than
income or earnings inequality. The literature on consumption inequality, starting with
Deaton and Paxson (1994), initially focused on testing predictions of the standard con-
sumption models on the data, assuming a particular stochastic process for income. Blun-
dell and Preston reversed this, and ask the question how we can use consumption models
to learn something about the nature of income uncertainty. They use the joint evolution
of income and consumption inequality, to decompose idiosyncratic shocks to income into
transitory and permanent components.

Distinguishing transitory from permanent shocks to income is an important part of
the decomposition of income risk, because consumption can be smoothed against the
former but not the latter through borrowing and lending of a risk-free bond. How-
ever, self-insurance is only one instrument to smooth consumption. The literature so
far has ignored the possibility that consumers are able to smooth consumption by shar-
ing risks, through the market for risky Þnancial assets, family ties, formal insurance
policies etc. To explore the implications of insurance through this channel, we need
to distinguish idiosyncratic shocks with a cross-sectional mean of zero, which can be
insured through risk-sharing across individuals, from aggregate shocks that affect the
income of all consumers and cannot be insured. Thus, we want to distinguish four
components of income risk: transitory versus permanent, as well as aggregate versus
idiosyncratic shocks. Notice that only in the case of a transitory idiosyncratic shock,
self-insurance and risk-sharing are substitutes. Permanent idiosyncratic shocks can be
insured through risk-sharing arrangements, but not by borrowing and lending; whereas
aggregate permanent shocks are uninsurable through either mechanism.

In this paper, we extend the existing literature in two directions. First, we use a
model of consumption behavior which allows for the possibility that consumers are able
to insure part of the idiosyncratic permanent shocks to income through risk sharing.
Second, we extend the stochastic process for income to account for aggregate sources of
uncertainty. Both extensions are important as ignoring them may bias the estimates for

1See Autor, Katz and Krueger (1997) for a survey.
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the components of income risk. Not taking risk-sharing into account would spuriously
attribute any insurable increase in inequality, i.e. any increase in income inequality
that does not translate into an increase in consumption inequality, to an increase in the
variance of transitory shocks.

The second extension to take aggregate shocks into account, is important for at least
two reasons. First of all, we may be interested in the direct distributional impact of
aggregate shocks. In other words, which part of changes in inequality is attributable to
a deterministic relation between inequality and business cycle ßuctuations? Of course,
if an aggregate shock hits all consumers equally, these shocks will affect the mean but
not the shape of the income distribution. However, if the sensitivity of income to the
business cycle differs across consumers, then aggregate shocks will have an impact on
the higher moments of the income distribution.

A second reason why it is attractive to have aggregate shocks and idiosyncratic risk
in the same model, is that it will allow us to make statements about the comovement of
risk with the business cycle. Many people have speculated about the cyclical behavior of
the variance of income shocks. Constantinides and Duffie (1996) provide an explanation
for the equity premium puzzle based on consumption risk being countercyclical. They
hypothesize that periods in which stocks offer high returns coincide not only with times
of high average consumption levels, but also with times of low consumption risk, thus
further deßating their value as insurance instruments.

Our contribution is methodological as well as substantive. We use a simple model of
the joint evolution of consumption and income to derive a large set of moment conditions
that capture all the available information in the data. We then estimate the components
of income risk, using both GMM and a likelihood-based estimation technique treating
the aggregate shocks and time-varying variances of the idiosyncratic shocks as unobserv-
able components. We argue that both estimation methods are more efficient and more
formal than a decomposition using an exactly identiÞed model, and that the likelihood
based estimation solves many of the practical difficulties associated with GMM when
the parameter space is high dimensional.

We Þnd that almost all inequality is driven by idiosyncratic risk. Aggregate shocks
have a negligible impact on the variance of the income distribution, implying that there
is no systematic relation between inequality and the business cycle. We also Þnd no
evidence that idiosyncratic consumption risk is countercyclical. Our estimates for the
transitory and permanent parts of idiosyncratic shocks to income correspond well to Mof-
Þtt and Gottschalk�s (2002) results, even though their methodology is entirely different
from ours. Risk sharing as an insurance mechanism against idiosyncratic permanent
shocks is important to reconcile the evolution of consumption inequality with the de-
composition between transitory and permanent inequality using income data only (like
Moffitt and Gottschalk do).

This paper is organized as follows. In the next section, we set out a simple model
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of consumption smoothing and discuss how this can be used to decompose income risk
into its four components. We also discuss an ad-hoc adjustment of the basic model
to incorporate the possibility or risk-sharing through insurance markets. Section 3
describes the data we use and presents some of the main results that can be seen in the
raw data. In section 4 we discuss the estimation procedure, and provide some evidence
that our estimation model performs better than a simple decomposition in capturing
the actual evolution of inequality from the data. Finally, in section 5 we present our
results, and section 6 concludes.

2 Income risk and inequality

In this section we discuss the standard life-cycle model of consumption and the stochastic
process for income that we employ to relate the evolution of income and consumption
inequality to income risk, largely following Blundell and Preston (1998). The basic
model is a linearized incomplete markets model, but we extend it to take risk sharing
into account.

2.1 The consumption Euler equation

In its simplest form, the permanent income hypothesis (PIH) predicts that consumption
follows a random walk, and that only shocks to permanent income (i.e. expected life-
time income) translate into changes in consumption. It is crucial for the estimation
strategy that consumption follows a random walk, so we can interpret Þrst differences as
expectational innovations in consumption, and therefore as the response to unexpected
changes in income. To obtain the random walk property, we can either use quadratic
utility as in Hall�s (1978) classic paper, or use CRRA preferences with non-stochastic
asset returns and log-linearize the Euler equation. We will take the second approach
which has obvious advantages in terms of generality and therefore makes explicit the
simplifying assumptions we need to make.2

Consider the standard intertemporal consumption problem, with stochastic labor
income and CRRA preferences. We then get the familiar Euler equation, where we
allow for heterogeneity in the discount factor and coefficient of relative risk aversion.

c−θiit = βiEt

h
Rt+1c

−θi
it+1

i
.

Assuming asset returns are non-stochastic,3 we can make a log-normal approximation
2The disadvantage is that we need to log-linearize the budget constraint.
3Because we will use our estimation results to make inferences about risk sharing through risky

assets, it is awkward that all uncertainty is in labor income. However, one can think of the problem as
a portfolio choice, where we use only the pricing kernel for the riskfree bond.
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to obtain the result that consumption has a unit root4

log cit = Et [log cit+1]− 1
2θiVt [log cit+1]

Precautionary savings
− 1

θi
log βiRt+1

Relative impatience

.

where the term 1
2θiVt [log cit+1] expresses precautionary savings (consumption today is

lower than consumption tomorrow because consumption tomorrow is uncertain), and
the term 1

θi
log βiRt+1 represents the relative impatience of individual i with respect to

the market.
Iterating, we can express expectations about the future consumption path as

log cit = Et [log cit+s]−
sX
j=1

³
1
2θiEtVt+j−1 [log cit+j ] +

1
θi
log βiRt+j

´
.

If �revisions to variance forecasts� are zero, i.e. if EtVt+j−1 [log cit+j ] = Vt+j−1 [log cit+j ]
for j > 1, then we get the following useful expression for the change in log consumption
(cf. Blundell and Preston 1998):

∆ log cit = (Et −Et−1) [log cit+s] + 1
2θiVt−1 [log cit] +

1
θi
log βiRt.

From the (log-linearized) budget constraint, we get that expectational revisions to con-
sumption equal changes in the expected value of life-time income

(Et −Et−1) [log cit+s] = 1−1/R
1−(1/R)T−t

Tw−tX
s=0

R−s (Et −Et−1) [log yit+s] ,

where R is a function of future interest rates over the remaining life, T is the time
of death and Tw the time of retirement.Notice that assets drop out of this expression
because they are predetermined (i.e. they are not subject to expectation revisions) by
the assumption of non-stochastic interest rates.

2.2 Income process

Consider an individual income process that consists of a permanent and a transitory
component, where shocks can be either aggregate or idiosyncratic.

log yit = ypit + uit + γiet
transitory shocks

(1)

log ypit = αi + y
p
it−1 + nit + δivt

permanent shocks

where uit is a transitory idiosyncratic shock, nit a permanent idiosyncratic shock, αi a
deterministic drift, et a transitory aggregate shock, and vt a permanent aggregate shock

4 If x is normal (so ex is log-normal), then logE [ex] = E [x] + 1
2
V [x]. This approximation is very

similar to the expectation of a second order Taylor approximation of ex around E [x].
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to income. Individuals respond differently to aggregate shocks, maybe because some
people work in more cyclical industries. An implicit assumption in the way we speciÞed
the income process is that the responses to aggregate shocks for each individual are
constant over time.

All shocks are assumed to have zero mean. The idiosyncratic responses to aggregate
shocks γi and δi are normalized to have cross-sectional mean 1, and the idiosyncratic
shocks are normalized to have cross-sectional mean zero. The deterministic drift αi has
a cross sectional mean of zero because we remove the average age effects from the data.
We also assume that all shocks are uncorrelated over time and uncorrelated with each
other; the variances of the idiosyncratic shocks uit and nit may vary over time but are
constant across individuals; and the idiosyncratic responses to aggregate shocks γi and
δi are constant over time and in the cross-section uncorrelated with uit and nit.

The decomposition of income into a permanent component that follows a random
walk, and a transitory component that is serially uncorrelated, is both convenient and
fairly general, and has been widely used in the literature. Moffitt and Gottschalk (1995)
test a more general process allowing the transitory component of income to follow an
ARMA process. They Þnd that an ARMA(1,1) describes the data best, but the auto-
correlation in the transitory shocks is close to zero. Storesletten et.al. (2000a) allow
for the persistent component of income to have an autocorrelation coefficient smaller
than unity. Their point estimate for the autocorrelation lies between 0.98 and unity (for
annual time series) and they cannot reject the hypothesis that the persistent income
shocks are permanent. ADD: references to MaCurdy (1982) and Quah (1992, 1998).

Substituting out ypit from expression (1) we get the following expression for the
innovations to income

∆ log yit = αi + ∆uit + γi∆et
change transitory shocks

+ nit + δivt
permanent shocks

.

It is important to realize that income changes because of a shock to permanent income,
or because of a change in the shock to transitory income. The intuition for this is simply
that the effect of a transitory shock dies out in one period, so ceteris paribus a shock to
transitory income at time t raises income at time t and then decreases it again at time
t+ 1.
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2.3 Estimation model

Substituting the income process speciÞed above into the log-linearized Euler equation,
we get the following expression for the change in log consumption5

∆ log cit = rt (uit + γiet)
transitory shocks

+ ρt (nit + δivt)
permanent shocks

+ 1
2θiVt−1 [log cit] +

1
θi
log βiRt

where
rt =

R−1
R

1
1−(1/R)T−t and ρt =

1−(1/R)Tw−t
1−(1/R)T−t .

The marginal propensity to consume out of a permanent shocks is ρt, out of a transitory
shock rt. Notice that rt approximately equals the interest rate R− 1 for T →∞ or for
t << T , and that 0 < rt < 1 for t ≤ T − 2.

In the rest of the paper we will assume that the interest rate is constant and close
to zero and that Tw = T (no retirement savings), so that rt ≡ 0 and ρt ≡ 1. Of
course we make these assumptions for the sake of simplicity. The implication is that
consumers react to an income shock in the same manner, regardless of how far they
are from retirement age. This is clearly not a very realistic assumption, as just before
retirement there is no difference between a transitory and a permanent shock to income,
which is captured by the fact that ρt = rt for t = Tw − 1. However, the decomposition
of income in a transitory and a permanent part with r = 0 corresponds to the original
paper by Friedman, who deÞnes transitory income shocks as shocks out of which the
MPC is zero (see Carroll 2001a p.6 for a discussion). As long as we keep this difference
into account when interpreting the results, the assumption is innocuous.6

Then, the following two equations summarize our estimation model

∆ log yit = αi +∆uit + γi∆et + nit + δivt (2)

∆ log cit = bi + nit + δivt (3)

where
bi =

1
2θiVt−1 [log cit] +

1
θi
log βiR.

It is important to realize that the above expressions hold for individuals in the same
cohort of consumers that are born around the same time. This reconciles the model
prediction that a shock to permanent income unambiguously and irreversibly increases

5yit+s = yit−1 + (s+ 1)αi + ∆τ it−1 + ... + ∆τ it+s−1 + πit−1 + ... + πit+s−1 so that (note that
Et∆τ it+1 = −τ it): (Et −Et−1) [yit+s] = 0 if s = 0, τ it + πit if s = 1, and πit for s ≥ 2. Substituting
this into the sum gives the expression in the text.

6Although the expressions look nicer with rt = 0 and ρt = 1, it is not clear that the model is
easier to estimate with this assumption. In particular, if rt and ρt are allowed to vary across cohorts
this introduces an extra dimension of identifying variation. However, we would be suspiciuous of any
parameters identiÞed off this variation alone.
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inequality, Þrst put forward by Deaton and Paxson (1994), with the observation that
aggregate inequality seems not (always) to increase in the long run.

The fact that within-cohort inequality will always tend to increase, implies that it is
important to take demographics into account when describing aggregate inequality. If
inequality increases with age, as Deaton and Paxson show it does, then changes in the
age distribution of the workforce will have effects on aggregate inequality. Suppose the
�baby-boomers� entered the labor market around 1980 when they were thirty. Ceteris
paribus we would expect consumption and income inequality to decrease around this
time. Inequality would also decrease around in 2045, when the baby-boomers retire, and
would gradually increase in between due to the age effect. We will brießy return to the
distinction between age and time effects when we discuss the data, but in this paper we
are generally concerned with the evolution of within-cohort inequality.

We use expressions (2) and (3) to calculate means, variances and covariances for each
cohort in each year. We then use these moment conditions to estimate the components
of income risk we are interested in. In addition to the time varying variances of the
idiosyncratic shocks V art (n) and V art (u) which represent permanent and transitory
idiosyncratic risk, we estimate the actual aggregate shocks et and vt, as well as the
model parameters V ar (γ), V ar (δ), Cov (γ, δ), Cov (γ, y0), Cov (δ, y0) and Cov (δ, c0)
that measure the distributional impact of the business cycle. The full set of moment
conditions is given in appendix A. These include the mean changes in income and
consumption, the variances and covariance of the changes in income and consumption,
the changes in the variances and covariance of income and consumption, as well as
the autocovariance of income. In the next subsection we discuss one of these moment
conditions into detail, to illustrate the distributional impact of the aggregate shocks.

2.4 Impact aggregate risk on inequality

Consider the change in the variance of log consumption, calculated from equation (3)

∆V arjt (log c)
growth consumption inequality

= V arj (b) + 2Cov (bi, log cit−1)
cohort-speciÞc deterministic trend

+ V art (n)
idiosyncratic (permanent) risk

+v2t V ar (δ) + 2vtCov (δi, log cit−1)
distributional impact aggregate shocks

+ ξcjt

where∆V arjt (log c) = V ar (log cijt)−V ar (log cijt−1) denotes the change in the variance
of consumption in cohort j and year t, and the disturbance term ξyjt represents the
difference between the sample and population variances.

The impact of aggregate shocks on inequality consists of two parts. The Þrst part
is always positive. It represents the cross-sectional variance of changes in individual
consumption in response to an aggregate shock V ar (δivt). Because income of some
consumers is more sensitive to the business cycle than of others, this effect increases
the divergence in income because of an aggregate shock, whether it is a positive or
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negative shock. Nevertheless the distributional impact of aggregate shocks is not always
to increase inequality. This is what the second term stands for. If the covariance
between δi and cit−1 is positive, meaning that consumers with high initial consumption
are sensitive to business cycle shocks, then a negative aggregate shock will decrease
inequality if the size of the shocks is not too large. Intuitively, if the rich are affected
more strongly by aggregate shocks than the poor, their consumption will decline more
due to a negative shocks, thus bringing them closer to the consumption level of the poor.
Similarly, if Cov (δi, log cit−1) is negative, then negative aggregate shocks will increase
inequality, whereas positive aggregate shocks will narrow the income distribution, at
least if the size of the shocks is not too large.

Why is it important to allow for aggregate shocks in this framework? First of all, we
may be interested in the direct distributional impact of the business cycle, as explained
above. Second, not taking these effects into account may bias the decomposition of in-
come shocks into transitory and permanent shocks. This is because of the idiosyncratic
responses to aggregate shocks, which make innovations in income and consumption cor-
related with past levels of income and consumption, e.g. Cov (∆ log cit, log cit−1) =
Cov (nit + δivt, log cit−1) 6= 0 even if we assume that permanent idiosyncratic shocks are
uncorrelated to any information in the past. Similarly, because of these idiosyncratic sen-
sitivities to the cycle, the assumption that transitory and permanent shocks are uncorre-
lated to each other breaks down, as Cov (∆uit + γi∆et, nit + δivt) = vt∆etCov (γ, δ) 6= 0
generally. We will take all these possible correlations into account when we estimate
the components of income risk. Finally, it is attractive to have aggregate shocks and
idiosyncratic risk in the same model, as it will allow us to make statements about the
cyclical movement of risk.

2.5 Risk sharing

The model we presented so far is an �incomplete markets model� in the sense that insur-
ance markets are non-existing: consumers can save and borrow a risk-free bond freely,
but they cannot pool risks with other consumers. We saw that by borrowing and lending
consumers could fully insure against transitory shocks, but could not insure permanent
shocks at all. If instead consumers can partly insure against permanent shocks by risk-
sharing through insurance markets or markets for risky Þnancial assets, our estimates
for the transitory and permanent components of income will be biased (insurable per-
manent shocks will be estimated as if they were transitory shocks). Therefore, we want
to extend the model to take this kind of risk-sharing between consumers into account.

Consider the opposite polar case, where markets are complete. Then, consumers
can fully insure against idiosyncratic shocks, so that a shock with cross-sectional mean
zero will have no effect on consumption at all. However, in our speciÞcation of the
income process, there are two types of idiosyncrasies: true idiosyncratic shocks with
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cross-sectional mean zero, and idiosyncratic responses to aggregate shocks. When mar-
kets are complete, consumers can insure against the idiosyncratic components of the
response of their income to an aggregate shock, but unlike in the case of true idiosyn-
cratic shocks, insurance is not �free�: some individuals face more risk (are more sensitive
to aggregate shocks) and have to compensate other consumers for participating in a
risk-sharing scheme.7

To formalize this, consider a standard Arrow-Debreu economy where we get the
familiar result that marginal utilities of consumption move in lock-step and every indi-
vidual consumes a Þxed fraction of aggregate income. With CRRA preferences:

u0 (cjt)
u0 (cit)

=

µ
cjt
cit

¶−θ
=
µj
µi
⇒ cit = µict = µiyt

where the last step (aggregate consumption equals aggregate income) follows from the
assumption that the consumption good is non-storable (i.e. no self-insurance is possible;
this assumption is innocuous since we are only considering permanent shocks to income).
In general, the fraction µi of total income that goes to consumer i will depend on her
sensitivity to aggregate income shocks δi, but if we work in Þrst-differences of the log of
consumption, the above conveniently simpliÞes to

cit
cit−1

=
yt
yt−1

⇒ ∆ log cit = ∆ log yt

so in percentage terms, there is still full insurance. The only difference with the standard
model is that a consumer�s initial endowment depends not only on initial wealth, but
also on �initial risk�, her sensitivity to the business cycle.

With our speciÞcation of the income process we saw that with incomplete insurance
markets, consumption responded one-to-one to permanent shocks to income ∆ log cit =

7Consider the following very stylized example. Two individuals get a Þxed income of 2, plus a part
that depends on the business cycle. Aggregate shocks vt can be either good (+1) or bad (−1). Consumer
one�s income is very sensitive to the business cycle δ1 = 2, but consumer two�s income does not respond
at all to aggregate shocks δ2 = 0. Risk-sharing takes the usual form, where both consumers commit to
transfer their income to a mutual fund and get an ex ante agreed upon fraction from the amount in the
mutual fund, regardless of the state of the economy. In this example, the fund will contain 4 units of
income in a boom and 2 units in a recession. Although both consumers have identical expected incomes
of 2 units, it is clear that a 50 − 50 division of the fund will not work, as consumer 1 will have no
incentive to participate in the fund: if she does not participate she gets an income of 2 in every period;
if she participates, she gets sometimes 1 and sometimes 3 which yields lower utility given that she is
risk-averse. Because consumer 2 ex ante faces more risk than consumer 1, she needs to compensate
consumer 1 for participating in the fund. A possible solution would be that consumer one gets three
quarters of the total amount in the fund, and consumer 2 gets one quarter. In this case consumer one
will prefer to have an income of 3 or 1.5 to having 2 in every period because the expected value of her
income stream increases, whereas consumer two will prefer to have 1 or 0.5 over having 2 or 0 because
she will be able to insure some of the risk she faces.
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nit + δivt. Here we derived that in the complete markets model we get ∆ log cit =
∆ log yt = vt. Therefore, we deÞne the degree of risk sharing or �insurance markets
completeness� φ as the weight in a linear combination of both solutions8

∆ log cit = (1− φ) (nit + δivt) + φvt = (1− φ)nit + �δivt

where �δi = (1− φ) δi + φ. If φ = 1 then insurance markets are complete. All risk
except permanent aggregate shocks are perfectly insured. If φ = 0 insurance markets
are non-existing, and the only channel for consumption smoothing is self-insurance.

Clearly, this is a very rough proxy for risk-sharing through insurance markets. In
particular, we are assuming that the degree of risk-sharing is the same for all consumers.
It may be more realistic to assume that φ varies across consumers, since only a fraction
of consumers participates on the market for risky assets. For reasons of tractability we
consider only a Þxed φ, although in appendix B we consider a simple ad-hoc adjustment
for credit constraints and limited access to insurance markets. More fundamentally, φ
is an ad-hoc adjustment to the reduced form model and care should be taken in giving
it any structural interpretation. It is an ordinal measure for market completeness, but
the units are unclear. If φ is high, say 0.75, this means only that consumers manage to
insure a large part of idiosyncratic permanent shocks. It does not imply anything about
the number of assets they use to achieve this insurance, nor does it give any insight into
which shocks are insured.9

3 Data: CEX 1980-2000

For our empirical analysis, we use data on US household income and consumption from
the CEX, the Consumer Expenditure Survey (U.S. Department of Labor, Bureau of
Labor Statistics 1999). This survey, conducted on an annual basis since 1980, follows
households across Þve quarters so that by matching households across the quarterly data
Þles, we can calculate Þrst differences in income and consumption. Notice that although
the CEX has only a very short panel dimension and the income data are not of the
best quality, the CEX is the only US dataset that has acceptable consumption as well
as income data, which we need in order to be able to calculate the covariance between
income and consumption.10 In addition, the CEX contains good data on assets, which
allows ßexibility for further research.

8Luigi Pistaferri, Richard Blundell and Ian Preston are working with a similar model, which they
presented at the SED 2002 meeting. We were not able to get the paper.

9Because risk sharing is identiÞed from the variances, insurance against some large shocks (e.g.
unemployment risk) is empirically indistinguishable from insurance against many small shocks or partial
insurance of all shocks.
10The only alternative would be the Panel Study of Income Dynamics (PSID), which has better income

data and a longer panel dimension, but only a rough proxy of consumption (expenditures on food).
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In appendix C we discuss the dataset and our procedure to clean the data for sea-
sonality, age effects, attrition bias and family composition. The Þnal dataset contains
60,000 households between 20 and 65 years old, whose reference person is not retired
nor a student or living in student housing. The sample is representative for the full CEX
sample of households aged between 20 and 65, as illustrated in table 1 (see the appendix
for a more extensive discussion). These households are divided over 192 cohort-year
cells with a median cell size of 247 households, see table 2.

In this section, we Þrst discuss how measurement error in the data will and will not
bias our estimates. Then we present some evidence from the raw data on the evolution
of income and consumption inequality over the sample period.

3.1 Measurement error

Clearly, both income and consumption are measured with error. This problem is exacer-
bated by taking Þrst differences if the measurement error is less autocorrelated than the
signal. Notice that this is the case by deÞnition, because measurement error cannot have
a unit root, whereas consumption does according to the PIH.11 However, because we
work with a secondary dataset and are only really interested in the means and variances
of changes in consumption and income, there is an easy way to control for measurement
error, if we are willing to make some assumptions on the error structure.

First, consider the moment conditions for the mean changes in income and con-
sumption within a cohort. Under the reasonable assumption that measurement error is
uncorrelated across individuals, taking means should virtually eliminate the measure-
ment error as it is divided by the number of observations in the cohort-time cell.

Next, consider the variances and covariance of ∆y and ∆c. Now, assuming the
measurement error is uncorrelated with true changes in income and consumption, the
only thing that changes is that an additive term is added to the moment conditions,
representing the cross-sectional variance of the measurement error. The size of this
additive term will depend on the autocorrelation in the measurement error as well; the
more highly autocorrelated, the more measurement error is eliminated by taking Þrst
11A reinterview program for the CEX is available (a subsample of approximately 6 percent of house-

holds are reinterviewed by a supervisor on an ongoing basis), which in principle could be used to assess
the amount of measurement error.
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differences.12

Finally, when we calculate Þrst differences in the variances and covariance of y and
c, the variance of the measurement error will drop out, assuming the cross-sectional
variance of the measurement error is constant over time. Therefore, we will be able to
identify this variance from the difference in the constant in the moment conditions for the
variances of the changes and the changes in the variances of income and consumption.

3.2 Income and consumption inequality

Figure 1 shows consumption and income inequality for nine cohorts over the sample
period. Consumption and income are logs of real data, and have been adjusted for
seasonality, attrition bias, family composition and age proÞle as described in appendix
C, but otherwise these are the raw data. The consumption graphs are comparable to
Deaton and Paxson (1994, Þgure 2) although our sample period is twice as long. Notice
that income is on the left-hand axis, and consumption on the right hand axis. We would
expect to see two stylized facts in these data. First, we know since Deaton and Paxson
(1994) that inequality should rise within a cohort with age (so therefore over time) and
that this effect should be present for consumption as well as for income, although it
should be less pronounced for consumption because of smoothing. Second, there should
be an increase in inequality in the 1980s, which then ßattens out in the 90s. Both �facts�
are not easy to see, partly because noise clouds the picture, and because both effects
are interacting in the same graphs.

In Þgure 2 we plotted coefficient estimates (with 2 standard error bands) of a regres-
sion of income and consumption inequality on age dummies. The graph is comparable to
Þgure 4 in Deaton and Paxson, and indeed remarkably similar, even though our sample
period is longer, we removed households with heads over 65 and we removed the age
proÞle from the levels of consumption. In line with Deaton and Paxson�s conclusion, we
Þnd that the data on consumption inequality seem consistent with the prediction of the
PIH that within cohort inequality should increase with age, although the effect is not
very strong.

To isolate aggregate inequality, we plotted the variance of log consumption and in-
come for the whole sample over time. Potentially demographic changes cloud the picture
of the relevant measure of inequality, but the graphs for aggregate and average within
12The model we have in mind is the following. If measurement error, say in consumption, is additive

in logs and uncorrelated with the signal,

cit = c
∗
it + ε

c
it where : εcit = ρcε

c
it−1 + η

c
it

where the η�s are mean zero, uncorrelated in the cross-section and over time, and uncorrelated with c∗it.
Then

V ar (∆cit) = V ar (∆c
∗
it) +

2

(1 + ρc)
V ar (ηcit)
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cohort inequality turn out to be very similar. The graphs for aggregate inequality are
comparable to Krueger and Perri (2001). Like them, we Þnd that the increase in income
inequality in the eighties is less pronounced in the CEX data then in other datasets.
The graph for aggregate consumption also shows Krueger and Perri�s main empirical
Þnding (and the basic observation they use to justify their paper), that consumption
inequality seems not to have increased at all, and may even have decreased.

4 Estimation

Looking at the raw data is informative. It shows that our data are in line with commonly
accepted stylized facts about the development of inequality. The graphs also show that
the data are very noisy, due to the relatively small number of households in a cohort-
year cell, and this is something the estimation technique should take into account. In
the next subsections we discuss two different procedures we use to estimate the model:
GMM and a likelihood based, Bayesian procedure that treats the aggregate shocks
and time-varying variances of the idiosyncratic shocks as unobservable components.13

We will argue that either estimation method is more efficient and more formal than
a decomposition using an exactly identiÞed model, and that the Bayesian estimation
procedure performs slightly better to distinguish between signal and noise in the data
and has more robust convergence properties.

4.1 Generalized method of moments

We use all moment conditions derived in appendix A.14 The error terms in those equa-
tions are assumed to have mean zero, but no other assumptions are imposed. In partic-
ular, we do not make any assumptions on the correlation between the error term and
the time varying variances of the idiosyncratic shocks, so we basically treat these time
varying variances as time-speciÞc Þxed effects or time dummies. The estimates are one
step asymptotically efficient estimates, using the optimal weighting matrix calculated
manually from the moment conditions. This is possible because all conditions are linear
in the data which are the only source of variation.

For reasons of convergence, we estimate the model in two stages. First, the aggregate
shocks et and vt and the cohort speciÞc mean trends αj and bj are estimated from the
means of changes in income and consumption. In the second stage all other parameters
are estimated from the remaining moment conditions, treating the aggregate shocks as
known. The (asymptotic) standard errors of these parameters do not take the uncer-
13Matlab programs that implement both methods are available from the authors on request.
14 Instead of the variance of the change in consumption we use ∆V ar (log cit) −

Cov (∆ log cit, log cit−1) = V ar (∆ log cit) because of the timing problem in the CEX (see section
C.1 in the data appendix for details).
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tainty in the estimates of the aggregate shocks into account. Because e0 is not identiÞed,
we use an initial condition setting e0 equal to zero, its unconditional mean.15 The es-
timates for the aggregate shocks and the time varying variances of the idiosyncratic
shocks are quite robust, but the scalar parameters are very imprecisely estimated.

4.2 Unobservable components model

Differently from the GMM procedure, in the likelihood based estimation technique we
treat vt, et, V art(n) and V art(u) as unobservable states. The aggregate shocks vt and et
are by assumption i.i.d. processes, while in order to specify a law of motion for V art(n)
and V art(u) we make the additional assumptions that V art(n) and V art(u) follow two
independent random walk processes:

V art(n) = V art−1(n) + wnt
V art(u) = V art−1(u) + wut.

Of course, V art(n) and V art(u) cannot become negative and, at Þrst sight, the random
walk assumption may seem inadequate. However, because the time dimension of the
sample is short (only twenty time periods), the random walk can be thought as a (good)
Þrst order approximation of a more complicated and theoretically justiÞable process for
the two variances.16

Notice that, dealing with unobservable components, a Bayesian approach is the
natural one. Even more so in a panel context, where the distinction between parameters
and shocks is less clear than in other situations. Finally, and particularly important in
this case, as we will see the Bayesian approach allows to split up the high dimensional
problem into a series of simpler and lower dimensional ones. This has the advantage
that the numerical procedure is more robust and that is easier to calculate standard
errors which are correct for Þnite sample inference, instead of relying on asymptotic
distribution theory.

Because we use ßat or uninformative priors, the Bayesian procedure has a likelihood
interpretation. With ßat priors the posterior modes of the parameters would exactly
correspond to the maximum likelihood estimates. For reasons of robustness, we use pos-
terior means as is common in the literature. With well-behaved posterior distributions
the difference is negligible.

All the shocks of the model are assumed to be jointly normal with zero mean and
a block diagonal variance-covariance matrix. The only covariance block that is left un-
15We also tried setting eT = 0 and

PT
t=0 et = 0 and the results are not sensitive to the exact identifying

assumption used.
16The reason why the random walk is preferred to a more general AR speciÞcation derives from the

fact that we want to capture low frequency time variation. Furthermore, with a sample of only twenty
time periods, a random walk would not be easily distinguishable from many AR processes. We also
estimated the model assuming the variances are i.i.d. and the results were very similar.
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constrained is the covariance between the innovations to the idiosyncratic permanent
variance and the business cycle, represented by the aggregate shocks. Again, the nor-
mality assumption for the disturbances in the moment conditions for the variances of
changes in consumption and income should be interpreted only as an approximation
around the peak of the true distribution. We could restrict the variances of the idiosyn-
cratic shocks to be positive, but because the point estimates turn out to be positive, we
conclude that the normality assumption does not affect the results.

The objective here is providing a procedure to evaluate the posterior distribution of
the parameters of the model. The parameters of interest are the unobservable states,
vt, et, V art(u) and V art(n) and the so called hyperparameters, which are divided in
three blocks: Σ contains the variances of the aggregate shocks and all error terms in the
moment conditions, θ is a vector with the variances and covariances of interest

θ = [V ar (α) , V ar (b) , Cov(b, c0), Cov(α, y0), V ar (γ) , V ar(δ), Cov (γ, δ) ,

Cov (γ, y0) , Cov (δ, y0) , Cov(γ, c0), Cov(δ, c0)]
0 ,

and φ is a scalar parameter representing the degree of risk sharing as deÞned above.
The parameter space is very high dimensional and analytical maximization of the

likelihood or posterior is not feasible. Numerical methods and in particular Gibbs sam-
pling are needed to tackle the problem. Gibbs sampling is a particular variant of Markov
Chain Monte Carlo methods and consists of stepwise drawing from lower dimensional
conditional posteriors instead of from the high dimensional joint posterior of the whole
set of parameters. In this application, Gibbs sampling is carried out in Þve steps, draw-
ing in turn the aggregate shocks, the hyperparameters θ, the time varying variances of
the idiosyncratic shocks, the hyperparameter φ and the hyperparameters Σ, in each step
conditional on the observed data and the other parameters. A more detailed description
of the sampling procedure is provided in appendix D.

Our simulations are based on 6,000 iterations of the Gibbs sampler, discarding the
Þrst 1,000 to allow the system to convergence to its ergodic distribution. The sample
autocorrelation functions of the draws decay fast and the convergence checks are fully
satisfactory.

4.3 Estimation versus decomposition

In Þgure 3 we have graphed the actual evolution of average within cohort income and
consumption inequality and the Þtted values of the model estimated by GMM and as
an unobservable components model. At Þrst sight it seems that neither model manages
to capture the evolution of inequality, particularly income inequality, well. However,
we use a set of moment conditions much wider than just the change in the variance of
income and consumption, which are plotted in this Þgure. The fact that the estimates
do not capture all of the large peak in income inequality from 1983 to 1988 for instance,
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is because this peak is less pronounced in some of the other moment conditions. We
attribute this to the fact that the data are very noisy. Since we work with variances
these series are sensitive to outliers, and because the cohort-year cells are fairly small,
this introduces large swings in inequality.

The GMM and likelihood based estimates for the aggregate shocks and the time
varying variances of the idiosyncratic shocks are very similar. In the GMM estimates,
we restrict Cov (b, c0) and V ar (b) to be zero and set the degree of risk sharing φ equal
to its estimated value from the unobservable components model. This was necessary in
order to make the GMM program converge. The estimated values for Cov (b, c0) and
V ar (b) in the unobservable components model explain almost all of the difference in
the predicted values for both models.

The small remaining differences are due to the estimation procedure. GMM mini-
mizes the variance of the error term in the moment conditions, and will thus by deÞnition
try to minimize the distance of the model predicted values from the actual income and
consumption inequality. A likelihood based estimator however, sets the variance of the
noise and the innovations in the unobservable states in order to maximize the likelihood
of the model, without a direct attempt to minimize the variance of the noise. Of course
asymptotically GMM is efficient and equivalent to maximum likelihood. However, our
sample is fairly small compared to the number of parameters we are trying to estimate.
And since we know that the data are noisy, we feel the estimation procedure should take
this noise into account explicitly.

To further support our view that the model predicted values are a better description
of the actual evolution of inequality than the raw data series for the variances of income
and consumption, in Þgure 4 we plotted again the raw data on income inequality and
the Þtted values from the unobservable component model, but now we added a robust
estimator for the variance of income, as well as a comparable time series from the Current
Population Survey.17 The robust estimator is calculated from the median absolute
deviation from the median and translated back into a variance assuming normality of
log income.18 Both series have been shifted upward by a constant. As is clear from
the graph, the model predicted values are very close to the robust series from the CEX,
and also much closer to the CPS series than the (non-robust) raw CEX data. We
should stress that we did not use either series in the estimation procedure, so the Þt
is quite remarkable, and we conclude that the estimation procedure manages quite well
17We use the CPS March supplement (US Department of Commerce, Bureau of the Census and US

Department of Labor, Bureau of Labor Statistics 2001), which has detailed income data comparable to
the CEX . These data were treated in the same way as the CEX data to control for age effects, family
composition and attrition bias. We use the household records and merge these with the person records
for the householder and spouse. The resulting dataset has a much larger sample size than the CEX,
with typically about 3,000 households in a cohort-year cell.
18For a normal distribution the median absolute deviation from the median equals 0.6745 times the

standard deviation (Huber 1981).
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to distinguish noise from signal and the model provides a good description of the joint
evolution of income and consumption.

To summarize, our estimation procedure differs fundamentally from the decomposi-
tion that has so far been used in the literature in two ways. First, we use all the available
information in the joint evolution of income and consumption, by using as many moment
conditions as we can calculate from the two series. This provides a substantial efficiency
gain and makes the estimates less sensitive to outliers and data problems. Secondly, we
propose a formal, likelihood based estimation method that has much better convergence
properties than the more commonly used GMM. It seems this method could be useful
more generally for high dimensional minimum distance problems.

4.4 Why we need data on both income and consumption?

In this paper we use the joint evolution of consumption and income inequality to estimate
the components of income risk. A natural question to ask is why we use consumption
data at all. In fact there is a literature that tries to distinguish transitory and permanent
components to earnings variability, using data on income only.

Gottschalk and Moffitt (1995) and Moffitt and Gottschalk (2002) exploit the long
panel dimension of the PSID. They estimate the permanent component of earnings by
a 5 year moving average, and the transitory component as the deviation of income from
that smoothed series. The identifying assumption is that the 5 year average of the
transitory shocks is very close to its unconditional mean of zero. Of course it is not
possible to reproduce Gottschalk and Moffitt�s methodology using the CEX, because
only two annual observations for income are observed for each individual. However, it is
still possible to identify the variance of transitory shocks from income data only, using
the autocovariance of income (or -equivalently- the covariance between the ∆ log yit and
log yit−1, see appendix A for the exact moment condition). We do in fact use this
information, and therefore the components of income risk in our model can be identiÞed
off income data alone.

On the other extreme, Blundell and Preston (1998) do not use the time series prop-
erties of income at all, but use consumption data to identify transitory from permanent
shocks. They deÞne a permanent shock as a change in income that does not translate
into a change in consumption. Potentially, this method could be more efficient and,
given that most of the interest in decomposing income risk into a transitory and a per-
manent part has to do with consumption insurance, it has the advantage that one takes
the relation between consumption and income into account explicitly. The price to pay
is that the conclusions can only be as general as the model speciÞcation. In partic-
ular, Blundell and Preston impose that consumption can be perfectly insured against
transitory shocks, and cannot be insured at all against permanent shocks to income.

In this paper we try to take the best of both worlds. We use both the information
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from the time series behavior (the autocovariance) of income, and all information avail-
able from the evolution of consumption as well as the comovement of consumption with
income. Thus our model is over-identiÞed and we are able to test the over-identifying
restrictions. (In particular, we can drop all moment conditions involving consumption.)
When we are satisÞed that the results do not depend on the speciÞc subset of mo-
ment conditions used, we can use the full set to get more efficient estimates. This is
particularly important because the data are very noisy.

Compared to Blundell and Preston, we not only use a much larger set of moment
conditions, but because of the extra degrees of freedom we are also able to specify a
more ßexible model of consumption behavior. In particular, as discussed in section
2.5, we allow for the possibility that consumer can partially insure against idiosyncratic
permanent shocks. This parameter would not be identiÞed using either income data
alone, or without using the autocovariance properties of income.

5 Inequality over the business cycle

In table 3 we present scalar parameter estimates of the model for both estimation tech-
niques. The Þrst seven rows of the table are parameters that determine the distri-
butional impact of aggregate shocks; we will return to these estimates below. The
second and third block report estimates for the cross-sectional variance of the idiosyn-
cratic trends in income and consumption,19 and for the measurement error in different
equations. The measurement error in the equations for ∆V ar (log y), ∆V ar (log c) and
∆Cov (log y, log c) is set to zero, which is a reasonable assumption if the variance of the
measurement error in income and consumption is time invariant.20 As expected, the
measurement error in the variances of ∆ log c is substantial, but there seems to be little
cross-sectional correlation in the measurement error in income and consumption since
the estimate of the measurement error in Cov (∆ log y,∆ log c) is small.

5.1 How incomplete are insurance markets?

The last row in table 3 presents an estimate for φ, the degree of risk sharing against
permanent idiosyncratic shocks. If φ = 0 then insurance markets are non-existing,
whereas φ = 1 represents the complete markets solution. The estimate for φ is fairly
precise, and seems to suggest that around 75% of permanent idiosyncratic risk can be
19Although we could easily allow for these variances to differ across cohorts, we treat them as constants

for efficiency. This does not affect the results since the variances are very similar for different cohorts.
20This is an identifying assumption without which we would not be able to estimate the mean level

of the variance of the permanent shocks and the mean change in the variance of the transitory shocks.
The mean level of the transitory shocks remains unidentiÞed but is of no interest for the evolution of
inequality.
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insured through risk sharing. This estimate represents a substantial deviation from the
standard incomplete markets model that completely shuts down insurance markets.21

Allowing for partial risk sharing is important in reconciling the joint evolution of
income and consumption inequality. The variance of transitory shocks is identiÞed
either from the autocovariance of income, or from the difference in the change in the
variance of income and the change in the variance of consumption. Without φ, these
estimates conßict with each other. If we introduce φ, the variance of the transitory
shocks in the expression for the change in the variance of consumption is multiplied
by a factor (1− φ)2, allowing the estimate for the variance of the permanent shocks
to increase without violating the moment condition for the change in the variance of
income.

It is possible that the parameter φ captures more than only partial risk sharing. In
particular, if a small fraction of consumers is credit constrained, this will also imply a
quantitatively important difference in the change in the variance of consumption and
income inequality. In appendix B we make a case why we think it is reasonable to
assume that some consumers are credit constrained or behave as if they are because they
are buffer-stock consumers with low asset levels on the steep part of the consumption
policy rule. We are currently working on an extension to this paper that will take
this complication into account. At this point we are reluctant to give any structural
interpretation to the parameter estimate of φ.

5.2 Sources of risk and the distributional impact of aggregate shocks

The estimates for the variance of the idiosyncratic responses to aggregate shocks γi and δi
in table 3 seem to indicate that the impact of aggregate shocks on inequality is large. The
point estimate for the standard deviation of δi is about 3, suggesting that δi ranges from
−5 to +7 for 95% of consumers. However, the reason these parameters are estimated to
be large, is that they are identiÞed off the correlation between functions of the aggregate
shocks v2t , (∆et)

2 and vt∆et with the variances and covariance of consumption and
income. Because this correlation is small and because v2t , (∆et)

2 and vt∆et are (very)
small numbers, the point estimates for V ar (γ), V ar (δ) and Cov (γ, δ) are high and
imprecise.

The effect of the business cycle on inequality depends on the variances of the idio-
syncratic responses as well as on the size of the aggregate shocks. These scalar estimates
alone then, give little insight into the impact of aggregate shocks on inequality. There-
fore, we have plotted the evolution of income inequality, if the aggregate shocks would
21This is particularly true when one realizes that the parameter has been estimated using household

consumption data, and therefore excludes risk sharing through living together in the same household,
something that has been shown to be quantitatively important compared to risk sharing through Þnancial
markets.
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have been zero in every time period. This counterfactual exercise is presented in Þgure
5. The upper panel in that graph shows the predicted values for income inequality for
the full model, as well as for the model without aggregate shocks. The lower panel
graphs the difference between the two lines with one standard error bands. These stan-
dard errors take into account all uncertainty related to the aggregate shocks (i.e. in the
estimates of vt and et as well as in the variances and covariance of γi and δi). This lower
panel can be interpreted as the evolution of inequality if there would have been only
aggregate shocks to the economy. Clearly, the effect is negligible, strongly suggesting
that virtually all of inequality is driven by idiosyncratic risk.

In Þgures 6 and 7 we have similarly isolated the effects on inequality of the idiosyn-
cratic transitory and permanent shocks. It is clear that permanent risk is responsible
for the within cohort rise in inequality (the age effects) as expected, as well as for most
of the rise in inequality during the 1980s. Transitory inequality increased sharply in the
early 1980s but then gradually declined again, and by the end of the sample period was
back at the 1980 level or even lower. Qualitatively, these conclusions correspond well
to Moffitt and Gottschalk (2002). Compared to Blundell and Preston (1998), who use
UK data, we Þnd a much less important contribution of transitory shocks to the rise
in income inequality in the 1980s. This difference is largely driven by the fact that we
allow for partial insurance against idiosyncratic permanent shocks.

5.3 Comovement risk with the business cycle

In the previous subsection we argued that the direct distributional impact of aggregate
shocks on inequality is negligible. Nevertheless it is possible that risk is (counter)cyclical,
if the variance of the idiosyncratic shocks is correlated with aggregate shocks. There
has been much speculation in the literature about such a correlation. Probably best
known, is Constantinides and Duffie�s (1996) explanation for the equity premium puz-
zle. Constantinides and Duffie argue that if stocks offer high return in periods when
consumption risk is low, they would provide even worse insurance against such con-
sumption risk than is suggested by the standard consumption CAPM model. Thus, a
countercyclical variance of permanent shocks could explain why risky assets offer such
a high risk premium.

To answer this question, we have plotted our estimates for the aggregate perma-
nent shocks and the variance of the idiosyncratic permanent shocks in Þgure 8. The
shaded areas are recessions according to the NBER business cycle dating committee
(1980:1-1980:3, 1981:3-1982:4 and 1990:3-1991:1). Not surprising given the persistence
in aggregate ßuctuations, it seems that business cycle is primarily driven by shocks to
permanent income and our estimates for the shocks correspond fairly well to the NBER
dates. During the 1990s, periods of high volatility in the permanent idiosyncratic shocks
seem to correspond to periods of low realizations of the aggregate shocks. However, in
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the 1980s exactly the opposite is true. Not surprisingly, over the whole sample period,
the correlation is very close to zero. We estimate the correlation coefficient to be 0.065
with a standard error of 0.211 and conclude that our data provide no evidence for any
comovement of consumption risk with the business cycle.

ADD: compare results to Cogley (2002), Heaton and Lucas (1996), Ramey and
Ramey (1995), Brav et.al. (1999) and Storesletten et.al. (2000b)

6 Concluding remarks

In this paper we used CEX data on income and consumption inequality to estimate
four components of income risk: idiosyncratic versus aggregate, and transitory versus
permanent shocks to income. We extended the methodology set out in Blundell and
Preston (1998) to take aggregate uncertainty into account, and to allow for risk shar-
ing against idiosyncratic permanent shocks. We use a set of moment conditions that
summarize all available information in the joint evolution of consumption and income,
conditional on the constraint that the CEX has a very short panel dimension. This
model performs well in capturing the actual evolution of inequality from the noisy data.
We also proposed a formal likelihood based estimation technique that is more robust
and solves many of the practical difficulties associated with GMM in problems with a
high dimensional parameter space.

Our results indicate that inequality is largely driven by idiosyncratic risk, the impact
of aggregate shocks on the cross-sectional variance of income being negligibly small. The
estimates of the relative contribution of transitory and permanent risk correspond well to
the Þndings of Moffitt and Gottschalk (2002), despite their very different methodology.
Compared to Blundell and Preston (1998) we Þnd a much less important contribution of
transitory shocks to income inequality. Finally we Þnd no evidence for any correlation
between consumption risk and the business cycle, which casts doubt on Constantinides
and Duffie�s (1996) explanation for the equity premium puzzle.

In future research we plan to extend the methodology used here, to take into ac-
count that some consumers are credit constrained or behave as buffer-stock consumers
with low asset levels. In addition we plan to explore how the relative importance of
the components of income risk interacts with observable consumer characteristics like
education. Particularly relevant for an empirical evaluation of the Constantinides and
Duffie result would be to re-do the analysis separately for consumers that participate in
the market for risky Þnancial assets and those that do not.
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A Moment conditions

With our model for the joint movement of income and consumption within a cohort,
we can calculate cross-sectional means and variances for each cohort j ∈ {1, 2, ..., J}.
First, taking averages over individuals within in each cohort, we get (dropping the logs
for convenience)

∆yjt = αj +∆et + vt + ε
y
jt (4)

∆cjt = bj + vt + ε
c
jt (5)

where the epsilons represent the difference between the sample and population means
and are therefore zero mean.22 These moment conditions identify the aggregate shocks
et and vt as well as the cohort speciÞc Þxed effects αj and bj .

Similarly, we can obtain 3JT moment conditions from the variances and the covari-
ance between ∆yijt and ∆cijt for each cohort at each time period

V arjt (∆y) = V arj (α) + V art (u) + V art−1 (u) + V art (n) (6)

+(∆et)
2 V ar (γ) + v2t V ar (δ) + 2vt∆etCov (γ, δ) + η

y
jt

V arjt (∆c) = V arj (b) + (1− φ)2 V art (n) + (1− φ)2 v2t V ar (δ) + ηcjt (7)

Covjt (∆y,∆c) = Covj (α, b) + (1− φ)V art (n) (8)

+(1− φ) £v2t V ar (δ) + vt∆etCov (γ, δ)¤+ ηycjt
From these expressions, we can identify the time varying variances V art (u) and V art (n)
and the distributional parameters V ar (γ), V ar (δ) and Cov (γ, δ), as well as the cohort
Þxed effects V arj (α), V arj (b) and Covj (α, b). The easiest way to interpret these
moment conditions is to consider the aggregate shocks as known from the moment
conditions above, and see these as a SUR regression with time speciÞc Þxed effects
V art (u) and V art (n).

Additional moment conditions can be derived from using the differences of the vari-
ances and covariance in levels. The changes in the variance of income, the variance of
consumption, and their covariance, are given by

∆V arjt (y) = V arjt (∆y)− 2V art−1 (u) + 2Cov (αi, yit−1) (9)

+2∆etCov (γi, yit−1) + 2vtCov (δi, yit−1) + ξ
y
jt

∆V arjt (c) = V arjt (∆c) + 2Cov (bi, cit−1) + 2 (1− φ) vtCov (δi, cit−1) + ξcjt (10)

∆Covjt (y, c) = Covjt (∆y,∆c) +∆etCov (γi, cit−1) + vtCov (δi, cit−1) (11)

+(1− φ) vtCov (δi, yit−1) + ξycjt
22These error terms also include measurement error. See the discussion in the main text.
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where

Cov (αi, yit−1) = Cov (α, y0) + (t− 1)V ar (α)
Cov (bi, cit−1) = Cov (b, c0) + (t− 1)V ar (b)

Cov (γi, yit−1) = Cov (γ, y0) +

Ã
t−1X
s=1

∆es

!
V ar (γ) +

Ã
t−1X
s=1

vs

!
Cov (γ, δ)

Cov (δi, yit−1) = Cov (δ, y0) +

Ã
t−1X
s=1

vs

!
V ar (δ) +

Ã
t−1X
s=1

∆es

!
Cov (γ, δ)

Cov (γi, cit−1) = Cov (γ, c0) + (1− φ)
Ã
t−1X
s=1

vs

!
Cov (γ, δ)

Cov (δi, cit−1) = Cov (δ, c0) + (1− φ)
Ã
t−1X
s=1

vs

!
V ar (δ) .

These 3JT moment conditions introduce only 5 extra parameters: Cov (α, y0), Cov (γ, y0),
Cov (δ, y0), Cov (b, c0), Cov (γ, c0) and Cov (δ, c0), so they substantially increase effi-
ciency. Moreover, these parameters are all interesting. They describe to what extent
sensitivity of income and consumption to the business is correlated with the initial dis-
tribution of income and consumption.

Finally, one more set of moment conditions can be derived from the change in the
autocovariance of income or, equivalently, from the covariance of changes in income with
lagged income.23

Cov (∆yit, yit−1) = 1
2 [Covjt (yit, yit−1)− V arjt−1 (y)] (12)

= −V art (u) + Cov (αi, yit−1) + vtCov (δi, yit−1)
+∆etCov (γi, yit−1) + ζ

y
jt

Notice that Blundell and Preston�s (1998) estimator for the variance of transitory
and permanent shocks is a special case of the moment conditions for the change in the
variances of income and consumption (or the change in the variance of income and the
covariance of income and consumption). Setting the aggregate shocks (or the variances
and covariance of the idiosyncratic responses) equal to zero, and with the additional
assumptions αi = α and bi = b constant across individuals, it is easy to see that

∆V art (y)−∆V art (c) ' ∆V art (y)−∆Covt (c, y) ' ∆V art (u)
which is Blundell and Preston�s difference in difference estimator for the change in the
variance of the transitory shocks. The variance of the permanent shocks can then be
retrieved by substracting these estimates from the change in the variance of income.
23We cannot calculate the autocovariance in consumption, nor the autocovariances of changes in

income and consumption, because we have only one annual change in consumption for each individual.
See the description of the data in appendix C.
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Figure 1: The consumption policy rule, non-parametric estimate using CEX data on
consumption and assets, taken from Gourinchas and Parker (2001).

B Credit constraints and precautionary saving

The model we described so far allows for a time-invariant amount of precautionary
saving. However, the model does not capture excess sensitivity to (transitory) changes
in income. As a rough control for excess sensitivity, we will assume that a fraction λ of
consumers consumes all of current income (In an old paper Campbell and Mankiw 1990
show that a model where about half the consumers is forward looking and the other half
�hand-to-mouth� describes the data better than the PIH). Clearly λ can be interpreted
as the fraction of consumers that are (perfectly) credit constrained. We argue however,
that it also proxies precautionary savings behavior relatively well.

Precautionary saving is theoretically closely related to liquidity constraints, and em-
pirically virtually indistinguishable (see Carroll 2001a). Figure 1 shows a non-parametric
estimate of the consumption policy rule, taken from Gourinchas and Parker (2001). Ap-
proximately, the Þgure shows that consumption does not respond to cash-on-hand, for
consumers with liquid wealth above a certain level �A which would be in line with the
permanent income hypothesis. If wealth is below �A, the marginal propensity to consume
out of extra cash-on-hand is close to one.
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To formalize the role of λ we write the estimation model as follows.24

∆yit = αi +∆uit + γi∆et + nit + δivt

∆cit =

(
∆yit for a fraction λ of the individuals
∆c∗it = bi + (1− φ)nit + �δivt for the rest

where ∆c∗it is the change in consumption for consumers that behave as if they follow the
PIH (extended for partial risk-sharing).

With this extension of the model derived in the text, the moment conditions for
aggregate changes in consumption change to

∆cjt = λ∆yjt + (1− λ)∆c∗jt = λαj + (1− λ) bj + λ∆et + vt
The moment conditions for the mean and variance of changes in income do not change.
The variance of ∆cijt is given by the weighted average of the within group variances
plus the between group variance, where the groups are credit constrained consumers (a
fraction λ) and PIH consumers (a fraction 1− λ)25

V arjt (∆c) = λV arjt (∆y) + (1− λ)V arjt (∆c∗) + λ (1− λ)
¡
∆yjt −∆c∗jt

¢2
Similarly, the covariance between ∆c and ∆y is given by

Covjt (∆c,∆y) = λV arjt (∆y) + (1− λ)Cov (∆c∗,∆y)
The moment conditions for the changes in the variance of consumption, and the

change in the covariance between income and consumption are slightly more involved.
The change in the variance of c changes to

∆V arjt (c)− 2Cov (∆cit, cit−1) = V arjt (∆c)
where V arjt (∆c) as above. The reason we use ∆V arjt (c) − 2Cov (∆cit, cit−1) rather
than ∆V ar (c) is that we cannot evaluate Cov (∆cit, cit−1) because we don�t have any
expression for cit−1 from the model. In particular don�t want to assume that for a fraction
of the consumers cit = yit. That would be a much more restrictive assumption than
assuming that for a fraction of the consumers ∆cit = ∆yit. Using a similar argument
we get

∆Covjt (y, c)− Cov (∆y, cit−1) = Covjt (∆y,∆c) + Cov (∆c, yit−1)
where Cov (∆y,∆c) as above and

Cov (∆c, yit−1) = λCov (∆y, yit−1) + (1− λ)Cov (∆c∗, yit−1)
24Notice that we assume λ is the same in every cohort and time-invariant. This is potentially a

problem; in particular λ is likely to be correlated with the business cycle.
25This is a special case of the decomposition of an unconditional variance into the expectation of a

conditional variance plus the variance of the conditional expectation.
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C Data description

The Consumer Expenditure Survey (CEX) is a rolling panel. Each month a new group
of about 500 new households enters the survey (annual sample size is about 5,870 house-
holds in the later years). These households are then interviewed each quarter, for Þve
quarters in a row. The Þrst meeting is an introductory interview where respondents are
asked about family characteristics and income, and are given information about how to
gather their expenditure information. In the second through Þfth quarter households
report expenditures over the previous quarter. Expenditures are coded by the Bureau
of Labor Statistics, assigned a Universal ClassiÞcation Category (UCC number) and ag-
gregated into several broader categories. The BLS gathers these data primarily in order
to calculate the Consumer Price Index, and CPIs are available for categories of expen-
ditures corresponding to the categories in the CEX up to a high level of disaggregation.
The unit of observation is a �consumer unit� (CU), which is a group of individuals living
together as a family.

Questions about income are asked in the Þrst and Þfth interview only, and refers the
previous 12 months. We can therefore calculate three quarterly changes in consumption,
but only one annual change in income. This gives rise to the timing problem discussed
in more detail below. Because new households enter every month, we can in principle
create a monthly time series of consumption and income (although the reference periods
would of course be overlapping). Because of changes in the survey design, households
cannot be matched with previous months in the Þrst quarter of 1982 and 1986.26

As our measure of consumption we use non-durable consumption, consisting of ex-
penditures on food and beverages, utilities, gas and motor oil, public transportation,
reading materials, tobacco products, personal care and apparel (clothing). For income
we use family income after tax. Nominal expenditures is converted to real expenditures
using item speciÞc CPI-U price indices (all urban consumers) for the expenditure cate-
gories mentioned as components of consumption. To deßate income we use the CPI-U
for total expenditures (including expenditures on durables).

We run a series of checks to identify mismatches, including large changes in family
composition.27 In addition, we drop the following households: non-urban households be-
26Because the BLS makes Þve quarters of data available each year, the Þfth quarter being the Þrst

quarter of the next year, in principle some of the individuals could be matched across the changes in the
survey design using the previous data release. Because we can handle missing data in our estimation
procedures we have not pursued this.
27 In particular, we suspect a �mismatch� if the household changes cohort or because any of the 6

categories of family composition (male female members under 2 years old, between 2 and 15 years old
and over 15) changes by more than 2 people. Clearly not all of those are actually mismatches. In
particular, a household can change cohort if the title for the house moves from mother to daugher for
instance. However, we feel these changes invalidate the link between an observed and a theoretical
household. Notice also that we do not drop these households from the sample, but split them up into
two �households� in order to preserve as many observations as we can.
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cause they are not available in 1982 and 1983; households that report zero expenditures
on food; households for which some categories of income are ßagged as incompletely
reported or topcoded (it is common in the literature to remove incomplete income re-
porters, we should probably check the robustness of our results against not removing
households with topcoded income); households of which either the reference person or
his or her partner is retired (working zero hours and reported reason is retired); and
households of which either the reference person or his or her partner is either a student
or living in student housing. The latter two categories are dropped because it seems the
standard consumption model is not a good description for these households. Finally,
we remove the bottom 0.05 and top 0.01 percentile of the consumption and income
distribution as well as of the Þrst differences, to avoid the variances to be driven by
outliers.

Table 1 reports summary statistics for our estimation sample as well as for the
full sample of households between 20 and 65 years old. The variables labeled D_*
are dummies for the different categories of drops. The most important are incomplete
income reporters (18% of the sample) and retired (4% of the sample). In total we
drop slightly over 30,000 observations out of 260,000 corresponding to about 8000 out
of 50,000 households for the sample period of 20 years. Notice that the number of
households corresponds to about 2500 per year instead of the 5000 mentioned earlier
because a lot of households have a reference person over 65 years old.

Comparing the two samples on the basis of their personal characteristics, the house-
holds in our sample are slightly younger because we dropped households with a retired
reference person, and have somewhat higher income because we removed incomplete
income reporters. The two samples are very similar in terms of family size, the fraction
of married and single reference persons (the reference category is �other� which includes
two adults living together without being married), the number of adults and kids, the
number of earners, and average hours worked by the reference person and her or his
partner. The samples are also very similar in terms of three different measures of con-
sumption: expenditures on food and beverages, non-durable consumption as deÞned
above, and total expenditures. Notice that consumption is quarterly whereas income
refers to the past year. Notice also that real income and consumption are a factor 100
smaller than their nominal counterparts because the BLS normalizes price indices to
100 for the average in the 36 months period 1982-1984. lrinc and lrcons refer to log real
income and consumption, SA stands for seasonally adjusted and SAA means adjusted
for seasonality as well as age (see the section on preference shifters).

We use these data to construct a synthetic panel dataset where we follow groups
of individuals born around the same time over the whole sample period. Following the
literature, we use 5 year cohorts which are labeled by their average age in 1980, i.e.
cohort 43 consists of consumers that were aged 41 through 45 in 1980. The age of a
household is deÞned as the age of the reference person (the person or one of the persons
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who owns or rents the home) at the last interview. Because the cell sizes are too small
for monthly or quarterly time series, we use annual time periods. Table 2 reports the
cell sizes for the cohort-year cells. We eliminate cells with average age below 21 or above
64 (these cells are shaded in the table). In the remainder of the paper we mainly use
the dataset with cohort-year cells.

C.1 Timing problem

This data problem deserves particular attention, because it directly inßuences our es-
timation procedure. For each household, we observe income only twice.28 The most
information we can retrieve from these two observations, is one annual Þrst difference.
Questions on consumption on the other hand, are asked each quarter for four subsequent
quarters. We can add up consumption in four quarters to obtain one observation for
annual consumption. However, we can only calculate three quarterly Þrst differences.
The changes in consumption therefore, do not refer to the same time period as changes
in income. We handle these timing differences by multiplying the difference in consump-
tion over three quarters by four thirds. In order not to loose too many observations, if
consumption data are missing in one or more quarters, we use a semi-annual or quarterly
Þrst difference, multiplied by 2 or 4 respectively.

This procedure works Þne for calculating mean changes in consumption, or the co-
variance between changes in income and consumption. However, when calculating the
variance of changes in consumption, the following problem occurs. The variance we
are interested in, is the cross-sectional variance of annual changes in consumption. So,
letting t denote quarters, what we want is

V ar (cit − cit−4) = V ar (∆1cit + ...+∆1cit−3)

where ∆1 denotes the quarterly Þrst difference operator. If, as predicted by the PIH,
consumption follows a random walk, changes in consumption are independent, so that

V ar (cit − cit−4) = V ar (∆1cit) + ...+ V ar (∆1cit−3) ' 4V ar (∆1cit)

However, the data do not allow us to calculate this variance. Instead, we use

V ar
¡
4
3 (cit − cit−3)

¢
= 16

9 V ar (∆1cit + ...+∆1cit−2) ' 16
9 3|{z}
5.33

V ar (∆1cit)

The bias introduced by this procedure is even much larger if there are missing consump-
tion data in one or more quarters. A similar timing problem occurs for V ar (∆cit, cit−1).
28The exception are households for which the number of adults (over 15 years old) or the number of

earners changes, because a household member Þnds or looses a job. In these cases the interview contains
the same questions on income that otherwise are asked in the Þrst and Þfth interview only.
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Luckily, the changes in the variances and covariance of income and consumption do not
suffer from the problem because to calculate these we use the time dimension of the
synthetic panel, for which we have annual time periods. Therefore, we are able to avoid
the problem by using ∆V ar (c) − Cov (∆ct, ct−1) as a proxy for V ar (∆c). A more
formal way to solve this problem would be to re-write the model in terms of quarters,
using three moment conditions for quarterly changes in consumption, and three more
conditions for the covariances between the quarterly changes in consumption with the
annual change in income.

C.2 Preference shifters

We make a number of adjustment to the raw data in order to make them more compa-
rable to the theoretical concepts described by the model. In particular, we control for
seasonality, family composition, attrition bias and age effects. The Þrst thing to note is
that we would have preferred to enter controls in the estimation procedure rather than
purging the data of these effects. This is not possible because our estimation works
off a secondary dataset of means, variances and covariances. To control for seasonality
and attrition bias, we simply run a regression of log real consumption and income on a
set of month dummies as well as interview dummies, and take the residuals adding the
constant back up. Controlling for family composition is a bit more subtle and we turn
to this issue next. After that we discuss the justiÞcation to control for age effects.

The primary reason to control for family composition is that the model refers to
consumption per capita, whereas the dataset only contains consumption per households.
If there are returns to scale from living together with other consumers in a household,
then the family composition may shift preferences over consumption goods. Typically,
the literature either estimates or uses a rough approximation of a simpliÞed equivalence
scale. We follow this practice, and regress consumption on the number of adults and
the number of children in the household. The estimates indicate that consumption is
higher by about 27% for each extra adult, and by 4% for each additional kid.29 Notice
that if we would not control the data for family composition, the variance in family size
between households would introduce spurious variance in consumption.

These estimates come from a simple cross-sectional OLS regression of consumption
on the number of adults and kids in the household. However, family composition may
29We also tried more ßexible speciÞcations, allowing for extra persons to have different effects on

household consumption depending on their age and gender, but these differences were insigniÞcant. The
estimates intuitively make sense, although the coefficients seem rather small. Other adjustments that
have been used in the literature are dividing household consumption by the number of adults plus 0.4
times the number of children (Parker and Preston 2001) or by a more elaborate equivalence scale like
Blundell and Preston (1998) who calculate the Þrst adult as 0.55 couple, the second and third adults
0.45 times, and subsequent adults 0.4 times, and give children different weights depending on their age
from 0.07 (under 2 years) to 0.38 (aged 17 or 18).
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change over the sample period. If (possible unobservable) other family characteristics
are correlated with preferences over family size, then the change in consumption of a
family with three kids that gets a fourth baby does not need to be the same as the
average cross-sectional difference between families with three and four children. In fact,
comparing the estimates from a cross-section regression with Þxed effects estimates,
which are identiÞed only off within sample changes in family size, the coefficients turn
out to be quite different. Controlling for family size in levels, will therefore introduce
spurious changes in consumption for families that change family composition over the
sample period. To control for this problem, we Þrst regress log real consumption on the
family composition variables, take the residuals and add back up the constant, and then
run a FE regression of these residuals on the same variables, again taking the residuals
but including the family speciÞc Þxed effect.

If we clean the consumption data, clearly we should clean the income data as well.
However, there is much less justiÞcation to expect income to depend on family com-
position than consumption. Nevertheless, the coefficient estimates for these effects are
quite signiÞcant and similar to the coefficients for consumption (although the coefficient
on the number of children has the opposite sign). There is an issue whether we want
to use these estimated coefficients, or the estimates from the consumption regression.
Using the estimates from the consumption regression leaves the savings rate unaltered
(because income and consumption are adjusted by the same percentage) but may not
remove spurious changes in income due to family composition (dad may start working
less because he wants to be with the baby more often, see Gourinchas and Parker (2002)
for a discussion). We opt to use the estimated coefficients for income.

Graphing log real consumption and income, controlled for seasonality, attrition bias
and family size by cohort over time it is that both income and consumption increase
for the younger cohorts, and decrease for the older cohorts. This �hump shaped� life-
cycle proÞle of consumption and income is clearly non-linear, and will therefore not be
captured by the trend αi in income and bi in consumption. Therefore, we clean the data
for these age-effects by regressing on a fourth order polynomial in age, which captures
the shape of the age proÞles well, and taking the residuals. This has the additional
advantage that the individual speciÞc trends αi in and bi now will have mean zero
across individuals. Notice that in some sense it is arbitrary to control for age effects.
We are interested in the time effects in consumption and income, which represent the
aggregate shocks. Therefore, we would like to control for both cohort and age effects,
but clearly cannot do both. It seems plausible however, to assume that cohort effects
are less important than age effects, and more directly related to the time effects.

To summarize the above: we Þrst regress log real consumption and income on a
set of month dummies (seasonality), interview dummies (attrition bias), a fourth order
polynomial in age and the number of adults and children in the family. Then we take
the residuals of this regression, and add back up the constant. Then we run a Þxed
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effects regression of these residuals on the number of adults and children, to remove
spurious within sample changes that were introduced because of the Þrst regression, and
take the residuals including the family speciÞc Þxed effects. Notice that this second step
will only change consumption and income for families that experience a within sample
change in family composition.

We considered other possible preference shifters as well, the most important being
hours worked by the Þrst and second earner, in order to allow for non-separabilities
between consumption and leisure (families with a �working mum� may eat out more often,
which leads to higher expenditures on food than families that eat at home). However,
of course these variables are highly correlated with income, so we risk removing exactly
the variation we are interested in, which is the comovement between consumption and
income.

D Likelihood based estimation procedure

As noted in the main text, all shocks of the model are assumed to be jointly normal with
zero mean and a block diagonal variance-covariance matrix. The only covariance block
that is left unconstrained is the covariance between the innovations to the idiosyncratic
permanent variance and the business cycle, represented by the aggregate shocks. We
use ωT = [ω01, ...,ω0T ]

0 to denote the history of a generic vector of variables ωt and DT

to denote all the observable data used to estimate the model.
The objective here is providing a procedure to evaluate the posterior distribution of

the parameters. The parameters of interest are the unobservable states, vt, et, V art(u)
and V art(n) and the hyperparameters Σ, θ and φ that are deÞned in the main text.
Because of the high-dimensionality of the problem, we use Gibbs sampling to evaluate
the posteriors. The Gibbs sampling is carried out in Þve steps, drawing in turn the
aggregate shocks, the hyperparameters θ, the time varying variances of the idiosyncratic
shocks, the hyperparameter φ and the hyperparameters Σ, conditional on the observed
data and the rest of the parameters. We make use of rejection sampling in order to
implement some of the restrictions on the parameters suggested by the theory. In the
Þrst section of this appendix we discuss each step in turn.

D.1 Markov chain Monte Carlo algorithm

Step 1: Drawing the aggregate shocks Rewrite equations (4) and (5) in the state-
space form

dt = Hst + εt

st = Fst−1 + ζt,
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where

dt ≡



∆y1t
...

∆yJ−1t
∆yJt
∆c1t
...

∆cJ−1t
∆cJt


; H =



1 1 −1
...
...

... IJ−1 0J−1
...
...

...
1 1 −1 −1 · · · −1 0 · · · 0

1 0 0
...
...

... 0J−1 IJ−1
...
...

...
1 0 0 0 · · · 0 −1 · · · −1


; st =



vt
et
et−1
αi
...

αJ−1
b1
...

bJ−1


;

εt =



εy1t
...

εyJ−1t
εyJt
εc1t
...

εcJ−1t
εcJt


; F =



0 0 0

0 0 0 03,J−1 03,J−1
0 1 0

0J−1 IJ−1 0J−1

0J−1 0J−1 IJ−1


; ζt =



vt
et
0

0
...
...
...
...
0


Conditional on Σ, the system of observation equations is linear and has Gaussian

innovations with known variance. We use the methodology described in Carter and
Kohn (1994) to make draws from the posterior of the states. The density p(sT |DT ,Σ)
can be factored as30

p(sT |DT ,Σ) = p(sT |DT ,Σ)
T−1Y
t=1

p(st|st+1,DT ,Σ),

where

p(st|st+1,DT ,Σ) = N(st|t+1;Vt|t+1),

st|t+1 = E(st|st+1,DT ,Σ),
Vt|t+1 = V ar(st|st+1,DT ,Σ).

This means that the vector of v�s and e�s can be easily drawn because st|t+1 and Vt|t+1 can
be computed using the forward (Kalman Þlter) and the backward recursions reported
30p(·) is used to denote a generic density function.
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in appendix D.4. SpeciÞcally, the last recursion of the Þlter provides sT |T and VT |T ,
i.e. mean and variance of the posterior distribution of the states. Drawn a value from
this distribution, the draw can be used in the backward recursion to obtain sT−1|T and
VT−1|T and so on.31

Step 2: Drawing the hyperparameters θ Consider now the system of equations
given by the seven moment conditions relative to variances and covariances (7), (6), (8),
(10), (9), (11) and (12). Rewrite them in the following linear form:

ddt = GSt +Xtθ + ²t, (13)

where

ddt = [V ar1t(∆c), ..., V arJt(∆c), V ar1t(∆y), ..., V arJt(∆y), cov1t(∆y;∆c), ..., covJt(∆y;∆c),

∆V ar1t(c), ...,∆V arJt(c),∆V ar1t(y), ...,∆V arJt(y),∆cov1t(y; c), ...,∆covJt(y; c),

cov1t(∆y; yt−1), ..., covJt(∆y; yt−1)]0

St = [V art(n), V art(u), V art−1(u)]0

²t =
£
ηc1t, ..., η

c
Jt, η

y
1t, ..., η

y
Jt, η

yc
1t , ..., η

yc
Jt, ξ

c
1t, ..., ξ

c
Jt, ξ

y
1t, ..., ξ

y
Jt, ξ

yc
1t , ..., ξ

yc
Jt, η

yy
1t , ..., η

yy
Jt ,
¤0
,

G is the states loading matrix and Xt a set of time varying regressors. For brevity we
omit the exact expressions of G and Xt. The system of equations (13) can be rewritten
as

dd∗t = (ddt −GSt) = Xtθ + ²t,
where, conditional on DT , vT , eT , V ar(u)T , V ar(n)T ,φ and Σ, dd∗T and XT are observ-
able. We are now in the case of a linear normal system of equations. Therefore θ can be
easily drawn from his posterior distribution, which takes the form p(θ|DT , vT , eT , V ar(u)T , V ar(n)T ,φ,Σ) =
N(bθOLS;V ar(bθOLS)).
Step 3: Drawing V ar(u)T and V ar(n)T Consider again equation (13) and rewrite
it as

dd∗∗t = (ddt −Xtθ) = GSt + ²t, (14)

where, conditional on DT , vT , eT , θ,φ and Σ, dd∗∗T is observable. The states transition
equation is given by:

St = BSt−1 + wt,

where

B =

 1 0 0

0 1 0

0 1 0

 ; wt =
 wntwut

0

 . (15)

31For further details on Gibbs sampling for state space models see Carter and Kohn (1994) or Kim
and Nelson (1999).
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The same procedure applied in the Þrst step of the sampler can be adopted here to draw
the unobservable states V ar(n)T and V ar(u)T .

Step 4: Drawing 1−φ The parameter 1−φ enters non-linearly some of the moment
conditions of A and this complicates the analysis. Therefore, in order to take a draw
from the posterior distribution of 1− φ we use a Metropolis-Hastings step,32 nested in
the Gibbs sampler. The procedure works as follows: we draw a candidate value 1− φ∗
from a proposal distribution, say ϕ(1−φ∗|DT , vT , eT , V ar(u)T , V ar(n)T , θ,Σ), which in
our case is normal. In order to chose a reasonable value for the mean of the proposal
distribution, we run a regression of ∆V ar(c) on V ar(n) and we take the square root
of the result.33 The variance is arbitrarily set to 0.03. We reject the proposal values
outside the interval [0, 1]. At this point we compute the posterior value associated to the

draw, p
³
1− φ∗|DT , vT , eT , V ar (u)T , V ar (n)T , θ,Σ

´
that, under ßat priors, coincides

with the likelihood of the system of equations given by (7), (10), (8) and (11). The new
draw is accepted with probability

q = min

½
p(1− φ∗) / ϕ(1− φ∗)

p(1− φi−1) / ϕ(1− φi−1) , 1
¾
.

where 1− φi−1 is the previous draw of the chain. If the proposal value is rejected, the
next element of the chain is set to be 1− φi−1.

Step 5: Drawing Σ Conditional on vT , eT , V ar(u)T , V ar(n)T , φ and DT , every
element of Σ has an inverse-Gamma posterior distribution, independent of the other
elements. Moreover, conditional on vT , eT , V ar(u)T , V ar(n)T , φ and DT , it is easy to
draw from these inverse-Gamma posteriors because the innovations are observable.34

Summary Summarizing, the sampler takes the form:

1. Initialize Σ, V ar(u)T , V ar(n)T ,φ.

2. Sample vT , eT , α1, ...,αJ−1 and b1, ..., bJ−1 from p(vT , eT ,α1, ...,αJ−1, b1, ..., bJ−1|DT ,Σ).
3. Sample θ from p(θ|DT , vT , eT , V ar(u)T , V ar(n)T ,φ,Σ).
4. Sample V ar(u)T and V ar(n)T from p(V ar(u)T , V ar(n)T |DT , vT , eT , θ,φ,Σ).

5. Sample φ from p(φ|DT , vT , eT , V ar(u)T , V ar(n)T , θ,Σ) through a Metropolis-Hastings
step.

32See Gelman et al. (1995) for further details on Metropolis-Hastings algorithms.
33The intuition for this step relies on equation (10).
34See Gelman et al. (1995) for a description of the sampling procedure from inverse-gamma or inverse-

Wishart distributions, also when combined with the natural conjugate prior described below.
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6. Sample Σ, by sampling Σi from p(Σi|DT , vT , eT , V ar(u)T , V ar(n)T , θ,φ)
7. Rejection of the whole draw if V ar(δ) < 0 or V ar(γ) < 0.

8. Go to 2.

D.2 Priors

To make the results comparable to previous studies we use ßat and uninformative priors,
except for the cases described below, in which a prior is suggested by the theory and the
use of conjugate prior simpliÞes the analysis. In the Þrst step, for aj and bj , j = 1, ..., J ,
we assumed a normal prior with mean corresponding to the sample mean of {∆yjt}Tt=1
and {∆cjt}Tt=1 and variance arbitrarily Þxed to 10. In the third step of the sampler, every
element of S0|0 is set to be equal to the sample mean of {{V arjt(∆y)}Tt=1}Jj=1, while the
variance of S0 is set to the identity matrix. In the Þfth step we use conjugate inverse-
gamma priors for σ2v and σ

2
e. The scale values are set respectively to the variance of

the aggregate consumption and the variance of the aggregate income minus the variance
of the aggregate consumption, dividing the result by two. The degrees of freedom are
set to 5. The effect of the priors is negligible, except in the last case for σ2v and σ

2
e,

where the prior plays the role of slightly increasing the size of the aggregate shocks to
bring these more in line with the GMM estimates. Notice that this prior, if anything,
strengthens our result that aggregate shocks have a negligible effect on inequality.

D.3 Correlation aggregate shocks and idiosyncratic risk

In order to explicitly take into account the possible correlation between aggregate shocks
and innovations to the variance of the idiosyncratic permanent shocks, we slightly modify
the procedure described above in the following way. In the Þfth step, we draw σ2v, σ

2
e,

σ2wn , σv,wn and σe,wn jointly from an inverse-Wishart distribution. Then in the Þrst step
we add the equation

wnt = κvvt + κeet + zt

to the measurement equations, where wnt are observable and κv, κe and V ar(zt) can be
easily computed given σ2v, σ

2
e, σ

2
wn , σv,wn and σe,wn . After this point the procedure in

step 1 is identical to the one described above. In the third step we add the two equations

vt = ϕvwnt + hvt

et = ϕewnt + het,

to the measurement equations, where vt and et are observable and ϕv, ϕe, V ar(hvt)
and V ar(het) can be easily computed given σ2v, σ

2
e, σ

2
wn , σv,wn and σe,wn . If the state

vector is expanded to take V art−1(n) into account, the procedure in step 3 is identical
to the one described above. This adjustment turns out not to make any difference for
the results.
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D.4 Gibbs sampling for state-space models

These are the forward (Kalman Þltering) and the backward recursions for Gibbs sampling
for state space models. Measurement equation:

dt = Hst + εt

Transition equation:
st = Fst−1 + ζt

where Ã
ε

ζ

!
∼ N(

"
0

0

#
,

"
R 0

0 Q

#
).

Let

st|s = E(st|Y s,H,R,Q),
Vt|s = V ar(st|Y s,H,R,Q).

Then, given s0|0 and V0|0 and following the standard Kalman Þlter forward recursion:

st|t−1 = Fst|t−1,

Vt|t−1 = FVt−1|t−1F 0 +Q,

Kt = Vt|t−1H 0
t(HVt|t−1H

0 +R)−1,

st|t = st|t−1 +Kt(yt −Hst|t−1),
Vt|t = Vt|t−1 −KtHVt|t−1.

In this way they can be obtained sT |T and VT |T , used to draw the Þrst value of the
backward recursion. The updating formulas for the following draws are:

st|t+1 = st|t + Vt|tV −1t+1|t(st+1 − st|t),
Vt|t+1 = Vt|t − Vt|tV −1t+1|tVt|t.
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Table 1. 
Summary statistics 

 
 

 Full sample aged 21-65 
(and >5 in 1980) 

Estimation sample 

Variable Mean Std. Dev. Mean Std. Dev. 
    
age 41.27 11.94 40.14 11.42 
fam_size 2.84 1.58 2.86 1.59 
married 0.58 0.49 0.57 0.50 
single 0.31 0.46 0.32 0.46 
nrad (16+) 2.04 0.96 2.03 0.96 
nrkd (15-) 0.80 1.13 0.83 1.14 
no_earnr 1.62 0.94 1.68 0.91 
inc_hrs1 42.74 11.15 42.64 11.00 
inc_hrs2 37.43 12.09 37.26 12.04 
    
D_cons 0.001 0.036 0 0 
D_inc 0.183 0.386 0 0 
D_retd 0.043 0.203 0 0 
D_student 0.011 0.104 0 0 
D_studhous 0.005 0.073 0 0 
    
inc 27907.85 28832.68 31804.09 24189.21 
foodbev 1219.14 886.70 1185.21 800.70 
cons 2634.86 1696.22 2568.36 1516.42 
totexp 7282.63 6240.78 7160.52 5570.45 
    
rinc 218.86 207.99 252.09 177.03 
rfoodbev 9.63 6.71 9.47 6.19 
rcons 22.07 13.48 21.73 12.30 
rtotexp 57.09 45.33 56.86 41.20 
    
lrinc 5.10 1.11 5.24 0.88 
lrcons 2.93 0.58 2.93 0.56 
lrincSA 5.10 1.13 5.24 0.89 
lrconsSA 2.93 0.58 2.93 0.56 
lrincSAA 4.92 1.09 5.04 0.85 
lrconsSAA 2.83 0.53 2.83 0.51 
    
NrObs 263786  228984  

 



 
 
 

Table 2. 
Cell sizes by cohort and year 

 
 

year coh8 coh13 coh18 coh23 coh28 coh33 coh38 coh43 coh48 coh53 coh58 coh63  Total
1980   21 93 112 102 77 72 64 58 68 55  722
1981  0 93 442 511 518 395 306 316 321 289 207  3398
1982  0 56 136 124 105 95 73 70 68 67 44  838
1983  3 148 345 433 373 285 213 226 280 202 115  2623
1984  8 193 354 458 400 331 239 214 254 186 102  2739
1985  51 308 590 578 563 465 354 339 301 267 118  3934
1986 1 31 85 144 97 86 76 63 55 55 30 27  750
1987 0 117 324 481 453 444 337 282 306 230 160 82  3216
1988 1 92 330 385 392 362 275 217 199 192 106 62  2613
1989 8 136 369 398 361 380 273 243 200 148 106 49  2671
1990 32 189 361 421 390 382 296 245 176 157 87 36  2772
1991 47 206 398 405 361 353 287 197 163 135 84 45  2681
1992 83 236 397 437 394 320 254 227 161 115 56 32  2712
1993 104 247 413 420 399 338 243 206 158 99 65 27  2719
1994 140 278 414 437 376 325 279 193 148 84 40 21  2735
1995 193 321 447 487 436 423 297 205 175 76 45 20  3125
1996 117 148 204 186 180 147 101 87 45 23 8 7  1253
1997 212 305 338 376 332 293 190 130 62 43 17 12  2310
1998 247 321 364 364 327 297 211 140 75 46 24 12  2428
1999 292 342 352 349 377 307 192 129 71 47 22 12  2492
2000 209 256 309 290 276 216 169 83 61 33 19 8  1929

        
Total 1686 3287 5924 7540 7367 6734 5128 3904 3284 2765 1948 1093  50660

 



Table 3. 
Scalar parameter estimates 

 
 

 GMM Likelihood based 
 Mean St. error Mean St. error 
   

Impact aggregate shocks   
variance(gamma)  (1) 22.03 9.34 10.48 10.62
variance(delta)  (1) 22.90 12.50 12.74 13.42
covariance(gamma,delta) 26.82 13.27 5.15 10.34
cov(gamma,y0) 1.07 1.10 0.09 0.68
cov(delta,y0) 0.53 0.76 0.30 0.88
cov(gamma,c0) 1.18 3.18 0.05 0.26
cov(delta,c0) 0.21 0.20 -0.11 0.35

   
Deterministic trends   
variance(alpha) 0 (2) 0 (2)
variance(b) 0 (3) 0.0002 0.0003
cov(alpha,y0) 0 (2) 0 (2)
cov(b,y0) 0 (3) -0.0010 0.0035

   
Measurement error   
in variance(dy) and autocov  (4) -0.041 0.023 -0.028 0.055
in variance(dc) 0.272 0.015 0.286 0.010
in covariance(dy,dc) 0.012 0.004 0.012 0.005

   
Risk sharing   
phi 0.775 (3) 0.775 0.115

   
correlation coefficient v and var(n)   0.065 0.211

   
(1) Restricted to be positive. 
(2) Restricted to zero because of identification. 
(3) Restricted for reasons of convergence. 
(4) Measurement error in both equations not separately identified. Estimate is difference. 

 
 
 



Figure 1. Inequality by cohort
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Figure 2. Age profile consumption inequality
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