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Abstract

It is understood that derivatives of an expectation E[φ(S(T ))|S(0) = x] with respect
to x can be expressed as E[φ(S(T ))π|S(0) = x], where S(T ) is a stochastic variable
at time T and π is a stochastic weighting function (weight) independent of the form
of φ. Derivatives of expectations of this form are encountered in various fields of
knowledge. We establish two results for weights of higher order derivatives under
the dynamics given by (1). Specifically, we derive and solve a recursive relationship
for generating weights. This results in a tractable formula for weights of any order.
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1 Introductory Remarks

Consider a real valued process {S(t), 0 ≤ t ≤ T} of which dynamics are
described by the stochastic differential equation with an accompanying strong
solution

dS(t)

S(t)
= µdt + σdW (t), S(t) = x exp

(
(µ− 1

2
σ2)t + σW (t)

)
, (1)

for S(0) = x > 0,, and associated tangent process {Y (t), 0 ≤ t ≤ T} described
by

dY (t)

Y (t)
= µdt + σdW (t), Y (0) = 1. (2)

where {W (t), 0 ≤ t ≤ T} is a one-dimensional Brownian motion, and coeffi-
cients µ and σ are constant. Consider an expectation u(x) = E[φ(S(T ))|S(0) =
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x]. It is well known that derivatives with respect to the initial condition of the
form ∂n

xu(x) can be expressed as E[φ(S(T ))πn|S(0) = x], where πn is a stochas-
tic weighting function (weight), see for example [4]. A surprising result is that
the weights are independent of φ, and in fact only depend on the dynamics of
the underlying variable. This has practical importance, since φ depends on the
problem under consideration while the weights do not. This means that the
weights provide a problem independent, general representation of derivatives
for many applications.

In this article we establish two results on the weighting functions for deriva-
tives of the form ∂n

xu(x) under the dynamics given by (1). Specifically, we
derive and solve a recursive relationship for generating weighting functions,
providing a tractable formula for functions of any order. Furthermore, we
relate the derivatives considered to derivatives of the drift and diffusion coef-
ficients, comment on efficiently evaluating these expectations, uniqueness and
optimality.

2 Mathematical Preliminaries

We approach this problem using Malliavin Calculus, appealing to a number
of results in the following analysis that we briefly outline in this section 2 . Let S
be the set of stochastic functions of the form G = f

(∫ T
0 h1(t)dW (t), . . . ,

∫ T
0 hn(t)dW (t)

)
,

where f belongs to the set of infinitely differentiable functions with all par-
tial derivatives of at most polynomial growth, and h1, . . . , hn belongs to the
set of infinitely differentiable functions with bounded partial derivatives. The
Malliavin derivative is defined as

DtG =
n∑

i=1

∇if




T∫

0

h1(t)dW (t), . . . ,

T∫

0

hn(t)dW (t)


 hi(t), t ∈ [0, T ] (3)

where ∇i denotes the derivative with respect to the i-th argument 3 . The
adjoint of the Malliavin derivative is the Skohorod integral. For processes that
are adapted, as is the process described by (1), the Skohorod integral coincides
with the Ito integral. As a consequence, the Malliavin integration by parts
formula can be expressed in terms of Ito integrals as E

[
G

∫ T
0 h(t)dW (t)

]
=

E
[∫ T

0 DtGh(t)dt
]
, where we take G as one dimensional and h the same form

2 For a comprehensive introduction to the subject consult [8] and [9].
3 We also define the norm on S as ‖G‖1,2 =

(
E(G2)

)1/2 + (E(
∫ T
0 (DtG)2dt))1/2.

Then D1,2 denotes the Banach space that is the completion of S with respect to the
norm ‖ · ‖1,2.
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as one of hi, i = 1, . . . , n. Also note that an analog of the chain rule in
deterministic calculus exists for derivatives in Malliavin calculus.

3 Analysis

In this section we derive our principal results. We are interested in the Malli-
avin derivative of our process {S(t), 0 ≤ t ≤ T}. Taking the derivative directly
we determine that 4

DtS(τ) = S(τ)σ1{t≤τ}, τ ∈ [0, T ]. (4)

Consider the expectation u(x) = Ex[φ(S(T ))], where we introduce the con-
vention that Ex[·] ≡ E[·|S(0) = x]. Take the normal derivative of u(x) with
respect to x then

∂xu(x) = Ex[φ
′(S(T ))Y (T )], (5)

and interpret the tangent process at T as ∂xS(T ). From (4) notice that
Y (τ)1{t≤τ} = DtS(τ)(xσ)−1 which is true for any t ≤ τ ≤ T , therefore for
all 5 t

Y (τ) =
1

τ

τ∫

0

DtS(τ)(xσ)−1dt. (6)

It follows from (5) using the chain rule and performing an integrating by parts
that

∂xu(x) = Ex


φ′(S(T ))

xσT

T∫

0

DtS(T )dt




= Ex


 1

xσT

T∫

0

φ′(S(T ))DtS(T )dt




4 Alternatively, we could arrive at (4) by noting that in general DtS(τ) =
Y (τ)Y −1(t)σ(S(t))1{t≤τ} for σ(S(t)) ≡ σS(t) and by direct inspection S(t) = xY (t).
See [8] for details.
5 We could have multiplied by a function prior to integrating, chosen such that∫ τ
0 c(s)ds = 1. However, this generality provides no advantage here, and it suffices

to take c = 1/τ .
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= Ex


 1

xσT

T∫

0

Dtφ(S(T ))dt




= Ex

[
φ(S(T ))

(
W (T )

xσT

)]
, (7)

which is also achievable by an application of the Bismut-Elworthy formula. We
turn our attention to the second derivative. Differentiating (7) with respect to
x and making identical manipulations shows that

∂2
xu(x) = Ex


φ(S(T ))

x2σT


 1

σT

T∫

0

W (T )dW (t)−W (T )





 . (8)

But notice that the weight involves the difference between two iterated Ito
integrals of the form Ik =

∫
[0,T ]⊗k(σT )−kdW⊗k(t) such that π2 = (I2 − I1)/x

2.
This leads to the following proposition.

Proposition 1 The n-th weight is πn = wn/xn where wn is recursively gener-
ated by wn = m(wn−1)− (n−1)wn−1 for all n = 2, 3, . . ., with initial condition
w1 = I1, where the linear function m is defined by m(Ik) = Ik+1.

PROOF. Proceed by induction. The trivial case n = 0 corresponds to no
differentiation and is avoided. The recursion is verified for n = 1, 2. Assume
that the recursion is valid for n, then show for n + 1

∂n+1
xn+1u(x) = Ex [∂x (φ(FT )πn)]

= Ex

[
∂x

(
φ(FT )

xn

)
wn

]

= Ex

[(
φ′(FT )YT

xn
− n

φ(FT )

xn+1

)
wn

]
,

= Ex


φ(S(T ))

xn+1


 1

σT

T∫

0

wndW (t)− nwn







= Ex

[
φ(S(T ))

xn+1
(m(wn)− nwn)

]

= Ex

[
φ(S(T ))

xn+1
wn+1

]
,

This completes the proof. 2
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In addition, this shows that we may represent wn =
∑n

k=1 an,kIk with constant
coefficients an,k. So the problem of solving the recursion reduces to solving
for an,k and Ik for all k ≤ n. We first turn our attention to the coefficients.
From Proposition 1 it follows by inspection that an,k must satisfy the recursion
relation

an,k =





an−1,k−1 − (n− 1)an−1,k, if 1 ≤ k ≤ n,

0, otherwise,
(9)

We observe that this recursion is solved by the Stirling numbers of first kind
such that an,k = s1(n, k) with closed form solution 6

s1(n, k) =
n−k∑

i=0

n−k∑

j=i

(−1)i+j
(

j
i

) (
n− 1 + j
n− k + j

) (
2n− k

n− k − j

)
(j − i)n−k+j

j!
,

for n = 1, 2, . . . and k ≤ n, as noted in [2] (Appendix 4) due to [3]. Further,
we see that iterated Ito integrals of tensor power can be solved by a formula
noted in [9] (Section 1) due to [7]. For our case we have

Ik = (σ
√

T )−khk

(
W (T )√

T

)
, hk(y) =

[k/2]∑

i=0

yk−2i

(k − 2i)!

k!

i!(−2)i
, (10)

for k = 0, 1, 2, . . ., where hk are the (modified) Hermite polynomials, and [ · ]
means the integer part of. Together these results imply the following lemma.

Lemma 2 The n-th weighting function for the n-th derivative of u(x) with
respect to x is

πn = x−n
n∑

k=1

s1(n, k)(σ
√

T )−khk

(
W (T )√

T

)
. (11)

PROOF. The proof follows by direct substitution. 2

4 Concluding Remarks

We remark that these weights are not complicated - both Stirling numbers and
Hermite polynomials are effortlessly evaluated in packages like Mathematica.

6 Alternatively, coefficients can be expressed as an,k = (−1)n−kϕn−k(1, . . . , n− 1),
where ϕn−k(1, . . . , n−1) denotes the (n−k)-th symmetric polynomial on 1, . . . , n−1.
We exclude the proof in sake of brevity.
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Also, these weights are not unique. Indeed, there exists a spectrum of weights
which corresponds to different choices of c in (6). However, these weights are
optimal in the sense that they are the ones that minimize the variance of the
resulting expectation. To see this note that (11) proves that the weights are
always a polynomial function of W (T ). The strong solution (1) allows us to
express W (T ), and thus the weights, in terms of S(T ). This means that the
weights are S(T ) measurable, and hence optimal, see [5], [1].

By virtue of this representation we can evaluate these expectations efficiently
and exactly, without the need of computationally expensive simulations. This
is important in “real world” applications. We observe that since we can write
the weights in terms of S(T ), the expectation becomes an integral over S(T ) ∈
[0,∞) with respect to the known density. These integrals are easily solved.

We can represent derivatives with respect to the drift and diffusion coefficients
in terms of the derivatives with respect to the initial condition, see [2]. Ex-
plicitly, we have that ∂µu(x) = xT∂xu(x) and ∂σu(x) = x2σT∂2

xu(x); and we
can derive higher derivatives in an analogous way to the analysis presented.
Also note that, from our first remark, these weights will also be optimal.
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