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Abstract

Foreign exchange rates can be subject to considerable daily fluctu-
ations (up to 5 percent within one day). This can, in certain cases,
cause serious losses on open overnight positions. Given a maximum
tolerable loss for a company, limits have to be set on open overnight
positions in foreign currencies. Usually, these limits are determined by
using a normal (”Gaussian”) model for the daily fluctuations. In our
study we illustrate how this common model sometimes quite strongly
underestimates the actual extreme risks and, based on methods from
Extreme Value Theory (EVT), we propose and justify a more accurate
model. We also show how to use these estimations to compute limits
that a risk manager can set to open positions to avoid unexpected huge
losses.
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1 Introduction

Since risk management has been established on a quantitative basis in finan-
cial institutions, the prevailing model has been the Gaussian one [J. P. Morgan, 1996].
In particular, it is widely used to determine the Value-at-Risk of assets or
more generally of portfolios of assets or in pricing options with the Black
and Scholes model [Black and Scholes, 1973]. By using a model, it is pos-
sible to determine the probability of a movement of a certain size to oc-
cur. The Gaussian model, however, implies that extreme movements are
very improbable. Unfortunately, we have learned the hard way that ex-
treme movements in financial markets are more the rule than the exception
[Koedijk et al., 1990, Longin, 1996]. This fact pleads for the use of more
sophisticated ways for assessing the risk of extreme events. Extreme value
theory1 gives us luckily the possibility to go beyond the normal assumptions
and to better quantify the risk of extreme events on financial markets.

In this paper, we first present empirical studies of daily log returns (later
called returns) of foreign exchange (FX) rates that demonstrate the existence
of extreme events in this market and quantify the failure of the Gaussian
model. In a second part, we show how it is possible to estimate the prob-
ability distribution of extreme movements using a simple method derived
from extreme value theory (EVT). We compare the results obtained with
historical data and make predictions for longer periods than those already
observed as well as we propose a way to compute the limits that a risk man-
ager would set to open positions in order to avoid the occurrence of large
losses.

2 Large Movements Do Occur More Often than
Predicted by the Gaussian Model

To examine the presence of extreme movements in the FX market, we use
a set of daily observations of four major FX rates, namely CHF/USD,
EUR/USD, GBP/USD and JPY/USD2. For all rates except EUR/USD,

1For the interested reader, there are more and more review books available on the
subject. Here are two: one more oriented towards the theory [Leadbetter et al., 1983] and
two more practically oriented [Adler et al., 1998, Embrechts et al., 1997].

2The data were obtained from Bloomberg L.P. through their Bloomberg Data License;
see www.bloomberg.com. Free daily observations of certain FX rates can be obtained e.g.
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FX rate µ̂ σ̂ Max. One event over Min. One event over
number of years number of years

EUR/USD -0.0089% 0.83% 5.05% 10’838’489 -3.86% 1’243
JPY/USD 0.0105% 0.69% 3.98% 1’519’105 -7.20% impossible
GBP/USD -0.0077% 0.65% 4.05% 24’533’626 -4.70% 3’269’448’288
CHF/USD -0.0009% 0.75% 3.76% 21’157 -4.51% 1’543’769

Table 1: Empirical estimates of the averages (µ̂) and the standard deviations (σ̂) of log
returns of major FX rates. We also display the largest (Max.) and the smallest (Min.) returns
in the sample together with their probabilities of occurrence according to the Gaussian model
parameterized with the estimated empirical averages and standard deviations.

we cover the time interval from January 2nd, 1980 to December 31st, 2001,
resulting in some 5600 daily observations per rate. For the EUR/USD rate,
we cover the interval from December 29th, 1988 to December 31st, 2001,
resulting in 3358 daily observations. For the time before January 1st, 1999,
we use a synthetic Euro rate computed from a portfolio of the constituent
currencies 3. Based on these data, we construct the logarithmic returns:

ri = ln
(

Pi

Pi−1

)
(1)

where Pi indicates the closing price on day i. This transformation allows
us to work with a stationary time series, see [Dacorogna et al., 2001], and is
the usual quantity considered in statistical studies of financial data.

For the rest of this study, we shall assume that the daily logarithmic
returns ri are independent and identically distributed (i.i.d.). In addition, it
is fairly popular among practitioners to assume more specifically that each
ri follows a Gaussian distribution, i.e. the probability density function of ri

is given by:

f(x) =
1

σ
√

2π
e−

1
2σ2 (x− µ)2 ≡ N(µ, σ) (2)

This model is fully determined by two parameters, namely the average µ
and the variance σ2. Empirical estimates µ̂ and σ̂ to calibrate the model to
the characteristics of a specific exchange rate can be easily obtained from

from www.federalreserve.gov/releases/H10/hist/.
3Actually, the THEOEURO index from Bloomberg.

3



FX rate Expected Observed Expected Observed
Positive Positive Negative Negative

EUR/USD 34 48 34 57
JPY/USD 56 119 56 71
GBP/USD 56 88 56 102
CHF/USD 55 106 55 80

Table 2: Theoretical and observed numbers of exceedances of a VaR at 99% respectively
1% computed according to the Gaussian model.

the historical data. Then, given a specific return ri, it is possible to compute
its probability according to the Gaussian model by using Equation 2.

In Table 1, we report estimates of both µ and σ for the four FX rates
as well as the largest negative and positive returns observed in our sam-
ples. These values are compared to their probability of occurrence in the
Gaussian model. In order to facilitate the understanding, we present the
Gaussian probability as the one event in a certain number of years. It is
easily seen from the numbers that the Gaussian model gives completely un-
realistic probabilities given that our sample, and the extremes observed in
it, cover an observation period of only 21 years (resp. 13 for EUR/USD).

To complete the picture, we turn ourselves to the computation of the
Value-at-Risk (VaR) as it is given by our historical data. The VaR has be-
come a standard way of measuring the extreme risk of a portfolio [Jorion, 1997].
Given a certain model, the VaR is equivalent to the quantile corresponding
to a certain risk threshold. One usual threshold is the 1% event. In the
Gaussian model, the VaR is determined by the average µ and the standard
deviation σ. Once we have the VaR, we can compute the expected number
of exceedances to this threshold according to the Gaussian model. Theo-
retically, given the quantiles of 1% (left tail) or the 99% (right tail), this
number is a function of the number of data. If one looks historically in
the data, there should only be 1% of the losses that are beyond the VaR.
Our study consisted in counting the number of returns that were beyond
the given thresholds. In Table 2, we present the results of the study. It is
clear that the number of values that lie beyond the VaR is much larger than
expected by the Gaussian model. It is one more clear sign that the Gaussian
model is not appropriate to represent the risk of extreme movements in the

4



FX market.

Both analyses justify the title of this section. Extreme events do indeed
occur much more frequently than this is foreseen by the Gaussian model.
Hence, in order to get a better understanding of the dangers posed by ex-
treme fluctuations in FX rates, we have to go for alternative models that
assign more realistic - i.e. higher - probabilities to these extreme events.
This is the subject of the next section.

3 Tail Analysis

As long as we are only interested in the extreme events, we do not need
to consider models that cover the full range of possible outcomes as does
the Gaussian one. Indeed, we can restrict our attention to dedicated meth-
ods for the analysis of extreme events, i.e. the analysis of the tails of the
probability distribution. Powerful methods for this tail analysis come from
the realm of Extreme Value Theory (EVT) which has become fairly popular
in various areas of quantitative risk management during the past few years
[Embrechts et al., 1998].

Essentially, EVT aims at estimating tail events, and by definition does
not consider fitting the center of the distribution. Depending on the distribu-
tional properties of the underlying model, various statistical techniques are
available; see for instance [Embrechts et al., 1997] for a survey and point-
ers to the rich literature on this topic. In our case, we look at so-called
heavy-tailed models (also referred to as the Fréchet class) for which

1− F (x) = x−αL(x). (3)

In this formula, the crucial parameter determining the tail properties is
α > 0. The unknown function L(x) is defined in such a way that it will
typically not appear in statistical estimates for models satisfying Formula
3. It does, however, play an important role when it comes to statistical
properties of these estimates; see [Embrechts et al., 1997] for all technical
details. Hence, the problem becomes to estimate the tail index α from the
data. There are many procedures for this estimation, and we concentrate
here on the Hill estimator [Hill, 1975], which is a consistent estimator of
γ = 1/α. Given a sequence of n observations, X1, X2, ..., Xn, drawn from
an i.i.d. process whose probability distribution F is unknown, we order the
observations in descending order statistics X(1) ≥ X(2) ≥ ... ≥ X(n). We can
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then define the Hill estimator γ̂H
n,m by:

γ̂H
n,m =

1
m− 1

m−1∑

i=1

ln X(1) − ln X(m) (4)

where the number of order statistics m is an additional parameter to be de-
termined. In fact the Hill estimator is the maximum likelihood estimator of
γ and α = 1/γ holds for the tail index. For finite samples, however, the ex-
pected value of the Hill estimator is biased. There are many ways of trying
to reduce this bias, from graphical techniques [Resnick, 1987] to sophisti-
cated bootstrap procedures [Danielsson et al., 1997, Pictet et al., 1998]. In
practice, however, we find that taking a value of m =

√
n where n is the

number of observations in the sample leads to reasonable results.

The purpose of this short communication is not to assess in details the
significance or the bias of the estimator4 but rather to design a simple recipe
to quantify the probability of extreme movements from a given data set. The
results might vary slightly from one method to the other but the order of
magnitude stays the same and, as we shall see, the improvement compared to
the Gaussian model is such that a certain imprecision in the estimation is a
price worthwhile to pay. However, if one puts the model into practical use, it
is nevertheless important to obtain an idea of the accuracy of the estimated
parameters. To this end, the Jackknife method is a simple and powerful
means. It basically consists of modifying the data sample in 10 different
ways, each time removing one tenth of the total sample. The tail index is
separately computed for each of the 10 modified samples, and the analysis
of the deviations between the 10 results yields an estimate of the standard
error. Together with the asymptotic properties of the Hill estimator, this
allows to compute e.g. a 95% confidence interval, as given for our estimates
in Table 3. It is beyond the scope of this short communication to dwell
longer on this issue, but the interested reader can find detailed information
in [Pictet et al., 1998] and more examples and background information in
[Dacorogna et al., 2001].

Using Equation 4 with m =
√

n and the Jackknife method, we esti-
mate the tail indices and the 95% confidence bounds for the four FX rates
chosen for this analysis. The results are reported in Table 3. The re-
sults are relatively stable and remarkably similar across rates, except for
CHF/USD. The results of Table 3 differ slightly from the results obtained

4The interested reader can consult the different references given in this paper.
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FX rate Number of Number of Tail Index
Observations (n) Order Statistics (m) α̂ = 1/γ̂H

n,m

EUR/USD 3357 58 3.86 ± 0.80
JPY/USD 5642 75 3.96 ± 0.85
GBP/USD 5634 75 3.76 ± 0.83
CHF/USD 5641 75 4.67 ± 1.07

Table 3: Results of the esimations of the tail index on our sample; the values in parentheses
are the 95% Jackknife confidence interval around α̂.

in [Dacorogna et al., 2001] but are still clearly within the error bounds given
therein. The confidence intervals reported here are not negligible, but much
narrower than those given in [Dacorogna et al., 2001]. Differences may be
due to the considerably longer data samples and to the simplified estimation
procedure in this study. In any case, the differences are not material and do
not really affect the rest of our study where we shall use the numbers given
in the last column of Table 3.

4 Extreme Risks and Limit Setting

From the practitioner’s point of view, one of the most interesting questions
that tail studies can answer is what are the extreme movements that can
be expected in financial markets. Have we already seen the largest ones or
are we going to experience even larger movements? Are there theoretical
processes that can model the type of fat tails that come out of the empirical
analysis? The answer to such questions are essential for good risk man-
agement of financial exposures. It turns out that we can partially answer
them here. Once we know the tail index, we can apply extreme value theory
outside our sample to consider possible extreme movements that have not
yet been observed historically.

This can be achieved by a computation of the extreme quantiles in the
daily returns as proposed in section 5.4.3 of [Dacorogna et al., 2001]. In this
reference the derivation of the following quantile estimator is presented for
a given probability p :

x̂p = X(m)

(
m

np

) 1
α̂

(5)
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FX rate Method of Worst daily movement within ...
Calculation 5 years 10 Years 20 Years 30 Years 40 Years

EUR/USD Observed 3.79% 3.84% – – –
Hill 4.30% 5.17% 6.22% 6.93% 7.49%
Gaussian 2.68% 2.85% 3.01% 3.10% 3.17%

JPY/USD Observed 3.53% 4.85% 6.09% – –
Hill 3.97% 4.74% 5.67% 6.30% 6.80%
Gaussian 2.24% 2.38% 2.51% 2.59% 2.64%

GBP/USD Observed 3.21% 3.88% 4.54% – –
Hill 3.38% 4.08% 4.93% 5.51% 5.96%
Gaussian 2.09% 2.22% 2.34% 2.41% 2.46%

CHF/USD Observed 3.22% 3.61% 4.11% – –
Hill 3.54% 4.12% 4.80% 5.24% 5.58%
Gaussian 2.41% 2.56% 2.71% 2.79% 2.84%

Table 4: Extreme daily returns over periods of 5 to 40 years. The values are computed by
three different methods: historically observed in our sample, using the Hill estimator and using
the Gaussian model.

where all the quantities on the right-hand side are now known. The reference
gives also a way to estimate the error of this quantile computation but
here we concentrate on the computation of quantiles using the numbers
obtained in Table 3. Since we have a sample covering 21 years, we choose
the probabilities of occurrence at which to compute the quantiles so that we
obtain at least two numbers that we can compare with our historic data and
two that represent an out-of-sample prediction: 1 over 5 years (probability
of 0.0008)5, 1 over 10 years (0.0004), 1 over 20 years (0.0002), 1 over 30 years
(0.000133) and 1 over 40 years (0.0001), which are really low probabilities
sitting far out in the tails.

In Table 4, we report the results for three different methods of calcula-
tion: first the observed quantile (at least for the probabilities still covered by
the samples), the quantile computed with the Hill estimator (Equation 5)
and then the quantile computed using the Gaussian model as introduced
and calibrated in Section 2. The results are fairly striking: as long as we
can compare the predicted quantiles to empirically observed ones, we can
clearly see that the estimates from the Hill estimator are much closer to
the observable reality than the ones from the Normal model. The Gaussian
values are clearly underestimating the extremes as we saw in Section 2. One

5Meaning the worst daily movement to be expected within 5 (10, 20, 30, 40) years.
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FX rate Worst daily movement within ...
5 years 10 Years 20 Years 30 Years 40 Years

EUR/USD at upper 3.67% 4.25% 4.94% 5.38% 5.73%
at lower 5.20% 6.53% 8.19% 9.36% 10.28%

JPY/USD at upper 3.43% 3.96% 4.57% 4.97% 5.28%
at lower 4.73% 5.91% 7.39% 8.42% 9.24%

GBP/USD at upper 2.90% 3.38% 3.93% 4.29% 4.57%
at lower 4.20% 5.22% 6.22% 7.60% 8.39%

CHF/USD at upper 3.11% 3.51% 3.96% 4.25% 4.47%
at lower 4.17% 5.05% 6.13% 6.86% 7.43%

Table 5: Quantile estimates according to Equation 5 evaluated at the upper and lower
bounds of the 95% confidence interval for α̂ as given in Table 3.

can also observe that the increase of the large movement size with respect
to the decrease of its probability is more accentuated than in the Gaussian
case and here too reproduces better the observed increase in the sample.

Given the non-neglegible width of the confidence intervals for the tail
index estimates stated in Table 3, it is worthwhile to explore the variability
of the quantile estimates given in Table 4. We can do this by evaluating
Equation 5 at the upper and lower bounds of the 95% confidence intervals
for α̂ given in Table 3. We show the respective values in Table 5. Comparing
these bounds with the values given in Table 4, we notice that the observed
values - where available - are close to or below the lower bound for the
Hill estimates, suggesting that the latter are rather conservative estimates
for the potential extreme movements. However, the Hill estimates are still
much more closely related to the observable reality than the estimates from
the Gaussian model.

These facts give us confidence that the extrapolated values obtained from
the Hill estimator will represent a sufficiently conservative estimate of the
risk, whereas the results give us the feeling that the Gaussian model dan-
gerously underestimates the actual risk. We are not trying here to quantify
very precisely the extreme movements but rather to capture the essentials
of them, so that we can set reasonable limits of exposure.

To conclude this paper, we turn now to the problem of setting limits on
open FX positions in order to restrict the risk of large losses. We first have
to decide on the maximum size of the loss we are prepared to incur in a
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FX rate Method of Position limits for one daily loss of USD 1 mn. within ...
Calculation 5 years 10 Years 20 Years 30 Years 40 Years

EUR/USD Observed 26 26 – – –
Hill 23 19 16 14 13
Gaussian 37 35 33 32 32

JPY/USD Observed 28 21 16 – –
Hill 25 21 18 16 15
Gaussian 47 42 40 39 38

GBP/USD Observed 31 26 22 – –
Hill 29 24 20 18 17
Gaussian 47 45 43 41 41

CHF/USD Observed 31 28 24 – –
Hill 28 24 21 19 18
Gaussian 41 39 37 36 35

Table 6: Proposed limits for open overnight FX positions of according to three different
methods. The numbers are given in million USD.

certain period of time. Let us assume that the maximum loss we are ready
to risk is 1’000’000 USD any one day and that we do not want to risk losing
it more than once every 5, 10, 20, 30 and 40 years. Using the numbers given
in Table 4, it is now easy to compute the limits to be set for different FX
rates.

We provide in Table 6 the limits for the major FX rates considered in this
study and one sees that if we are using the Gaussian model open positions
would be permitted that are about twice as large as it would be prudent.
We can see from this that risk limit setting according to the Gaussian model
may easily result in unaffordably high losses.

5 Conclusion

Considering the results of our study, we can conclude that daily fluctuations
in FX rates are higher than usually assumed, and that the Gaussian model
is not able to reflect these extreme fluctuations properly. Luckily, we can
quantify this risk by concentrating our attention on the tails of the distribu-
tion. Thus, it is possible to set realistic limits for trading on the FX market
and, as we use to say among insurers, quantifying the risks transforms them
from a nuisance into an opportunity.
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T., 1997, Modelling Extremal Events, volume 33 of Applications of Math-
ematics Stochastic Modelling and Applied Probability, Springer, Berlin.

[Embrechts et al., 1998] Embrechts P., Resnick S., and Samorod-
nitzky G., 1998, Living on the edge, Risk, 96–100.

[Hill, 1975] Hill B. M., 1975, A simple general approach to inference about
the tail of a distribution, Annals of Statistics, 3(5), 1163–1173.

[J. P. Morgan, 1996] J. P. Morgan, 1996, RiskMetrics – technical doc-
ument, Technical report, J. P. Morgan and International marketing –
Reuters Ltd.

[Jorion, 1997] Jorion P., 1997, Value at Risk : The New Benchmark for
Controlling Market Risk, Irwin Professional, Chicago.

[Koedijk et al., 1990] Koedijk K. G., Schafgans M. M. A., and De
Vries C. G., 1990, The tail index of exchange rate returns, Journal of
International Economics, 29, 93–108.

[Leadbetter et al., 1983] Leadbetter M., Lindgren G., and Rootzén
H., 1983, Extremes and related properties of random sequences and pro-
cesses, Springer Series in Statistics. Springer-Verlag, New York Berlin.

11



[Longin, 1996] Longin F. M., 1996, The asymptotic distribution of extreme
stock market returns, Journal of Business, 69(3), 383–407.

[Pictet et al., 1998] Pictet O. V., Dacorogna M. M., and Müller
U. A., 1998, Hill, bootstrap and jackknife estimators for heavy tails,
published in ”A practical guide to heavy tails:”Statistical Techniques for
Analysing Heavy Tailed Distributions”, edited by Murad Taqqu and pub-
lished by Birkhäuser, 283–310.
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