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Abstract

In this paper, by following [3] and [4], we postpone to give an explicit estimation of Value-at-Risk
and Expected Shortfall for Linear Portfolios when the risk Factors changes with mixture of generalized
Laplace distributions. We therefore introduce the Delta-GLD-VaR, Delta-GLD-ES, Delta-MGLD-VaR
and Delta-MGLD-ES. Note that, the GLD will give to us more flexibility to control the shape and fat
tails of the risk factors in relation with the historical sample returns.

Key Words: RiskMetrics Delta-Normal VaR, Delta-GLD-VaR, Delta-MGLD-VaR, Delta-GLD-ES, Delta-
MGLD ES, Hedge Fund Risk.

1 Introduction

Since Standard RiskMetrics methodology release in October 1994, its has inspired an important discussion
on VaR Methodologies. One of the focal points of this discussion has been the assumption that returns
follow a conditional normal distribution. Since the distribution of many observe financial risk factors series
have tails that are fatter than those implied by conditional normality, it is necessary for risk managers to
change the assumption concerning the distribution of the risk factors in relation with historical data returns.
Therefore it is important to be able to modify the current RisKMetrics model to account for the possibility
of such large returns.

Note that Standard RiskMetrics approach works well for the so-called linear portfolios, that is, those
portfolios whose aggregate return is, to a good approximation, a linear function of the returns of the individual
assets which make up the portfolio, and in situations where the latter can be assumed to be jointly normally
distributed. This is an issue in situations demanding for real-time evaluation of financial risk. Such methods
present us with a trade-off between accuracy and speed, in the sense that they are much faster than Monte
Carlo, but are much less accurate unless the linear approximation is quite good and the normality hypothesis
holds well. The assumption of normality simplifies the computation of VaR considerably. However it is
inconsistent with the empirical evidence of assets returns, which finds that asset returns are fat tailed. This
implies that extreme events are much more likely to occur in practice than would be predicted based on the
assumption of normality.

Some alternative return distributions have been proposed in the world of elliptic distributions by Sadefo-
Kamdem [4] and [3], that better reflect the empirical evidence. In this paper, following [4], I examine
one such alternative that simultaneously allows for asset returns that are fat tailed and for tractable cal-
culation of Value-at-Risk and Expected Shortfall, by giving attention to mixture of Generalized Laplace
distributions. Note that, the particular case based on mixture of normal distributions, has been proposed
by Zangari(1996)[8], Subu-Venkataraman [7] and some references therein.
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An obvious first generalization is to keep the linearity assumption, but replace the normal distribution by
some other family of multi-variate distributions. In this paper, following Sadefo-Kamdem [4], we introduces
the notion of Delta-GLD VaR, Delta-Mixture GLD VaR, Delta-GLD ES and Delta-Mixture GLD ES.

The particular subject of this paper, is to give an explicit formulas that will permit to obtain the linear
VaR or linear ES, when the joint risk factors of the linear portfolios, changes with mixture of Generalized
Laplace distributions. Note that, one shortcoming of the multivariate elliptic distribution is that all the
marginal distributions have the same characteristic function. Since, the multivariate generalized Laplace
distribution GLD(µ,Σ, ν) 1 is a particular case of multivariate elliptic distributions, its marginals have the
same characteristics parameter ν, the mixture of Generalized Laplace distributions will be view as a serious
alternatives, to a simple Generalized Laplace distribution. Therefore, the methodology proposes by this
paper seem to be interesting to controlled thicker tails.

The paper is organized, as follows: In section 2 following [4], we recall some theorems concerning the
Linear combination of elliptic distributions. In section 3, following section 2, we show how to reduce the
computation of the Delta GLD VaR to finding the zeros of a special function. In section 4, we introduces
the notion of Delta mixture GLD VaR denote by Delta MGLD VaR , that is given via the computation
of the zeros of linear combination of the incomplete Gamma special function. Our method permit to us
to get the 100 percent confidence level quantile. In section 5, We introduce the Delta GLD ES and Delta
Mixture Expected shortfall denote by Delta MGLD ES . Finally, in section 5 Following [3], [4], we recall
some potential application areas.

2 Linear Combinations of Elliptical distributions

If and investments portfolios is a linear combination of several assets such that the joint returns of assets
are assume to have elliptical distributions, then the return on a portfolio of these assets will also have an
elliptical distribution.

The linearity property can be briefly summarized as follows: If X = (X1, · · · ,Xn) is the joint risk factors,
with X ∼ En(µ,Σ, gn), and A is the m×n matrix of rank m ≤ n and b some m-dimensional column vector,
then

AX + b ∼ Em(µ,Σ, gm). (1)

Therefore, any marginal distribution Xk of X is also is also elliptical with the same characteristic gener-
ator. In other words, for k = 1, 2, . . . , n, Xk ∼ E1(µ, Σ, g1) so that its density can be written as

fk(x) =
c1

σk
g1

[
1
2

(
x− µk

σk

)2
]

. (2)

If the return of a linear portfolio is ∆Π = δ1 ·X1 + · · · + δn ·Xn = δT X, where δ = (δ1, . . . , δn)T is a
column vector with dimension n, then it immediately follows that

∆Π ∼ En(δT µ, δT Σ δ, g1). (3)

Remark 2.1 Since the multivariate generalized distributions is a particular case of elliptic distribution, we
will use (3), to estimate the VaR and ES for linear portfolio with generalized Laplace distributions Risk
Factors.

1Here µ is the mean vector, Σ is the variance-covariance matrix, and ν is the characteristic constant given by the pdf function.
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3 Linear VaR with Generalized Laplace Distributed Risk Factors

In the case where X follow a multivariate generalized Laplace distribution denote by GLD(µ, Σ, ν), the pdf
is in form

fX(x) =
Cn,ν√
|Σ|

gn,ν

[
(x− µ)T Σ−1(x− µ)

]
, (4)

where
gn,ν(u) = exp[−cn,ν u

ν
2 ], (5)

with

cn,ν =

(
Γ
(

n+2
ν

)
(n)Γ

(
n
ν

))ν/2

, (6)

and

Cn,ν =
ν

2πn/2

(
Γ
(

n+2
ν

)
(n)Γ

(
n
ν

))n/2
Γ
(

n
2

)
Γ
(

n
ν

) . (7)

In the relation (3), the density function g1 is given by

g1(u) = exp[− 1
2 λν

uν ], (8)

when our particular elliptic distribution is in particular the generalized Laplace distribution.
For the confidence 1− α, the VaR given as the the solution of the equation∫

{∆Π≥−V aRα}

Cν√
δT Σ δ

g1

[(
r − δT µ√

δT Σ δ

)2
]

dr = α. (9)

If we introduce the variable u = r−δT µ√
δT Σ δ

into the integral (9), it becomes

Cν

∫ ∞

−V aRα−δT µ√
δT Σ δ

exp
[
− 1

2 λν
uν

]
dr = α, (10)

where Cν = ν

λ 21+ 1
ν

and λ = 2
1
ν

[
Γ(ν−1)
Γ( 3

ν )

]1/2

. If we introduce the function denote by Gν , and changing

variable v = uν

2 λν , we obtain the following expressions:

Gν(s) = Cν

∫ ∞

s

exp
[
− 1

2 λν
uν

]
du

=
1

2 Γ
(

1
ν

) ∫ ∞

sν

2 λν

v
1
ν−1 exp (−v) dv

=
1

2 Γ
(

1
ν

) Γ
(

1
ν

,
sν

2 λν

)
(11)

therefore we have the following theorem

Theorem 3.1 Assuming that ∆Π ' δ1X1+δ2X2+...+δnXn with a multivariate Generalized Laplace random
vector (X1, X2, .., Xn) with vector mean µ , and variance-covariance matrix Σ, the linear Value-at-Risk at
confidence 1− α is given by the following formula

V aRα = −δT µ + qGLD
α,ν ·

√
δΣδt,
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where now s = qGLD
α,ν is the unique positive solution of the transcendental equation

Gν(qGLD
α,ν ) = α, (12)

with Gν is defined by (11).

3.1 Some values of quantiles qGLD
α,ν .

In the following table, we estimate only the positive solution of G(s) = α for some ν. This is given, with the
help of Mathematica 4 Software.

Table 1 : Some values of qGLD
α,ν .

ν 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
qGLD
0.00,ν 9.69240 8.72375 7.95798 7.33359 6.082028 6.39022 6.02514 5.44623

qGLD
0.01,ν 7.82240 6.18915 5.11230 4.36274 3.81777 3.40763 3.08995 2.83799

qGLD
0.025,ν 5.99146 4.81479 4.03148 3.48142 3.07860 2.77349 2.53594 2.34670
qGLD
0.05,ν 4.60515 3.75463 3.18327 2.77907 2.48126 2.25456 2.07734 1.93569

Table 2 : Some values of qG.L.D
α,ν .

ν 0.80 0.90 1.80 1.90 2.00 2.50 3.00 4.00
qGLD
0.00,ν 12.6243 10.9466 5.19944 4.98283 4.88419 4.09232 3.65155 3.12822

qGLD
0.01,ν 2.90981 2.83562 2.63415 2.46641 2.32635 2.21001 2.12666 2.01599

qGLD
0.025,ν 2.13935 2.1316 2.19303 2.06617 1.95996 1.90451 1.86241 1.80408
qGLD
0.05,ν 1.58416 1.6108 1.82034 1.72490 1.64485 1.63208 1.61996 1.60092

Remark 3.2 The Delta-GLD-VaR works well for 100 percent confidence level (α = 0).

Remark 3.3 In Practise, the Delta-GLD-VaR works well when 0 < ν ≤ 2 (fat-tailed). Note that, in
this case the density has thicker tails than the normal, whereas for ν > 2 it has thinner tails (short tails
distributions). When ν = 2 this produces a normal density. cf. Riskmetrics (1996) [2] page 238 for more
details.

4 Linear VaR under Mixture of G.L.D Risk Factors

Following [4], we now consider in detail the case where our mixture of elliptic distributions is a mixture of m
multivariate Generalized Laplace distributions (GLDνj ), for j=1,. . . ,m. We will unsurprisingly introduces
the Delta-MGLD-VaR.

In the case of our mixture of multi-variate of G.L.D, the cumulative function will be given by:

H(V aRα) =
m∑

j=1

βjGνj (sj) (13)

where

Gνj
(sj) =

1

2 Γ
(

1
νj

) Γ

(
1
νj

,
s

νj

j

2 λ
νj

j

)
, (14)

with

sj =
−V aRα − δT µj√

δT Σj δ
,
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and

λj = 2
1

νj

Γ
(
ν−1

j

)
Γ
(

3
νj

)
1/2

.

We then obtain the following theorem

Theorem 4.1 Let ∆Π = δ1X1 + . . . + δnXn with (X1, . . . , Xn)T follow a mixture of m generalized Laplace
distributions ( denote by GLDνj

, for j = 1, . . . ,m), where µj is the column mean vector, Σj is the variance-
covariance matrix of the j-th component GLDνj of the mixture and the pdf function is given by

fX(x) =
m∑

i=1

βi
Cn,νi√
|Σ|

exp
[
−cn,νi

(
(x− µi)T Σ−1

i (x− µi)
) νi

2
]
.

Then the value-at-Risk denote by Delta MGLD- VaR, at confidence 1− α is given as the solution of the
transcendental equation

α = H(V aRα) (15)

where H is defined by (13).

Corollary 4.2 One might, in certain situations, try to model with a mixture of m Generalized Laplace
distributions denote GLDνj

, for j = 1, . . . ,m, which all have the same variance-covariance Σ = Σj and the
same mean µ = µj, and obtain for example a mixture of different tail behaviors by playing with the νj’s. In
that case the VaR again simplifies to:

V aRMGLD
α = −δT µ + qMGLD−V aRα ·

√
δT Σδ,

with s = qGLD−V aRα now the unique positive solution to

α =
m∑

j=1

βj

2 Γ
(

1
νj

) Γ

(
1
νj

,
s

νj

j

2 λ
νj

j

)
. (16)

where
∑m

j=1 βj = 1.

Remark 4.3 One might, in certain situations, try to model with a mixture of m GLDνj
, for j = 1, . . . ,m,

which all have the same νj = ν and the same mean µj ≈ 0, and obtain for example a mixture of different
tail behaviors by playing with the Σj ’s.

4.1 Some Numerical Result of Delta Mixture-GLD VaR coefficient

Here we give some numerical results when applying the corollary 4.2, in the situation where m = 2.
By introducing the function F such that

F (s, β, ν1, ν2) = β ·Gν1(s) + (1− β) ·Gν2(s), (17)

where Gνj
is define in (14), for j = 1, 2, for given as inputs β, ν1 and ν2, we give a table that contains some

solutions s = qβ,ν1,ν2 = qMGLD−V aRα

β,ν1,ν2
of the following transcendental equation:

F (s, β, ν1, ν2) = α.

For given Σ, µ, and δ, these solutions will permit to calculate V aRα, when the confidence is 1− α.

• In the case where α = 0, we obtain some solutions of (16) in the following table:
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Table 3: Coefficients qMGLD−V aRα

β,ν1,ν2
of V aRMGLD

α,β,ν1,ν2
, when α = 0.

(ν1, ν2) (0.75,1.00) (0.90,1.20) (1.20,1.50) (1.60,1.95) (1.40,1.80) (1.10, 2.00) (1.30, 1.90)
qMGLD−V aR0
0.05,ν1,ν2

10.1487 8.3493 6.51656 5.07643 5.61692 6.63993 5.81607
qMGLD−V aR0
0.10,ν1,ν2

10.6437 8.74449 6.7128 5.26422 5.80926 7.05997 6.11923
qMGLD−V aR0
0.15,ν1,ν2

11.0239 9.03451 6.86394 5.35476 5.94519 7.30695 6.30095
qMGLD−V aR0
0.20,ν1,ν2

11.3283 9.26021 6.98501 5.42709 6.04851 7.48343 6.43054
qMGLD−V aR0
0.25,ν1,ν2

11.5810 9.44410 7.08530 5.48685 6.13131 7.62142 6.53138
qMGLD−V aR0
0.30,ν1,ν2

11.7967 9.59909 7.17061 5.53755 6.20022 7.73514 6.61402
qMGLD−V aR0
0.35,ν1,ν2

11.9850 9.73306 7.24473 5.58147 6.25917 7.83218 6.68414
qMGLD−V aR0
0.40,ν1,ν2

12.1522 9.85113 7.31020 5.62016 6.31067 7.91704 6.74512
qMGLD−V aR0
0.45,ν1,ν2

12.3027 9.9567 7.36882 5.65471 6.35639 7.99263 6.79913
qMGLD−V aR0
0.50,ν1,ν2

12.4397 10.0525 7.42189 5.68591 6.39751 8.06095 6.84767

Remark 4.4 Note that, the precedent results are available when α = 0. This means that with our model,
one would calculate the linear VaR with mixture of generalized Laplace distributions, for 100 percent confi-
dence level.

5 Linear Expected Shortfall with G.L.D Risk Factors

Expected Shortfall is a sub-additive risk statistic that describes how large losses are on average when they
exceed the VaR level. Expected Shortfall will therefore give an indication of the size of extreme losses when
the VaR threshold is breached. We will evaluate the Expected Shortfall for a linear portfolio under the
hypothesis of elliptically distributed risk factors. Mathematically, the Expected Shortfall associated with a
given VaR is defined as:

Expected Shortfall = E(−∆Π| −∆Π > V aR),

see for example [4] and the references therein. Assuming that ∆Π ∼ En(δT µ, δT Σδ, g1), the Expected
Shortfall at confidence level 1− α is given by

−ESα = E(∆Π | ∆Π ≤ −V aRα)

=
1
α

E
(
∆Π · 1{∆Π≤−V aRα}

)
=

C1,ν

α
√

δT Σ δ

∫
R

u 1{u≤−V aRα} g1

[(
u− δT µ√

δT Σ δ

)2
]

du

=
C1,ν

α
√

δT Σ δ

∫ −V aRα

−∞
u g1

[(
u− δT µ√

δT Σ δ

)2
]

du. (18)

In the particular case where g1 is given by the generalized Laplace distributions denote by GLDν , it
suffices to replace g1 in (18) by g1,ν as define in (8), therefore we obtain
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−ESα =
Cν

α
√

δT Σ δ

∫ −V aRα

−∞
u g1

[(
u− δT µ√

δT Σ δ

)2
]

du

=
Cν

α
√

δT Σ δ

∫ −V aRα

−∞
u exp

[
− 1

2 λν

(
u− δT µ√

δT Σ δ

)ν]
du

=
Cν

α

∫ −V aRα−δT µ√
δT Σ δ

−∞
(δT µ +

√
δT Σ δ v) exp

[
− 1

2 λν
vν

]
dv

= δT µ +
Cν

α

√
δT Σ δ

∫ −V aRα−δT µ√
δT Σ δ

−∞
v exp

[
− 1

2 λν
vν

]
dv (19)

= δT µ − Cν

α

√
δT Σ δ

∫ +∞

qGLD
α,ν

w exp
[
− 1

2 λν
wν

]
dw (20)

= δT µ −

[
Cν

ν α
(

1
2 λν

)2/ν

∫ ∞

[qGLD
α,ν ]ν 1

2 λν

z
2
ν−1e−z dz

]
√

δT Σ δ (21)

where

qGLD
α,ν =

δT µ + V aRα√
δT Σ δ

using the incomplete Γ-function Γ(a, x) =
∫∞

x
ta−1 exp(−t) dt, we arrive at the following result:

ESα = −δT µ +

[
Cν

ν α ( 1
2 λν )2/ν

∫ ∞

[qGLD
α,ν ]ν 1

2 λν

z
2
ν−1e−z dz

]
√

δT Σ δ

= −δT µ +
[

Cν

ν α ( 1
2 λν )2/ν

Γ
(

2
ν

,
[
qGLD
α,ν

]ν 1
2 λν

)]√
δT Σ δ (22)

= −δT µ + esGLD
α,ν

√
δT Σ δ (23)

where

esGLD
α,ν =

Cν

α ν

Γ
(

1
ν

)
Γ
(

3
ν

) Γ

2
ν

,

(
Γ
(

3
ν

)
Γ
(

1
ν

))ν/2 [
qGLD
α,ν

]ν 
=

1
2 α

[
Γ
(

3
ν

)
Γ
(

1
ν

)]1/2

Γ

2
ν

,

(
Γ
(

3
ν

)
Γ
(

1
ν

))ν/2 [
qGLD
α,ν

]ν  . (24)

Theorem 5.1 Suppose that the portfolio is linear in the risk-factors X = (X1, · · · , Xn): ∆Π = δ · X and
that X ∼ GLD(µ,Σ, ν), with pdf

f(x) =
Cn,ν

|Σ|−1 exp
(
−cn,ν

[
(x− µ)T Σ−1(x− µ)

]ν/2
)

.

Using qGLD
α,ν which is the unique solution of (12), The Expected Shortfall at confidence level 1 − α for a

Generalized Laplace Distribution is given by :

ESGLDν
α = −δT µ + esGLD

α,ν

√
δT Σ δ. (25)

where

esGLD
α,ν =

1
2 α

[
Γ
(

3
ν

)
Γ
(

1
ν

)]1/2

Γ

2
ν

,

(
Γ
(

3
ν

)
Γ
(

1
ν

))ν/2 [
qGLD
α,ν

]ν  . (26)
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The Expected Shortfall for a linear G.L.D portfolio is therefore given by a completely explicit formula, once
the VaR is known. Observe that, as for the VaR, the only dependence on the portfolio dimension is through
the portfolio mean δT µ and the portfolio variance δT Σδ.

5.1 Some values of esGLD
α,ν

With the help of Mathematica, we obtain some values of eGLD
α,ν in the following table:

ν 1.00 1.10 1.20 1.30 1.40 1.50
es0.01,ν 1.3382× 10−6 3.97021× 10−6 9.32964× 10−6 1.85266× 10−5 3.25035× 10−5 5.19176× 10−5

es0.025,ν 3.4999× 10−5 7.54689× 10−5 1.37192× 10−4 2.21093× 10−4 3.26418× 10−4 4.51419× 10−4

es0.05,ν 3.94307× 10−4 6.66236× 10−4 9.98301× 10−4 1.37652× 10−3 1.78852× 10−3 2.22448× 10−3

ν 1.60 1.70 1.80 1.90 2.00
es0.01,ν 7.71555× 10−5 1.08345× 10−4 1.45409× 10−4 1.88131× 10−4 2.36197× 10−4

es0.025,ν 5.93886× 10−4 7.51539× 10−4 9.2218× 10−4 1.10387× 10−3 1.2949× 10−3

es0.05,ν 2.67702× 10−3 3.14095× 10−3 3.61264× 10−3 4.08959× 10−3 4.57011× 10−3

5.2 Application: Mixture of G.L.D Expected Shortfall

It’s straightforward to obtain the following theorem:

Theorem 5.2 If the joint factors X of the linear portfolios follow a mixture of m multi-variate GLD(µ,Σ, νi),
for i = 1, . . . ,m, with the pdf function

fX(x) =
m∑

i=1

βi
Cn,νi√
|Σ|

exp
[
−cn,νi

(
(x− µ)T Σ−1(x− µ)

) νi
2
]
,

then Expected Shortfall at confidence level 1− α is given by:

ESMGLD
α = −δT µ

m∑
i=1

βi + |δΣδt|1/2
m∑

i=1

βi esGLD
α,νi

= −δ · µ + |δΣδt|1/2
m∑

i=1

βi

2 α

Γ
(

3
νi

)
Γ
(

1
νi

)
1/2

Γ

 2
νi

,

Γ
(

3
νi

)
Γ
(

1
νi

)
νi/2 [

qGLD
α,νi

]νi

 .

= −δ · µ + KMGLD−ES
α ·

√
δΣδt (27)

6 Some Areas of Applications

In this section following [3], [4] and the financial literature, we recall some areas of applications.

6.1 Delta-GLD-VaR

When the application concern portfolio with derivatives portfolio, one could use the sensitivities (Greeks)
of the instruments to approximate the effect of changes in the market value. when the portfolios contains
the linear instruments, one needs only to calculate the delta ( first order derivative). Suppose that we are
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holding a portfolio of derivatives depending on n underlying assets X(1), X(2), ..., X(n)with joint log-returns
rj (over some fixed time-window), that follow a generalized Laplace distribution. The portfolio’s present
value V will in general be some complicated non-linear function of the Xi’s. To obtain a first approximation
of its VaR, we simply approximate the present Value V of the position using a first order Taylor expansion:

V (X + ∆X) ≈ V (X) +
n∑

i=1

∂V

∂X(i)
∆Xi.

From this, we can then approximate the profit/loss function as

∆V = V (X + ∆X)− V (X) ≈
n∑

i=1

δir
(i) = δ · r,

where we put r = (r(1), ..., r(n)) and δ = (δ1, ..., δn) with δi = X(i) ∂V
∂X(i) . The entries of the δ vector are

called the ”delta equivalents ” for the position, and they can be interpreted as the sensitivities of the position
with respect to changes in each of the risk factors. For more details see [1], where a multi-variate normal
distribution for the ri’s is assumed. The discussion there generalizes straightforwardly to the GLD case or
mixture of GLD denote by MGLD ), where the present paper’s results can be used.

6.2 Portfolios of Equities

A special case of the preceding is that of an equity portfolio, build of stock S1, . . . , Sn with joint log-returns
r = (r1(t), . . . , rn(t)). In this case, the portfolio’s Profit & Loss function over the time window [0,t] of interest
is, to good approximation, given by

Π(t)−Π(0) =
n∑

i=1

wiSi(0)(Si(t)/Si(0)− 1)

≈
n∑

i=1

wiSi(0)ri(t) = δ · rt,

where this approximation will be good if the ri(t) are small. In this case the preceded theorems are applicable
where δ = (w1S1(0), . . . , wnSn(0)) and rj(t) = log(Xj(t)/Xj(0)) for j=1,. . . ,n.

6.3 Businesses as Linear Portfolios of Business Units

An interesting way of looking upon an big enterprize, e.g. a multi-national or a big financial institution, is
by considering it as a sum of its individual business units. If Xj , is the variation of price or of profitability
of business unit j in one period, then the variation of price of the agglomerate in the same period will be

∆Π = X1 + · · ·+ Xn.

The entire institution is therefore modelled by a linear portfolio, with δ = (1, 1, . . . , 1), to which the results of
this paper can be applied, if we model the vector of individual price variations by a multi-variate Generalized
Laplace distribution. VaR, incremental VaR (see below) and Expected Shortfall will be relevant here.

6.4 Incremental VaR

Incremental VaR is defined in [1] as the statistic that provides information regarding the sensitivity of VaR
to changes in the portfolio holdings. It therefore gives an estimation of the change in VaR resulting from
a risk management decision. Results from [1] for incremental VaR with normally distributed risk-factors
generalize straightforwardly to generalized Laplace distributed ones: if we denote by IV aRi the incremental
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VaR for each position in the portfolio, with θi the percentage change in size of each position, then the change
in VaR will be given by

∆V aR =
∑

θiIV aRi

By using the definition of IV aRi as in [1] (2001), we have that

IV aRi = ωi
∂V aR

∂ωi
(28)

with ωi is the amount of money invested in instrument i. In the case of an equity portfolio in the Generalized
Laplace distributed assets, we have seen that, assuming µ = 0,

V aRα = −qGLD
α,ν

√
δΣδt,

We can then calculate IV aRi for the i-th constituent of portfolio as

IV aRi = ωi
∂V aR

∂ωi
= ωiγi

with
γ = −qGLD

α,ν

Σω√
δΣδt

.

The vector γ can be interpreted as a gradient of sensitivities of VaR with respect to the risk factors. This is
the same as in [3], except of course that the quantile has changed from the elliptic one to the one associated
to the particular case of generalized Laplace distribution.

6.5 Aggregation of risks

Suppose that we have a constituted portfolio with several under portfolios of assets from different markets.
Given the Value-at-Risk of the portfolios constituting the global portfolio, under the hypothesis that the
joined risks factors follow an multivariate generalized Laplace distribution , the question is how to get the
VaR of the global portfolio.

In order to be clearer and simpler, let us consider a global constituted portfolio of 2 under portfolios from
different markets with respective weights δ1 and δ2. Σ1 represents the matrix of interrelationship in the
under portfolio of market 1; Σ2 represents the matrix of interrelationship in the under portfolio of market
2. One will be able to write the matrix of interrelationship of a global portfolio like this:

Σ =
(

Σ1 Σ12

Σ12
t Σ2

)
,

where Σ12 is the correlation matrix that takes into consideration the interaction between the market M1

and the market M2 . If δt = (δ1, δ2), we have

δtΣδ = δ1
tΣ1δ1 + δ2

tΣ2δ2 + 2 · δ1tΣ12δ2. (29)

Therefore, since we know that when µ ≈ 0, we have

V aRα = qMGLD−V aRα ·
√

δΣδt,

the Value-at-Risk of the global portfolio will be given by

V aRα(M) =
√

VaRα(M1)2 + VaRα(M2)2 + 2[qMGLD−VaRα ]2 · δ1tΣ12δ2. (30)

An implicit interrelationship with the hypothesis of Generalized Laplace distribution is obtained in an
analogous way, like in the case where one works with the hypothesis of the normal distribution. Note that,
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one will distinguish several situations from the behavior of Σ12. With some simple operations, the implicit
interrelationship is

φ =
δ1

tΣ12δ2√
(δ1tΣ1δ1)(δ2tΣ2δ2)

(31)

with the Value-at-Risk V aRα(M) of the global portfolio being given as follows:

V aRα(M) =
√

[VaRα(M1)]2 + [VaRα(M2)]2 + 2φ ·VaRα(M1)VaRα(M2)). (32)

Also, for µ ≈ 0,
ESα = KGLD

ES,α ·
√

δΣδt,

therefore by using the same technics that proves (32), we have that the Expected Shortfall of the global
portfolio is given by:

ESα(M) =
√

ESα(M1)2 + ESα(M2)2 + 2[KGLD
ES,α ]2 · δ1tΣ12δ2. (33)

This imply that

ESα(M) =
√

[ESα(M1)]2 + [ESα(M2)]2 + 2φES ·ESα(M1)ESα(M2)), (34)

where

φES =
δ1

tΣ12δ2√
(δ1tΣ1δ1)(δ2tΣ2δ2)

(35)

Remark 6.1 The result about the aggregation of risks work so well in the situation where, the joint risk
factors of our portfolio changes with mixture of m generalized Laplace distributions where all Σi = Σ, for
i = 1, . . . ,m. In particular, when µi = µ, we have the results (34) and (32).

6.6 hedge funds risk

There is substantial empirical evidence that the distribution of hedge fund returns is typically skewed to the
left and leptokurtic 2. Therefore the unconditional return distribution shows high peaks, fat tails and more
outliers on the left tail. To account for the excess Kurtosis for the data, we use the fat-tailed generalized
Laplace distribution (GLD) that account for the non-normality of returns and relatively infrequent events.

6.7 Application to emerging market

Our method is applicable to a portfolio of assets in emerging markets. Therefore in relation with particular
context of each emerging market, we will attribute the change the parameter ν of the GLD(µ,Σ, ν) in
relation with the specific historical data of the emerging market portfolio (cf. RiskMetrics [2] page 238-242
for more details.). The mixture of such distribution will bring to risk manager more flexibility to control
tails distribution in relation with the sector of assets, countries etc.

7 conclusion

In this paper, we give and explicit equation in terms of incomplete Γ-function, that permit to estimate
de linear Value-at-Risk and the Linear Expected Shortfall when the joint risk factors follow a mixture of
multivariate generalized Laplace distribution. In analogy with Delta Normal VaR of Standard RiskMetrics,
We therefore introduces the notion of Delta- GLD VAR, Delta-GLD ES, Delta-MGLD VaR and Delta-MGLD
ES. We finally surveyed some potential application areas.

2See Fung and Hieh (1999), Agarwal and Naik(2002), Amin and Kat (2003), De Souza and Gokan(2003), and Geman and
Kharoubi (2003).
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