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Abstract  
There is evidence that people do not fully take into account how other people’s actions are 
contingent on these others’ information. This paper defines and applies a new equilibrium concept in 
games with private information, cursed equilibrium, which assumes that each player correctly 
predicts the distribution of other players’ actions, but  underestimates the degree to which these 
actions are correlated with these other players’ information. We apply the concept to common-
values auctions, where cursed equilibrium captures the widely observed phenomenon of the 
winner’s curse. We also show how cursed equilibrium predicts other empirically observed 
phenomena, such as trade in adverse-selection settings where conventional analysis predicts no 
trade, and "naïve" voting in elections and juries where rational-choice models predict that voters 
fully take into account the informational content in being pivotal. 
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1 Introduction

A widely observed phenomenon in laboratory auctions is the �winner�s curse�: when bidders who

share a common but unknown value for a good have private information about the good�s value,

they tend to bid more than equilibrium theory predicts. In many experiments, the average winning

bid exceeds the average value of the good. One explanation for this phenomenon is that the typical

bidder fails to fully appreciate that the low bids by other bidders needed for her to win the auction

mean that these other bidders� private information is more negative than her own. This failure

leads the bidder to believe that the value of the object when she wins the auction is closer to the

value suggested by her private information than it actually is, and hence to overbid. Fully rational

bidders avoid this problem by tempering their bids.

While the winner�s curse has been observed repeatedly in laboratory experiments, and anecdotes

and some research suggests that it is important outside of the laboratory, theoretical research on

auctions assumes that people do not make this error.1 Indeed, empirical researchers base their

estimations of bidders� valuations for the object being auctioned on the presumption that bidders do

not make this error.2 Kagel and Levin (1986) and others in the context of common-values auctions,

as well as Holt and Sherman (1994) in the context of trade with adverse selection, have posited and

tested an extreme form of the winner�s curse: agents act as if there is no information content in

winning an auction or completing a trade.3 In this paper, we formally model a generalization of the

winner�s curse which assumes that players in a Bayesian game underestimate the extent to which

other players� actions are correlated with their information. Our model generalizes those of Kagel

and Levin (1988) and Holt and Sherman (1994) both by allowing players to partially, but not fully,

appreciate the information content in other players� actions, and by deÞning a solution concept

applicable to general Bayesian games. We ßesh out the implications of our model in common-

values auctions and many other settings, discussing the empirical evidence that motivates it in

the speciÞc contexts we consider. The model ties together a wide range of empirically observed

phenomena with a formalization of a single psychological principle � the underappreciation of the

informational content of the behavior of others.
1See Thaler (1988) for an overview of the early evidence on the winner�s curse as well as Kagel (1995) for a survey

of laboratory auctions.
2 In fact, when �winner�s curse� appears in the title of a paper, it typically refers to the study of players who avoid

rather than succumb to the curse. Just as suburban housing developments are often named after the bit of nature
obliterated to create them (�Forest Glen�), so too the term winner�s curse is typically used to describe what isn�t
there.

3Potters and Wit (1995) and Jacobsen, Potters, Schram, van Winden, and Wit (2000) use this same premise
analyze markets for assets whose values are common but unknown to the traders.
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In Section 2 we present our equilibrium concept. We consider standard Bayesian games where

players� private information is represented by their �types,� whose joint distribution is common

knowledge. Our equilibrium concept, cursed equilibrium, assumes that each player incorrectly

believes that with positive probability each proÞle of types of the other players plays the average

action of what all types of other players are playing, rather than their true, type-speciÞc action.

Players choose their actions to maximize their expected utilities given their types and these incorrect

beliefs about other players� equilibrium strategies. We parameterize the extent to which a player is

�cursed� by the probability χ ∈ [0, 1] she assigns to other players playing their average action rather
than their type-contingent strategy. Setting χ = 0 corresponds to the fully rational Bayesian Nash

equilibrium, and setting χ = 1 corresponds to the case where each player assumes no connection

whatsoever between other players� actions and their types. Whatever χ, each player correctly

predicts the equilibrium distribution of the other players� actions � the players� only mistake

comes in misunderstanding the relationship between other players� types and their actions.

To illustrate cursed equilibrium, consider a simple variant of Akerlof�s (1970) lemons model in

which a buyer might purchase a car from a seller at a predetermined price of $1, 000. The seller

knows whether the car is a lemon, worth $0 to both the seller and buyer, or a peach, worth $3, 000

to the buyer and $2, 000 to the seller. The buyer believes each occurs with probability 1
2 . The

parties simultaneously announce whether they wish to trade, and the car is sold if and only if both

say they wish to trade. While a fully rational buyer would realize that the seller will sell if and

only if the car is a lemon, and hence refuse to buy, a cursed buyer may mistakenly buy the car.

The sure sale of the lemon is a χ-cursed equilibrium because a χ-cursed buyer believes that with

probability χ the seller sells irrespective of the type of car, so that the car being sold is a peach

with probability with (1 − χ) · 0 + χ · 1
2 =

χ
2 , and therefore worth

χ
2 · 3, 000 = 1, 500χ. Hence, a

buyer cursed by χ > 2
3 will buy the car, only to discover that whenever the seller is willing to sell

it is a worthless lemon.

We prove that every Þnite game has (for every value of χ) a cursed equilibrium � by observing

that a cursed equilibrium corresponds to a Bayesian Nash equilibrium in a modiÞed game where the

players� payoffs for each action and type proÞle are a weighted average of their actual payoffs and

their average payoffs for that action proÞle averaged over other players� types. We also show that

when each player�s payoffs are fully independent of other players� types, cursed equilibrium and

Bayesian Nash equilibrium coincide. Intuitively, the only difference between the two equilibrium

concepts is that in a cursed equilibrium players have incorrect beliefs about the relationship between
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their opponents� actions and their types; if no player�s payoffs depend on any other player�s type,

then such mistaken beliefs do not matter. Finally, we deÞne a perfectly-cursed equilibrium, the

analogue to Perfect Bayesian equilibrium, and show how it imposes an important restriction on

players� beliefs off the equilibrium path.

In Sections 3, 4, and 5, we apply the general model to three different important settings �

bilateral trade, auctions, and voting. Our model both helps to explain existing experimental be-

havior in these settings and provides plausible, testable predictions in settings for which we know

of no experimental evidence. In Section 3 we examine adverse selection and no-trade theorems in

the context of bilateral trade. When, as in the example above, a seller has private information

about the value of a good, while the buyer does not, cursed equilibrium may lead to more trade

than Bayesian Nash equilibrium: when only sellers with low-value goods sell, a buyer who fails to

recognize this may buy when she would be better off not buying. But cursed equilibrium may also

lead to less trade than Bayesian Nash equilibrium: because a cursed buyer does not fully appreciate

that sellers with high-value goods sell at high prices, she may be too reluctant to pay higher prices.

We show that the predictions of cursed equilibrium approximately correspond to the behavior of

subjects in experimental tests of a lemons model by Samuelson and Bazerman (1985) and Holt and

Sherman (1994). We also illustrate how in a setting with two-sided private information and com-

mon preferences, both parties may strictly prefer trading to not trading, in contrast to �no-trade

results� such as those presented in Milgrom and Stokey (1982). This is because a buyer or seller

who underinfers the other party�s information conditional on trade may agree to a trade with a

negative expected value.

In Section 4 we turn to our primary motivating application, common-values auctions. In a

cursed equilibrium, bidders in a symmetric equilibrium do not recognize that they win the auction

only when they have the most positive information about the value of the object. When χ and

the number of bidders are high enough, this leads to the winner�s curse � the average winning bid

exceeds the average value of the object. Even though cursed bidders may suffer the winner�s curse,

while rational bidders never do, we show that cursedness does not always raise the seller�s expected

revenue, because cursed bidders may also sometimes bid less than rational bidders. Finally, we

compare the predictions of cursed equilibrium to some of the experimental evidence on common-

values auctions.

In Section 5 we apply cursed equilibrium to a model of voting, contrasting our predictions to

those of a recent rational-choice literature on voting in elections and on juries. This literature
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assumes that people vote with a sophisticated understanding that they should predicate their votes

on being pivotal, which means a voter should vote not based on her beliefs at the time of voting,

but rather based on what her beliefs would be if her vote decided the election. Just as in bidding,

therefore, voters must predict the relationship between other voters� private information and their

votes. We show that because of this underinference, cursed voters are more likely to vote �naively�

according to their beliefs at the time of voting. This, in turn, implies that in contrast to the

rational-choice literature, voting rules in large elections matter in a cursed equilibrium: whereas

uncursed voters adjust their behavior to the voting rule to assure the efficient outcome, sufficiently

cursed voters do not react to voting rules, so that rules are efficient if and only if they implement

the right outcome when voters vote naively. We also discuss whether cursed equilibrium can help

explain McKelvey and Palfrey�s (1998) Þndings in their experimental test of jury voting.

In Section 6, we illustrate the implications of cursed equilibrium in two different signaling con-

texts. First, we consider classical simple signaling games, where fully-cursed equilibrium rules out

the use of costly signaling, but lesser degrees of cursedness can either destroy meaningful signaling

arising in a Bayesian Nash equilibrium or facilitate meaningful signaling that could not arise in a

Bayesian Nash equilibrium. Second, we apply cursed equilibrium to a model of �veriÞable cheap

talk� modeled after American political elections where voters make inferences about candidates

after these candidates strategically reveal or conceal information about their past indiscretions or

future plans. In this game, one Bayesian Nash equilibrium is for each type of politician to reveal

her type, since any politician who knows the truth to be less damaging than fully rational voters

infer from silence prefers to reveal. Because cursed voters may not infer the worst from silence �

they may believe that even �good� types conceal � even politicians with not-so-bad information

may not reveal the truth.

Because it posits that each player correctly predicts the equilibrium distribution of other players�

actions without correctly predicting their type-contingent strategies, cursed equilibrium is incom-

patible with many natural explanations for how equilibrium play arises. In some settings, however,

we think this is a natural occurrence: a player who observes repeated play of a single game may

learn the distribution of other players� actions, but because she may never observe other play-

ers� private information she may not learn the relationship between the other players� actions and

private information. While we do not Þnd this foundation for our approach fully satisfying, we

believe cursed equilibrium provides a useful, general, and relatively non-arbitrary way to study the

behavioral implications of a pervasive form of failure of contingent thinking.
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Our formulation of cursed equilibrium is an over-simpliÞcation in many other ways that may

limit its applicability beyond the set of games we consider. In some contexts, our formulation may

make some unrealistic predictions; in others, cursed equilibrium is not well-deÞned. We conclude the

paper in Section 7 with a discussion of possible extensions of the notion of cursed equilibrium that

might cope with these problems, as well as discussing some possible further economic applications

of the principles developed in this paper.

2 Definition and General Results

Before developing speciÞc applications, in this section we formally deÞne cursed equilibrium, prove

its existence in all Þnite Bayesian games, and develop some general principles and results. Con-

sider a Þnite Bayesian Game, G = (A1, . . ., AN ;T0, T1, . . ., TN ; p;u1, . . ., uN ), played by players

k ∈ {1, ...,N}. Ak is the Þnite set of Player k�s actions, where in a sequential game an action spec-
iÞes what Player k does at each of her information sets; Tk is the Þnite set of Player k�s �types�,

each type representing different information that Player k can have. For conceptual and notational

ease in our analysis below, we include a set of �nature�s types�, T0. T ≡ T0 × T1 × ... × TN is the

set of type proÞles, and p is the probability distribution over T , which we assume is common to all

players. Player k�s payoff function uk : A×T → R depends on all players� actions A ≡ A1× ...×AN
and their types. A (mixed) strategy σk for Player k speciÞes a probability distribution over actions

for each type: σk : Tk → 4Ak. Let σk(ak|tk) be the probability that type tk plays action ak, and
let u ≡ (u1, ..., uN ).

The common prior probability distribution p puts positive weight on each tk ∈ Tk, and p fully
determines the probability distributions pk(t−k|tk), Player k�s conditional beliefs about the types
T−k ≡ ×

j 6=k
Tj of other players (including nature) given her own type tk ∈ Tk. Let A−k ≡ ×

j 6=0,k
Aj

be the set of action proÞles for players j 6= k (excluding nature, who takes no action), and σ−k :
T−k → ×

j 6=0,k
4Aj be a strategy of Player k�s opponents, where σ−k(a−k|t−k) is the probability that

type t−k ∈ T−k plays action proÞle a−k under strategy σ−k(t−k).
The standard solution concept in such games is Bayesian Nash equilibrium:

Definition 1 A strategy proÞle σ is a Bayesian Nash equilibrium if for each Player k, each type

tk ∈ Tk, and each a∗k such that σk(a∗k|tk) > 0,

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k
σ−k(a−k|t−k)uk(ak, a−k; tk, t−k).
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In a Bayesian Nash equilibrium, each player correctly predicts both the probability distribution

over the other players� actions and the correlation between the other players� actions and types.

Before deÞning cursed equilibrium, we deÞne for each type of each player the average strategy

of other players, averaged over the other players� types. Formally, for all tk ∈ Tk, deÞne σ−k(·|tk)
by

σ−k(a−k|tk) ≡
X

t−k∈T−k
pk(t−k|tk) · σ−k(a−k|t−k).

When Player k is of type tk, σ−k(a−k|tk) is the probability that players j 6= k play action proÞle
a−k when they follow strategy σ−k. A player who (mistakenly) believes that each type proÞle of the

other players plays the same mixed action proÞle believes that the other players are playing σ−k(·|tk)
whenever they play σ−k(a−k|t−k). Note that σ−k(a−k|tk) depends on tk, so different types of Player
k have different beliefs about the average action of players j 6= k. Let σ−k(tk) : T−k → ×

j 6=0,k
4Aj

denote tk�s beliefs about the average strategy of players j 6= k, namely σ−k(tk) is the strategy

players j 6= k would play if each type proÞle t−k played a−k with probability σ−k(a−k|tk).
From this, we deÞne a cursed equilibrium, deÞned with respect to a parameter χ ∈ [0, 1] that

measures the degree to which players misperceive the correlation between their opponents� actions

and types:

Definition 2 A mixed-strategy proÞle σ is a χ-cursed equilibrium if for each k, tk ∈ Tk, and each
a∗k such that σk(a

∗
k|tk) > 0,

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k
[χσ−k(a−k|tk) + (1− χ)σ−k(a−k|t−k)]uk(ak, a−k; tk, t−k).

In a χ-cursed equilibrium, each player correctly predicts the probability distribution over her oppo-

nents� actions, but she misunderstands the relationship between her opponents� equilibrium action

proÞle and their types. Each player plays a best response to beliefs that with probability χ her

opponents� actions do not depend on their types, while with probability 1 − χ their actions do
depend on their types.4 When χ = 0, χ-cursed equilibrium coincides with Bayesian Nash equilib-

rium. When χ = 1, each player entirely ignores the correlation between other players� actions and

4To see that each player correctly perceives the probability distribution over the other players� actions, note that
type tk of Player k believes that the probability that Players −k play action proÞle a−k under strategy σ−k isX

t−k∈T−k
pk(t−k|tk) [χσ−k(a−k|tk) + (1− χ)σ−k(a−k|t−k)]

= χσ−k(a−k|tk) + (1− χ)
X

t−k∈T−k
pk(t−k|tk)σ−k(a−k|t−k) = σ−k(a−k|tk).

6



their types. We refer to this extreme case as the fully-cursed equilibrium, and refer to players in a

fully-cursed equilibrium as fully cursed.

One important feature of χ-cursed equilibrium�which complicates analysis � is that a player�s

perception of the strategy played by another player can depend on her own type, and two different

players may have different perceptions of the strategy played by a third player. This is impossible in

a Bayesian Nash equilibrium, of course, since all types of all players correctly predict the strategies

of all types of all other players.5 When players� types are independent � meaning that for each k,

each tk, t0k, t−k, p(t−k|tk) = p(t−k|t0k) � then in any χ-cursed equilibrium each type of Player k as

well as Players j and k share common beliefs about Player l�s strategy. In many of our applications,

however, players� types are not independent, so that differences in beliefs prevail in equilibrium.6

In many applications, it is both intuitive and convenient to think not in terms of a player�s

beliefs about others� actions as a function of types, but rather in terms of a player�s beliefs about

others� types as a function of their actions played. In discussing auctions, for instance, we often

think not in terms of which price each type of bidder bids, but rather which type of bidder bids a

given price. Let bptk(t−k|a−k,σ−k) be type tk of Player k�s beliefs about the probability of facing
type t−k of players j 6= k when they play action proÞle a−k under strategy σ−k. The following

lemma inverts the deÞnition of χ-cursed equilibrium to characterize players� beliefs about other

players� types following their actions.7

Lemma 1 In a χ-cursed equilibrium, for each Player k,

bptk(t−k|a−k,σ−k) = µ(1− χ) σ−k(a−k|t−k)σ(a−k|tk) + χ

¶
pk(t−k|tk).

When χ = 0, bptk(t−k|a−k,σ−k) = σ−k(a−k|t−k)
σ(a−k|tk) pk(t−k|tk): Player k correctly updates her beliefs

about the other players according to Bayes Rule. When χ = 1, bptk(t−k|a−k,σ−k) = pk(t−k|tk):
5 In a Bayesian Nash equilibrium, different players or different types of a given player may have different beliefs

about a third player�s actions, since they may have different beliefs about the likelihood of other players� types. But,
by deÞnition, all types of players have common and correct beliefs about others� type-contingent strategies. In a
cursed equilibrium, different players and types of players may have different beliefs even about these strategies.

6For example, suppose that there are two possible states of the world, ω1 and ω2, and each player receives one of
two possible signals, s1 and s2, where Pr [si|ωi] > Pr [si|ωj ]. Suppose that in equilibrium each player takes action ai
if her signal is si. When she receives signal s1, Player 1 thinks ω1 more likely than she did before receiving her signal,
and therefore she thinks it more likely that Player 2 also receives signal s1. In both a Bayesian Nash equilibrium
and a cursed equilibrium, a Player 1 with signal s1 thinks it more likely that Player 2 takes action a1 than a Player 1
with signal s1. In a χ-cursed equilibrium, however, a Player 1 with signal s1 also thinks it more likely that Player 2
plays a1 when his signal is s2 because the average probability that Player 2 plays a1 is higher when Player 1�s signal
is s1 than s2.

7All proofs are in the Appendix.
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Player k infers nothing about the other players� types from their actions. For intermediate values

of χ ∈ (0, 1), Player k partially updates to think it more likely that she is facing type t−k when the
other players are playing a−k, but she does not fully update.

The following proposition demonstrates that in Þnite games, where Bayesian Nash equilibria

exist, χ-cursed equilibria also exist.

Proposition 1 If G = (A,T, p, u) is a Þnite Bayesian game, then for each χ ∈ [0, 1], G has a

χ-cursed equilibrium.

The logic behind Proposition 1 is closely related to Lemma 1, and provides a guide for much of

our analysis. It is most easily exposited by considering a separating pure-strategy equilibrium,

where each type of each player plays a different pure strategy; when tk observes the action a−k

played by types t−k, she believes she is facing t−k with probability 1− χ+ χpk(t−k|tk) and facing
t0−k 6= t−k with probability χpk(t0−k|tk). In a cursed equilibrium, Player k plays a best response to
these beliefs, which means that she acts as if her payoff from playing action ak when facing action

a−k and type proÞle t−k is

uχk (ak, a−k; tk, t−k) ≡ (1− χ)uk(ak, a−k; tk, t−k) + χ
X

t−k∈T−k
pk(t−k|tk) · uk(ak, a−k; tk, t−k).

This is the χ-weighted average of her actual payoff as a function of actions and types and her

�average� payoff as a function of actions and her own type, averaged over the other types of other

players. We prove Proposition 1 by noting that since a χ-cursed equilibrium in G = (A,T, p, u) is

equivalent to a Bayesian Nash equilibrium in the χ-virtual game G
χ ≡ (A, T, p, uχ), G has a cursed

equilibrium whenever G
χ
has a Bayesian Nash equilibrium. We use this reinterpretation and

alternative formalization of cursed equilibrium as the Bayesian Nash equilibrium of G
χ
repeatedly

below.

Proposition 1 follows from the fact that whenever G is Þnite, G
χ
is Þnite, and Þnite games have

at least one Bayesian Nash equilibrium. Proposition 1 is of limited general interest, however. While

every game we consider in this paper has an equilibrium for each value of χ, most of the games

we consider have uncountably inÞnite type and action spaces, so Proposition 1 does not guarantee

existence in these games. Moreover, the existence of a Bayesian Nash equilibrium (χ = 0) is neither

necessary nor sufficient for the existence of a χ-cursed equilibrium for each χ ∈ (0, 1]. However, the
counterexamples we have devised to show this involve games with discontinuous payoffs or non-
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compact action spaces, and we suspect that in well-behaved games where Bayesian Nash equilibria

exist cursed equilibria also exist.8

In a cursed equilibrium, a player maximizes her payoffs under the mistaken belief that other

players� actions depend less on their types than they actually do. We establish in Proposition 2

that if no player can learn anything about her expected payoff from any action proÞle by learning

any other player�s type, then the set of cursed equilibria coincides with the set of Bayesian Nash

equilibria. To formally state the proposition, we need to distinguish between the set of Player k�s

opponents and the set of possible states of the world. Let T−0k ≡ ×
i 6=0,k

Ti be the set of possible

types of all players i 6= k excluding nature, Player 0. Let E [Uk(ak, a−k; tk, t−k)|tk] be Player k�s
expectation of her payoff when she plays action ak and the other players play action a−k, conditional

on her type tk; Uk is random because it may depend on t0 or t−0k. LetE [Uk(ak, a−k; tk, t−k)|tk, t−0k]

be Player k�s expectation of her payoff when she plays action ak and the other players play action

a−k, conditional on her type tk and the other players� (excluding nature�s) type t−0k.

Proposition 2 If for each Player k, each type tk ∈ Tk, each type proÞle t−0k ∈ T−0k, and each

action proÞle (ak, a−k) ∈ A, E [Uk(ak, a−k; tk, t−k)|tk, t−0k] = E [Uk(ak, a−k; tk, t−k)|tk] , then for
each χ ∈ [0, 1] the set of χ-cursed equilibria coincides with the set of Bayesian Nash equilibria.

The condition thatE [Uk(ak, a−k; tk, t−k)|tk, t−0k] = E [Uk(ak, a−k; tk, t−k)|tk] not only requires that
no player�s payoff be affected by any other player�s type, but also that no player can learn anything

about her expected payoff by learning any other player�s type; this means essentially that (given

a player�s type) other players� types are uncorrelated with the state of nature. This distinction is

crucial in many of our applications. In a common-values auction, for instance, bidders may not

care about other bidders� signals per se, but only about the uncertain value of the object. But if

one bidder learned another bidder�s signal her beliefs about the value of the object, and therefore

her beliefs about her payoffs from a proÞle of bids, would change. Hence, Proposition 3 does

not apply to common-values auctions. But it does apply to private-values auctions, where each

bidder�s payoff is a deterministic function of her own type and the proÞle of bids.

8Athey (1997) proves an existence theorem for inÞnite games satisfying a single-crossing property: if each player�s
best response to every strategy of her opponents that is increasing in their types is increasing in her type (and payoffs
are continuous in actions), then the game has a pure-strategy equilibrium where each player�s strategy is increasing
in her type. While space constraints prevent us from proving it in this paper, the same is true of cursed equilibrium:
a game that satisÞes Athey�s conditions has an increasing, pure-strategy χ-cursed equilibrium for each value of χ.
(Likewise, Milgrom and Roberts� (1990) monotone-comparative-statics results for Nash equilibria in supermodular
games apply to cursed equilibria.)
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The intuition behind the proposition is that if a player learns nothing about her expected

payoff from knowing the other players� types, then it does not matter that she misunderstands

the relationship between the other players� types and their actions. More precisely, a player who

correctly predicts the probability distribution over the other players� actions who does not learn

anything about her expected payoff from learning the other players� types chooses the same action

irrespective of her theory of which types of the other players play which action.

A Þnal result is of interest in some applications and helps give more intuition about the nature

of the cursed equilibrium. By analogy with pooling equilibria in simple signaling games, say that

a strategy proÞle σ is pooling if for each player k there exists some ak ∈ Ak such that, for each
tk ∈ Tk, σ(ak|tk) = 1. Then:

Proposition 3 If a pooling strategy proÞle σ is a χ-cursed equilibrium for some χ ∈ [0, 1], then σ
is a χ0-cursed equilibrium for each χ0 ∈ [0, 1].

Proposition 3 implies that every �pooling� Bayesian Nash equilibrium � meaning no player�s

action depends on her type � is a χ-cursed equilibrium for every value of χ, and any pooling

χ-cursed equilibrium is a Bayesian Nash equilibrium. This is because in a pooling equilibrium

players� actions are independent of their types. Ignoring the relationship between others� actions

and their information is not a mistake when there is no relationship.

In many Bayesian games, especially sequential games, researchers apply reÞnements of Bayesian

Nash equilibrium in making predictions. A simple way to deÞne analogous reÞnements of χ-cursed

equilibrium is to deÞne the reÞnement in the χ-virtual game introduced above. Of special interest

to us is the analogue of perfect Bayesian equilibrium:

Definition 3 σ is a χ perfectly-cursed equilibrium of G if it is a perfect Bayesian equilibrium of

the χ-virtual game G
x
.

Perfectly-cursed equilibrium can place restrictions on beliefs off the equilibrium path, since

implicit in it is the requirement that beliefs off the equilibrium path not be too extreme. In simple

signaling games, for instance, when χ = 1 perfect-cursedness imposes the restriction that the

receiver not update her beliefs after any message, whether or not it is sent in equilibrium. There

is no analog to Proposition 3 for perfectly-cursed equilibrium�the set of perfectly-cursed pooling

10



equilibria can depend on χ.9

Cursed equilibrium is the simplest way we can imagine to model players� underattentiveness to

the information content of other players� actions. There are several further potential extensions

and generalizations of the model that would make it potentially more realistic, but which we do not

consider in this paper. We could, for example, allow for different degrees of sophistication between

players, or for different degrees of sophistication for different types of a given player. While we

discuss such reÞnements brießy in the conclusion, for the remainder of the paper we consider some

key applications of our simple variant of the model, relating our results when possible to existing

empirical evidence.

3 Trade

In many economic exchanges, one party has private information about the value of the good she

might sell or buy that determines the price at which she is willing to trade. In this section we

ßesh out the implications of cursed equilibrium in such settings, with both one-sided and two-sided

asymmetric information. We show that trade both may take place when Bayesian Nash equilibrium

predicts no trade and may not take place when Bayesian Nash equilibrium predicts trade.

We begin by studying one-sided asymmetric information of the sort introduced in Akerlof�s

(1970) lemons model, which we formalize along the lines of the model Samuelson and Bazerman

(1985) formulated in designing an experimental test. A Þrm offers itself for sale to a raider; the Þrm

knows its book value, but the raider does not. The raider has correct priors that the book value

of the Þrm is uniformly distributed on [0, 1]. Whatever its book value, the Þrm values itself at its

book value, while the raider values the Þrm at γ ≥ 1 times book value. The raider must make the
9The following sender-receiver game illustrates both the restriction that perfectly-cursed equilibrium imposes on

beliefs off of the equilibrium path and the fact that not every pooling perfect Bayesian equilibrium is a perfectly-cursed
equilibrium. A sender is either type t1 or t2, each of which occurs with prior probability 1

2 ; the sender knows her
type, but the receiver does not. The sender chooses an action L or R. If the sender chooses R, then the game ends
and both types of sender and the receiver get a payoff of 2. If the sender chooses L, then the receiver chooses between
U or D. If the receiver chooses U , both types of sender and the receiver get a payoff of 4. If the receiver chooses
D, then both types of sender get 0, and the receiver gets −5 if he is facing t1 and 5 if he is facing t2. One perfect
Bayesian equilibrium is for both types of sender to go R, and the receiver to go D if he should have the opportunity
to move: going D makes sense for the receiver if he believes the deviation L comes from type t2 of the sender with a
probability of at least 9

10
. For sufficiently high χ, however, this is not a perfectly-cursed equilibrium. To see this,

note that if χ > 1
5
, the receiver�s perceived payoff from facing type t2 of sender when he plays D in G

χ
is less than 4,

and therefore U dominates D. Perfectly cursed equilibrium imposes the restriction that the receiver�s beliefs not be
too extreme off the equilibrium path. Intuitively, this corresponds to the restriction that cursed equilibrium imposes
on beliefs on the equilibrium path described in Lemma 1: if Player k thinks that type t−k and t0−k are both possible,
then whenever χ > 0 no action by players j 6= k can convince Player k that she is facing t−k with probability one.

11



Þrm an offer, which the Þrm then accepts or rejects; without loss of generality we take the raider�s

offer space to be [0, 1]. The raider seeks to maximize her expected surplus, and the Þrm accepts

any offer above its book value.

Formally, there are two players F (Þrm) and R (raider), with TF ≡ [0, 1]. The raider, who has
no private information, chooses a price b ∈ [0, 1] at which she offers to buy the Þrm. The Þrm

chooses a response policy a : [0, 1] → {0, 1}, where a(b) = 1 means that he accepts the raider�s

offer of b. The Þrm�s optimal strategy is clear: it sells at price b if and only if her type is less

than b. Given the uniform distribution of the Þrm�s type, therefore, the average value of the Þrms

sold at price b is b2 , which in turn means the raider�s expected surplus from offering b is b
¡
γ b2 − b

¢
.

By familiar �lemons� logic, the lower the bid the lower the average value of the raider will get.

When γ < 2, the expected net return to the raider will be negative for any positive b, so the unique

Bayesian Nash equilibrium outcome involves b = 0. When γ > 2, the raider�s expected proÞt is

positive whatever her bid, and it is maximized at b = 1.

What are the χ-cursed equilibria? One is that the Þrm rejects all bids and the raider offers zero;

this, however, is not perfectly cursed since the best response of some types of Þrms to a positive

offer is to accept. Henceforth we limit our attention to perfectly-cursed equilibria. Consider Þrst

the extreme case where χ = 1, so the raider incorrectly thinks that the Þrm�s decision whether

to accept the offer does not depend on its book value. Let σF (a) be the average (across types)

probability that a Þrm plays action a. Thus, σF (1) =
R b

0 1dt+
R 1
b 0dt = b, because Þrms valued less

than b sell while those valued above b do not. In a fully cursed equilibrium, the raider thinks that

if she offers b, each Þrm accepts with probability b. Her perceived payoff from offering b is therefore

b
¡
γ
2 − b

¢
, which is maximized by b = γ

4 for γ ≤ 4 (and at b = 1 for γ > 4). The raider�s true payoff
from bidding γ

4 is
γ
4

¡
γ γ8 − γ

4

¢
= γ3−2γ2

32 < 0 for γ < 2. Thus the raider suffers a �winner�s curse�:

she does not realize that the Þrm only accepts her offer when its value is low. The fact that the

raider thinks that some Þrms with values above her bid will sell keeps her from lowering her bid to

zero.10

For γ ∈ (2, 4), the raider bids too low: her payoff from bidding b = γ
4 is

γ3−2γ2

32 , which is less

than γ−2
2 , her payoff from bidding b = 1. Cursedness leads to both overbidding when γ < 2 and

underbidding when γ > 2 for the same reason: a cursed buyer does fully appreciate the extent

to which raising her offer raises the expected value of the goods she buys, and so she pays more
10Note that even when γ < 1, the cursed equilbrium involves b > 0; even though the raider knows that the Þrm is

always worth less to her than to the Þrm, she still makes a positive offer. Hence, despite it being common knowledge
that there are no gains from trade, players trade nonetheless. While we know of no evidence on this prediction and
this degree of error does not seem entirely implausible to us, it does seem somewhat unlikely.
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attention to how her bid affects her probability of completing a trade than to how it affects the

quality of the good she will get.

Now consider χ ∈ (0, 1). If the raider offers b, a Þrm sells iff its valuation is less than b. But in

a χ-cursed equilibrium, the raider thinks a Þrm of type tF sells with probability

(1− χ)σF (1|tF ) + χσF (1) =
½
1− χ+ χb for tF < b
χb for tF > b.

The raider thinks that with probability χ, the Þrm accepts a bid b with probability b independent

of its type, and with probability 1 − χ, a Þrm accepts b iff tF < b. Hence, the raider�s perceived

expected surplus from bidding b is

b (1− χ+ χb)
µ
γ
b

2
− b
¶
+ (1− b)χb

µ
γ
b+ 1

2
− b
¶
,

which is maximized by b∗ = χγ
4−2γ(1−χ) . From this, it can be seen that ∂b

∗
∂χ > 0 if and only if γ > 2,

which means that the buyer overpays when γ < 2 and underpays when γ > 2.

Existing experimental evidence on this model shows that subjects do bid positive amounts,

contradicting the Bayesian-Nash prediction of 0. But in fact they tend to bid in excess of the levels

predicted by even the fully-cursed equilibrium. When γ = 3
2 , the fully cursed-equilibrium is b

∗ = 3
8 .

Samuelson and Bazerman (1985) Þnd that the majority of subjects make offers in (0.5, 0.75). Ball,

Bazerman, and Carroll (1991) allow subjects to learn by repeating the game twenty times, where

subjects learn their payoffs after every round. Such learning does not appreciably affect average

bids, which over the course of the trials fall modestly from 0.57 to 0.55.

Holt and Sherman (1994) consider a variant of this model where the raider�s priors on the value

of the Þrm are distributed uniformly on [v0, v0+r]. In a χ-cursed equilibrium, the raider�s optimal

bid b maximizes her payoffs

b− v0

r

µ
γ
b+ v0

2
(1− χ) + γ 2v0 + r

2
χ− b

¶
,

from whence b∗ = 2v0(γχ+1)+γχr
4−2γ(1−χ) .

Like in Samuelson and Bazerman�s model, in Holt and Sherman�s model a fully cursed raider

can either bid lower than, equal to, or higher than an uncursed raider, depending on the parameter

values. For each of the three combinations of γ, v0, and r that Holt and Sherman tested in

laboratory experiments, Table 1 presents both the χ-cursed equilibrium values of b and subjects�

average bid b.
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Table 1: Adverse Selection (from Holt and Sherman 1994)

Curse r v0 γ b(χ) b(χ = 0) b(χ = 1) b

No curse 2 1 1.5 2 2 2 2.03

Winner�s 4.5 1.5 1.5 45χ+12
4+12χ 3 3.56 3.78

Loser�s 0.5 0.5 1.5 9χ+4
4+12χ 1 0.81 0.74

Holt and Sherman designed the �no-curse� treatment such that the fully-cursed equilibrium co-

incides with the Bayesian Nash equilibrium; as a result, bids do not depend on χ. In this case,

subjects bid quite close to the theoretical prediction. In the �winner�s-curse� treatment, a fully-

cursed raider bids 3.56, while an uncursed raider bids 3. Subjects� average bid was 3.78, slightly

about the fully-cursed prediction. Finally, in the �loser�s-curse� treatment, a fully-cursed raider

bids 0.81, an uncursed raider 1, and subjects 0.74. Thus, subjects� behavior is much closer to the

fully-cursed than the Bayesian-Nash prediction, although average bids depart too extremely from

Bayesian Nash equilibrium to be adequately described by cursed equilibrium.

We now turn to two-sided asymmetric information and show that trade can occur in a χ-cursed

equilibrium, even when it is common knowledge that the value of the good is identical for the two

parties�so that Bayesian Nash equilibrium predicts no trade. While we know of no experimental

evidence in such a situation, our prediction of trade matches the common intuition that speculative

trade occurs when the no-trade theorems of Milgrom and Stokey (1982) and others predict none.

Let Ω = {ω1,ω2,ω3} be the set of possible payoff-relevant states of the world, where the two players
share the common prior µ(ω1) = µ(ω2) = µ(ω3) =

1
3 . Suppose that Player 2 holds an asset which

pays k in state ωk, so that the higher the state the higher the value of the asset. Each player

has private information about the state of the world: Player 1 learns when the state is ω1, but

cannot differentiate between states ω2 and ω3; Player 2 learns when the state is ω3, but cannot

differentiate between states ω1 and ω2. The information partitions P1 = {{ω1}, {ω2,ω3}} and
P2 = {{ω1,ω2}, {ω3}} represent Player 1 and Player 2�s information, respectively; Pi is an element
of Player i�s partition Pi. After each player receives her private information, Player 1 makes Player
2 an offer for the asset which Player 2 then accepts or rejects.

The only possible trade that can occur in a Bayesian Nash equilibrium of this game is the

relatively meaningless one where the good is traded at price 2 in state ω2 and neither party expects

to beneÞt from the trade. For any χ ∈ (0, 1], however, trade in which a party expects to gain can
occur in state ω2. Let b1 : P1 → [1, 3] denote Player 1�s bidding strategy, and a2 : P2×[1, 3]→ {0, 1}
denote Player 2�s acceptance strategy, where a2 = 1 means Player 2 accepts Player 1�s bid. Each
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player�s payoff in state ωk is k if she holds the asset after trading plus or minus any transfer she

paid received or paid.

The following strategies are a cursed equilibrium with trade in state ω2:

b1(P1) =

½
1 P1 = {ω1}
2− χ

2 P1 = {ω2,ω3},

and

a2 (P2, b1) =

½
1 P2 = {ω1,ω2}, b1 ≥ 2− χ

2
0 P2 = {ω3} or b1 < 2− χ

2 .

First note that trade cannot occur in states ω1 or ω3. The most that Player 1 is willing to offer

in ω1 is 1, but because Player 2 puts positive probability on being in state ω2 when the state is ω2

whatever b1 ({ω2,ω3}), Player 2 rejects Player 1�s offer. In ω3, Player 2 will accept no less than

3, but Player 1 will not offer 3 since Player 2 would accept that in state ω2. Now consider ω2.

As long as b1({ω1}) 6= b1({ω2,ω3}), Player 2 thinks the probability of being in state ω2 given he

receives the bid b1({ω2,ω3}) is 1− χ
2 . Thus his expected value of the asset is

¡
1− χ

2

¢
2+ χ

2 = 2− χ
2 .

If Player 2 accepts Player 1�s offer in state ω2, then given that he rejects it in ω3, Player 1 thinks

that when her offer is accepted the probability of being in ω2 is 1− χ
2 , and thus the expected value

of the asset is
¡
1− χ

2

¢
2 + χ

2 · 3 = 2 + χ
2 . Hence Player 1 strictly prefers to trade, and she offers

2− χ
2 , the lowest price at which Player 2 is willing to trade.

In this example, trade in ω2 occurs in a cursed equilibrium because neither player sufficiently

updates her beliefs about the value of the object given the willingness of the other player to trade.

In the information structure given, Player 1 is overly optimistic about the value of the object based

on her private information alone when it turns out that the state is ω2. But whereas an uncursed

trader would learn from Player 2�s willingness to trade at a low price that the state is ω2, a cursed

trader remains overoptimistic that the state is ω3.11

While trade only occurs one third of the time in the example, it is easy to see that whatever

the probability of ω2, so long as both ω1 and ω3 both occur with positive probability, trade can

occur. Since cursed equilibrium is consistent with speculative trade � where at least one player

strictly prefers trading to not trading � with probability arbitrarily close to one, a natural question

is whether it is consistent with speculative trade with probability one. It is not. To see why,

11While in this trading mechanism Player 1 beneÞts from trade, there exist other trading mechanisms under which
Player 2 gains. It is also not important to the example that both players are cursed: trade will occur in state ω2 if
only one of the two players is cursed. This follows from the fact that when Player 1 makes Player 2 an offer, Player
2 thinks that the probability of being in state ω2 is less than one, so he will accept some offer sufficiently close to,
but below, 2 when he is cursed. If Player 1 is cursed, she thinks that the probability of being in ω2 given that her
offer is accepted is less than one, and hence she is willing to offer more than 2, which Player 1 will accept.
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consider again the trading mechanism described in our example where Player 1 makes Player 2 an

offer, and suppose that both players are fully cursed. If Player 2 always accepts Player 1�s offer,

then Player 1 learns nothing about the value of the object from the fact that they are trading, and

therefore she can offer no more than her expectation of the asset�s value at any of her information

sets. If she strictly prefers trading at some information set, then she must offer less than her

expectation of the value of the object at that information set, and therefore her average offer

(across all information sets) must be less than the asset�s expected value. Likewise, since Player

2 is fully cursed, he infers nothing from Player 1�s offer, and hence at each of his information sets

he must be offered more than his expectation of the asset�s value. If he strictly prefers trading at

some information set, then he must be offered more than his expectation of the asset�s value, and

thus Player 1�s average offer must exceed the expected value of the asset, a contradiction. When

players a cursed, but not fully cursed, essentially the same argument applies.

4 Common-Values Auctions

In this section, we use an example to illustrate the implications of cursed equilibrium in Þrst- and

second-price auctions. Under either auction format in our example, the more cursed are bidders,

the higher they bid, and when the number of bidders is sufficiently high cursed bidders suffer the

winner�s curse � the average winning bid exceeds the average value of the object. We show that

second-price auctions raise more expected revenue than Þrst-price auctions with cursed bidders,

just as with rational bidders. However, unlike with rational bidders, as cursed bidders� information

about the value of the object becomes more precise, the seller�s expected revenue may fall, so a

seller may have incentive to hide information about the value of the object from cursed bidders.

Finally, we provide an example of a common-values auction where cursed bidders bid less than

uncursed bidders. In the Þnal part of this section, we discuss some of the experimental literature

on common-values auctions in relation to cursed equilibrium.

In a common-values auction, the value of the object being auctioned is common but unknown to

all bidders. In our example, we assume bidders receive signals that are independent and identically

distributed conditional on the common value of the object. Bidders are risk neutral, and a bidder�s

utility from winning the auction is simply the value of the object, s, minus the price she pays, p;

her utility from losing the auction is zero. Throughout this section, we use capital letters to denote

random variables and lower-case letters to denote values these random variables take on. In order
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to analyze cursed equilibrium in common-values auctions, we use the χ-virtual game introduced in

Section 2 where Bidder i�s utility from winning the auction at price p when the value of the object

is s is

(1− χ)s+ χE[S|Xi = xi]− p,

where xi is the value of Bidder i�s signal about the value of the object. That is, Bidder i�s valuation

of the object is the χ-weighted average of the object�s actual value and her expectation of its value

conditional on her signal.

Suppose that n bidders share a common prior on the value of the object. We follow Klemperer�s

(1999) example and assume that value of the object, S, is distributed uniformly on the real line,

and Bidder i�s signal, Xi, is distributed uniformly on
£
S − a

2 , S +
a
2

¤
for some a > 0.12 Three

functions that play an important role in our analysis merit deÞnition here: Y ni (1) is the highest

signal among bidders j 6= i; r(xi) ≡ E[S|Xi = x] is Bidder i�s expectation of the value of the object
conditional on her signal Xi = x; and vn(x, y) ≡ E[S|Xi = x, Y ni (1) = y] is Bidder i�s expectation
of the value of the object conditional on her signal being x and the highest of the other bidders�

signals being y.

We say that a bidder suffers the winner�s curse in a given equilibrium of a given auction if the

bidder�s expected surplus from entering the auction is negative; that is, the expectation of the value

of the object less the price, both conditional on the event that she wins, is negative. In order that

our deÞnition apply across auction settings, we parameterize auctions by P n, the price the winner

pays when she wins the n-bidder auction; for example, in a Þrst-price auction, Pn is the winner�s

bid.

Definition 4 Bidder i suffers the winner�s curse in equilibrium (bi, b−i) of the n-bidder auction if

E[(S − Pn) 1{bi(Xi)>maxj 6=i bj(Xj)}] < 0.
13

Under our deÞnition, a bidder suffers the winner�s curse if the expected value of the object

conditional on winning is less than the price conditional on winning. In a symmetric equilibrium

of a symmetric model, Bidder i suffers the winner�s curse if E[S] < E[P n], namely if the expected

12While the uniform distribution over the real line is not deÞned, it can be thought of as the limit of the uniform
distribution on [−K,K] as K → ∞. When the value of the object is negative, the auction corresponds to a
procurement auction where the seller pays the winner to perform some costly activity. For the purposes of the
example, however, all that matters is that the bidders� beliefs about S as a function of their signals are uniform. For
a more thorough analysis of Bayesian Nash equilibrium in this model, see Klemperer (1999).
131{A} is the indicator function that takes on the value one when A occurs and zero otherwise.
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price exceeds the expected value of the object.14

We begin our analysis with second-price auctions, where the highest bidder wins the auction and

pays the second-highest bid. Milgrom and Weber (1982) show that a Bayesian Nash equilibrium

of the second-price auction in this setting is bi(xi) = vn(xi, xi) � Bidder i bids her expectation of

the value of the object conditional on both her signal and the highest of the other bidders� signals

being xi. To see that this is an equilibrium, suppose that bidders j 6= i follow their proposed

equilibrium strategies. A Bidder i with signal xi who bids bi receives a payoff ofZ b−1
j (b1)

xi−a
(vn(xi, y)− vn(y, y)) fY ni (1)(y|Xi = xi)dy,

where fY ni (1)(y|Xi = xi) is the density of Y ni (1) conditional on Xi = xi. It is easy to show that

vn(xi, y) is increasing in xi, which implies that the integrand is positive if and only if xi > y. Hence,

Bidder i�s expected utility is maximized when b−1
j (bi) = xi, or bi = bj(xi). Intuitively, Bidder i�s bid

does not affect the price she pays when she wins, only which auctions she wins. If the other bidders

follow their equilibrium strategies, then the only effect of raising her bid above vn(xi, xi) is for

Bidder i to win some auctions where yni (1) > xi; but in that case v
n(xi, y

n
i (1)) < v

n(yni (1), y
n
i (1)).

In words, by raising her bid above vn(xi, xi), Bidder i can only win auctions she would prefer to

lose. Likewise, by lowering her bid, Bidder i can only lose auctions she would prefer to win.

In the χ-virtual game corresponding to the second-price auction, Bidder i�s expectation of the

value of the object conditional on her signal being xi and the highest of the other bidders� signals

being y is

E {(1− χ)S + χE[S|Xi = xi]|Xi = xi, Y ni (1) = y} = (1− χ)vn(xi, y) + χr(xi).

Because r(xi) and vn(xi, y) are both increasing in xi, the expression is increasing in xi, and therefore

we can use the same argument as Milgrom andWeber to show that bi(xi) = (1−χ)vn(xi, xi)+χr(xi)
is a χ-cursed equilibrium of the second-price auction. Here, rather than bid her expectation of the

value of the object conditional on her signal being both the highest and second-highest, Bidder i

bids the χ-weighted average of that and her expectation of the value of the object conditional on

her signal alone. Intuitively, the second part of Bidder i�s bidding function reßects the fact that

she thinks that there may be no information content in winning.

14Our deÞnition of the winner�s curse is not the only reasonable one. A more liberal deÞnition would be that
a bidder suffers the winner�s curse if her expected surplus from entering the auction is less than Nash-equilibrium
analysis suggests. We use our deÞnition because it emphasizes the severity of overbidding and matches the folk
wisdom that winning bids in common-values auctions tend to exceed the value of the object.
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In our example, after observing signal xi Bidder i forms posteriors that S is distributed uniformly

on
£
xi − a

2 , xi +
a
2

¤
, and so her expected value of the object conditional on her signal, r(xi), is xi.

Bidder i�s posteriors on S given that Xi = Y ni (1) = xi are given by

hn(s|Xi = xi, Y ni (1) = xi) =
¡
xi−s
a + 1

2

¢n−2R xi+a
2

xi−a
2

¡
xi−s
a + 1

2

¢n−2
ds
=
n− 1
a

µ
xi − s
a

+
1

2

¶n−2

,

for s ∈ £xi − a
2 , xi +

a
2

¤
(and hn(s|Xi = xi, Y

n
i (1) = xi) = 0 for s /∈ £xi − a

2 , xi +
a
2

¤
). Bidder

i�s expectation of the value of the object conditional on her signal being both the highest and

second highest on the n bidders� signals is vn(xi, xi) = xi − a
2 +

a
n . Thus, the symmetric χ-cursed

equilibrium in the second-price auction is

bn(xi) = xi − (1− χ)an− 2
2n

.

When n = 2, Bayesian Nash and cursed equilibrium coincide.15 For n ≥ 3, bids are increasing

in χ for every signal value, so the seller�s revenue is also increasing in χ. For χ < 1, bids are

decreasing in n, but the higher χ, the slower bids decrease as n increases. For a given s, the

expected second-highest signal E[Y n(2)|S = s] = s− a
2 +

n−1
n+1a, and the seller�s expected revenue

in the n-bidder auction is

E[bn(Y n(2))|S = s] = s− a n− 1
n(n+ 1)

+ χa
n− 2
2n

.

The seller�s expected revenue is increasing in n for all χ, and as n→∞ it approaches s+ χa2 > s,

which implies that bidders suffer the winner�s curse. In general, for n > n = χ+2+
√

9χ2−4χ+4
2χ , the

seller�s expected revenue exceeds s and bidders suffer the winner�s curse. When χ = 1, for example,

n = 3, meaning that bidders suffer the winner�s curse whenever n ≥ 4. As χ → 0, the χ-cursed

equilibrium approaches the Bayesian Nash equilibrium where, of course, bidders never suffer the

winner�s curse; in this case, n→∞.
An implication of the winner�s curse is that by committing to a policy of revealing information

about the value of the object, the seller may lower her expected revenue. This contrasts Bayesian-

Nash analysis, where improving rational bidders� information about the value of the object mitigates

bidders� fear of the winner�s curse and hence intensiÞes the competitiveness of their bidding, raising

the seller�s expected revenue. In our model, as a increases, each bidder�s private information about

15When n = 2, r(xi) = vn(xi, xi), since a bidder learns nothing about the value of the object by learning that the
other bidder�s signal is lower than her own; intuitively, for each value of s ∈ £xi − a

2
, xi + a

2

¤
is the probability that

Xj < xi equal to one half. This result depends on the particular functional forms of our example, and in general
Bayesian Nash and cursed equilibria can differ in two-bidder common-value auctions.
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the value of the object becomes noisier, so that increasing a can be thought of as making bidders

less informed. When χ = 0, increasing a causes bidders to lower their bids enough that the seller�s

expected revenue falls. When χ > χ ≡ 2(n−1)
(n−2)(n+1) , however, increasing a lowers bids but increases

the seller�s revenue. For example, when n = 4, the seller�s revenue is increasing in a whenever

χ > 3
5 . As n → ∞, χ → 0, so increasing a always leads to an increase in the seller�s revenue,

no matter slight bidders� cursedness. The winner�s curse is one implication of this result. When

a = 0, bidders know the value of the object with certainty, so the seller�s expected revenue is the

value of the object. For large n, increasing a increases the seller�s revenue, so bidders suffer the

winner�s curse for a > 0.16

One natural question is whether the seller�s expected revenue is always increasing in χ. Since

bi(xi) = (1− χ)vn(xi, xi) + χr(xi) is the χ-cursed equilibrium of the general second-price auction,

the seller�s expected revenue is increasing in χ whenever E[r(Y n(2)] > E[vn(Y n(2), Y n(2)], namely

when the expectation of the second-highest signal holder�s expectation of the value of the object

conditional on her signal alone is higher than the expectation of the second-highest signal holder�s

expectation of the value of the object conditional on her signal being the highest and second-highest.

In our example, r(xi) = xi and vn(xi, xi) = xi − a
2 +

a
n < xi, so the seller�s expected revenue does

not depend on χ for n = 2 and is increasing in χ for n > 2. But consider another example where

s, xi ∈ {0, 1}, Pr[S = 0] = Pr[S = 1] = 1
2 , and Pr[Xi = 0|S = 0] = 1

2 and Pr[Xi = 0|S = 1] = 0.
When the value of the object is low, both signals are equally likely, but when the value of the object

is high, the high signal occurs with probability one. In a Bayesian Nash equilibrium, a bidder with

16As an alternative illustration that the seller may prefer withholding information from the bidders, suppose that,
like the bidders, the seller receives a signal about the value of the object Z ∼ U £s− a

2
, s+ a

2

¤
. Before receiving her

signal, the seller chooses between truthfully revealing and concealing her signal, whatever it is. Milgrom and Weber
(1982) show that when bidders are rational the seller prefers truthful revelation. When bidders are cursed, the
χ-cursed equilibrium in the auction when the seller reveals is ebn(xi, z) = (1−χ)evn(xi, xi, z) + er(xi, z). The functionevn(xi, xi, z) is the analogue to vn(xi, xi) when the seller�s signal is z, and er(xi, z) is the analogue to r(xi) when the
seller�s signal is z. It is easy to show that for all xi and z, evn(xi, xi, z) = vn(xi, xi): intuitively, if a bidder has beliefs
µ(s) over s ∈ £xi − a

2 , xi +
a
2

¤
when her signal and the highest of other signals is xi, then because every value of s is

equally likely to generate the signal z, learning z does cause the bidder to update her beliefs. But whereas r(xi) = xi,er(xi, z) = 1
2
(xi + z): a bidder�s expectation of the value of the object conditional on the two signals (xi, z) is simply

their average. Thus, the seller�s expected revenue in state s when she can commit to truthfully revealing her signal
is

E[ebn(Y n(2))|S = s] = s− a n− 1
n(n+ 1)

+ χa
n2 + n− 4
4n(n+ 1)

.

By concealing her signal, the seller achieves the same expected revenue as when she has no signal. When n = 2, the
seller�s expected revenue is larger than when she has no signal because E [er(Y n(2), Z)|S = s] > E [r(Y n(2))|S = s] ,
since Y n(2) is on average less than Z. When n = 3, the seller�s expected revenue does not depend on whether
she reveals her signal because E [er(Y n(2), Z)|S = s] = E [r(Y n(2))|S = s] , since Y n(2) is on average equal to Z.
However, for n ≥ 4, the seller�s expected revenue is lower than when she has no signal because E [er(Y n(2), Z)|S = s] <
E [r(Y n(2))|S = s] , since Y n(2) is on average greater than Z. Thus, with enough bidders the seller decreases her
expected revenue by committing to a policy of truthfully revealing her signal.
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xi = 0 knows the object is worth zero, and thus b(0) = 0. A bidder with signal xi = 1 knows

that if xj = 0, the object is worth zero and her payoff is zero whatever she bids. If xi = xj = 1,

then the expected value of the object is 4
5 , and thus b(1) =

4
5 . When χ = 1, we b(0) = 0 and

b(1) = 2
3 is a cursed equilibrium. A bidder with xi = 0 knows the object is worth zero, and thus

b(0) = 0. A bidder with xi = 1 knows that the only time her bid matters is when bj = 2
3 ; since

she thinks that bj conveys no information about Bidder j�s signal, a bidder with xi = 1 thinks the

value of the object is 2
3 . Bidder i�s perceived expected payoff to any bid is zero, so b(0) = 0 and

b(1) = 2
3 is a fully-cursed equilibrium. Cursed and rational bidders with xi = 0 both bid 0, but

cursed bidders with xi = 1 bid 2
3 , while rational bidders bid

4
5 . Hence, in this example, the seller�s

expected revenue is higher when bidders are rational than when they are cursed.17

We now turn to Þrst price auctions, where the high bidder wins the auction and pays her bid.

In a symmetric χ-cursed equilibrium of the Þrst-price auction, a Bidder i with signal Xi = xi

chooses bi to maximizeZ b−1
j (bi)

x
((1− χ)vn(xi, y) + χr(xi)− bi) fY ni (1)(y|Xi = xi),

where bj is the common equilibrium bidding function of bidders j 6= i and fY ni (1)(y|Xi = xi) is the
density of Y ni (1) conditional on Xi = xi. A necessary condition for equilibrium is that

dbn(xi)

dxi
= ((1− χ)vn(xi, xi) + χr(xi)− bn(xi))

fY ni (1)(xi|Xi = xi)
FY ni (1)(xi|Xi = xi)

,

which in our example is

dbn(xi)

dxi
=

µ
xi − (1− χ)an− 2

n
− b(xi)

¶ R xi+a
2

xi− a
2
(n− 1) ¡xi−sa + 1

2

¢n−2 1
a2 dsR xi+ a

2
xi− a

2

¡
xi−s
a + 1

2

¢n−1 1
ads

,

which simpliÞes to
dbn(xi)

dxi
=

µ
xi − (1− χ)an− 2

n
− b(xi)

¶
n

a
.

Hence, the symmetric χ-cursed equilibrium of the Þrst-price auction is

bn(xi) = xi − a
2
+ χa

n− 2
2n

.

When χ = 0, bn(xi) = x − a
2 , and bids are independent of the number of bidders. When

χ > 0, bids increase in n. Intuitively, when χ = 1, a bidder with signal xi values the object

17We believe that �in general� revenue increases with χ. We are familiar with no experimental tests on auctions
where revenues decrease with χ, which might be an additional useful test of our explanation of the winner�s curse in
auctions.
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at r(xi) = xi, so the auction is one of private, but correlated, values. As n increases, bidders

bid more because they face increased competition. For a given s, the expected highest signal

E[Y n(1)|S = s] = s+ n−1
n+1

a
2 , and the seller�s expected revenue in the n-bidder auction is

E[bn(Y n(1))|S = s] = s− a

n+ 1
+ aχ

n− 2
2n

.

Like in the second-price auction, the seller�s expected revenue is increasing in n. Bidders suffer the

winner�s curse when n ≥ n ≡ 2+χ+
√

9χ2+4χ+4
2χ . When χ = 1, n ≈ 3.5, so bidders suffer the winner�s

curse whenever n ≥ 4. In a second-price auction when χ = 1 bidders also suffer the winner�s curse
whenever n ≥ 4. When χ = 1

2 , bidders suffer the winner�s curse in a Þrst-price auction when

n ≥ 6, while they suffer the winner�s curse in a second-price auction when n ≥ 5. This difference
reßects the fact that in a cursed equilibrium, as in a Bayesian Nash equilibrium, the second-price

auction raises more expected revenue than the Þrst-price auction. In a cursed equilibrium, bids are

decreasing in a, just as in the rational case. When χ > χ ≡ 2n
(n−2)(n+1) , again the seller�s expected

revenue is increasing in a. Just as in second-price auctions, in a Þrst-price auction with a large

number of bidders χ is close to zero, so the seller�s expected revenue in large auctions is increasing

in a, as long as bidders are not completely rational.

Rather than analyze more general implications of cursed equilibrium in auctions, we conclude

this section by relating our analysis above to some of the large body of experimental evidence.

In an early experiment, Bazerman and Samuelson (1983) auctioned off jars of coins to student

subjects. In each auction, subjects could see the jar being auctioned, but did not know how many

coins it contained. The highest bidder paid her bid and received the paper-dollar equivalent of the

coins in the jar. Subjects also guessed how many coins each jar contained, and the subject whose

guess was closest to the true value won a cash prize. Whereas all of the jars actually contained

$8.00, the average winning bid was $10.01. However, the subjects� average estimate of the money

in the jar was only $5.13. Even though the subjects were on average too pessimistic about the

value of the money in the jars, they suffered the winner�s curse, presumably because those with

high bids bid close to their estimates, rather than tempering their bids.

Kagel and Levin (1986) test a model nearly identical to our example above: the value of the

object is distributed uniformly over [s, s], and each bidder i receives a signal Xi ∼ U
£
s− a

2 , s+
a
2

¤
,

when s is the value of the good. In a Þrst-price auction, the χ-cursed equilibrium of this auction is

b(xi) = xi − a
2
+ χa

n− 2
2n

+
a
¡
1− n−1

n χ
¢

n+ 1
zi,
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for xi ∈
£
s+ a

2 , s− a
2

¤
and zi = exp

µ
−n(xi−(s+ a

2 ))
a

¶
.18 This bidding function differs from that

derived in the example above only by the Þnal term, which becomes small as xi increases above

s+ a
2 ; we ignore this Þnal term in most of our discussion below. Table 2 summarizes Kagel and

Levin�s data on a large series of auctions (some series aggregate auctions with different values of a,

n, s, and s).

Table 2: Common-Values Auctions (Kagel and Levin 1986)

n Obs π(χ = 0) π(χ = 1) π χ

3− 4 31 9.51 3.25 3.73 0.92
4 18 4.99 −0.75 4.61 0.07
4 14 6.51 −3.82 7.53 0
4 19 8.56 −0.12 5.83 0.31
4 23 6.38 −2.24 1.70 0.54
5 18 5.19 −1.90 2.89 0.32

5− 7 11 3.65 −5.19 −2.92 0.74
6 18 4.70 −10.11 1.89 0.19

6− 7 25 4.78 −10.03 −0.23 0.34
7 26 5.25 −8.07 −0.41 0.42
7 14 5.03 −11.04 −2.74 0.48

The Þrst column reports the number of bidders in each auction series. The second column reports

the number of auctions in each series. The third and fourth columns present the average equilibrium

proÞts � the average winning bid less the average value of the object � when χ = 0 and χ = 1,

respectively.19 The fourth column contains subjects� actual average proÞts. The Þfth column

provides estimates of χ given the subjects� behavior.20

Kagel and Levin�s data are broadly consistent with positive χ, but not χ = 1. In every

auction series but one, subjects� proÞts lie between the Bayesian-Nash and fully-cursed predictions.

18The interested reader can derive the cursed bidding function by using the fact that

bn(x) = (1− χ)bnχ=0(x) + χb
n
χ=1(x),

where bnχ=0(x) is the Bayesian-Nash bidding function and b
n
χ=1(x) is the fully-cursed bidding function, both of which

are presented in Kagel and Levin (1986).
19For xi > s − a

2
, since the bidding function for rational bidders cannot be solved analytically, Kagel and Levin

approximate it using the bid function for xi ∈
£
s+ a

2
, s− a

2

¤
. As they note, this overstates bids for high signal

values and hence understates the difference between fully-cursed and rational bidding. As a result, this should bias
our estimate of χ downwards.
20To estimate χ, we use the fact that because the bidding function in a χ-cursed equilibrium is the χ-weighted

average of the fully-rational and fully-cursed bidding functions, bidders� proÞts in a χ-cursed equilibrium are also
the χ-weighted average of the fully-rational and fully-cursed proÞts. We then use Kagel and Levin�s report of the
theoretical proÞts for rational and fully-cursed bidders, as well as subjects� actual proÞts. However, because of
the way that Kagel and Levin approximate the bidding function for high signals described in the last footnote, our
estimate of χ is biased downwards.
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Our estimates of χ are fairly consistent across auction series, with 7 of the 11 between 0.19 and

0.54. The average value of χ (weighted by the number of observations for each values) is 0.42.21

In this experiment, as in many others, when the number of bidders is small, average proÞts are

positive, but when the number of bidders is large, average proÞts are negative. Kagel and Levin

(1986) conclude that the larger the number of bidders, the further the subjects� bids from Nash

equilibrium. However, if we estimate χ separately for n ≤ 4 and n ≥ 5, we get estimates are 0.39
and 0.46, respectively. Thus, while χ appears to be marginally higher for large n, the fact that

the two estimates are so similar suggests that subjects� cursedness is not particularly sensitive to

n. As we showed in our example above, whatever χ, bidders suffer the winner�s curse for large

enough n.

All said, cursed equilibrium seems to Þt reasonably well how proÞts depend on the number of

bidders and the noisiness of bidders� signals, a. A further indication that the subjects exhibit cursed

behavior, which (unlike Table 2) includes bids from losing bidders, comes from Kagel and Levin�s

(1986) estimate of the linear bidding function

b(xi, a, n) = 1.00xi − 0.74a
2
+ 0.65n,

(0.002) (0.03) (0.15)

where standard errors are reported below the regression coefficients.22 Because the bidding function

in a cursed equilibrium is linear in neither a2 nor in n, Kagel and Levin�s estimated bidding function

is somewhat hard to interpret. But the coefficient on a
2 is signiÞcantly less than the value of one

predicted by Bayesian Nash equilibrium, and bids are increasing in n, rather than decreasing as

21Kagel and Levin�s (1986) Table 3 groups the data as a function of a and n; estimating χ from this table yields
the results presented in Table 3.

Table 3: Common-Values Auctions (Kagel and Levin 1986)

n a π(χ = 0) π(χ = 1) π χ
3− 4 24 4.52 −1.24 2.60 0.33
3− 4 36 7.20 −0.24 3.98 0.43
3− 4 48, 60 11.22 0.60 6.75 0.42
6− 7 24 3.46 −3.68 −1.86 0.75
6− 7 36 3.19 −8.51 −0.95 0.35
6− 7 48, 60 7.12 −12.31 0.60 0.34

With one exception, all of our estimates of χ lie between 0.33 and 0.43. Whether n ∈ {3, 4} or n ∈ {6, 7}, subjects�
proÞts are increasing in a, as Bayesian Nash predicts. Since cursed equilibrium suggests that proÞts are increasing in
a as long as χ < χ ≡ 2n

(n−2)(n+1)
, the data are consistent with χ < 0.8 for n ∈ {3, 4}. For n ∈ {6, 7}, however, proÞts

are increasing in a only when χ < 0.35, which appears somewhat inconsistent with our estimates of χ in this case.
22The regression includes a subject-speciÞc and auction-speciÞc error term for each bid. Kagel and Levin also

estimate a bidding function including an intercept term and zi, but the estimated coefficients on these variables are
insigniÞcant.

24



predicted by Bayesian Nash equilibrium. Both results are consistent with cursed equilibrium.

Finally, we should note that in only 71% of auctions did the high-signal holder win. In a cursed

equilibrium, as in a Bayesian Nash, all of the auctions should have been won by the high-signal

holder, and that they were not suggests that subjects made errors in addition to those predicted

by cursed equilibrium, or that different bidders were cursed to different degrees.

Many other papers Þnd evidence of the winner�s curse. Lind and Plott (1991) show that the

winner�s curse in Kagel and Levin�s (1986) experiments is not due to any strategic effects of limited

liability � the fact that subjects who lost more than some initial endowment were removed from

the experiment. Dyer, Kagel and Levin (1989) report experiments using students and executives

from the construction industry; all but one of the executives had experience bidding in auctions.

They Þnd that both types of subjects suffer the winner�s curse, and that the curse the curse is

slightly stronger among the executives, albeit not signiÞcantly. Kagel, Levin, and Harstad (1995)

test the second-price auction with the same signal structure as Kagel and Levin (1986). Again,

they Þnd that subjects� proÞts are less than the Nash prediction for all n, and that bidders suffer

the winner�s curse when they are sufficiently numerous. Using the same procedure for estimating χ

as we did for Kagel and Levin, we estimate χ = 0.36, which is fairly close to our estimate of 0.42 in

the Þrst-price auction. However, Kagel and Levin�s (1986) subjects, Kagel, Levin, and Harstad�s

(1995) subjects do appear to be more cursed the larger n: when n = 4, χ = 0.18, when n = 5,

χ = 0.27, and when n ∈ {6, 7}, χ = 0.42.
Avery and Kagel (1997) report experimental evidence on a simple two-bidder auction where

each bidder receives a signal Xi ∼ U [1, 4], and ui(x1, x2) = x1 + x2; that is, the value of the

object is simply the sum of the two bidders� signals. The argument used above to show that

bi(xi) = (1 − χ)vn(xi, xi) + χr(xi) was an equilibrium of the second-price auction where applies

equally well to this model, and thus b(xi) =
5χ
2 + (2 − χ)xi is the symmetric χ-cursed equilibrium

of this auction. Avery and Kagel estimate the linear bidding function b(xi) = α + βxi. Cursed

equilibrium predicts that α = 5
2χ and β = 2− χ.

Avery and Kagel divide their subjects, who are mostly undergraduate economics students, into

two groups. Inexperienced subjects have played only seven (unreported) practice auctions, and

their reported data cover 18 auctions. Experienced subjects are formerly inexperienced subjects

who have now participated in 25 auctions; their reported data cover 24 auctions. In this auction,

cursed equilibrium makes predictions about both parameters, α and β, and but without the data

there is no obvious way to estimate the χ that best Þts the data. Table 4, however, compares the

25



average values of α and β Avery and Kagel found for inexperienced and experienced subjects to

different values of χ.

Table 4: Second-Price Auctions (from Avery and Kagel 1997)

χ = 0 χ = 0.75 χ = 1 Actual
Subjects α β α β α β α β

Inexperienced 0 2 1.875 1.25 2.5 1 2.64 1.13
(n = 299) (0.68) (0.08)
Experienced 0 3 1.875 1.25 2.5 1 1.99 1.34
(n = 308) (0.35) (0.05)

From the table it can be seen that χ = 1 Þts inexperienced subjects� behavior well, and χ = 0.75 Þts

experienced subjects� behavior. These estimates are roughly consistent with a couple of different

formal best-Þt procedures. First, we minimize the distance between α and β and α(χ) and β(χ)

by minimizing the weighted sum

L(χ, z) = z (α(χ)− α)2 + (1− z) ¡β(χ)− β¢2
,

where z ∈ (0, 1) is the relative weight placed on explaining α versus β. We Þnd that χ = 1.74+11.46z
2+10.5z

for inexperienced subjects, yielding χ ∈ (0.87, 1.06) for z ∈ (0, 1), and χ = 1.28+8.67z
2+10.5z for experienced

subjects, yielding χ ∈ (0.64, 0.80) for z ∈ (0, 1). For z = 1
2 , χ = 1.03 for inexperienced subjects,

and χ = 0.77 for experienced subjects. If instead we found the value of χ that yields α(χ)
β(χ) closest

to α
β
, we Þnd χ = 0.97 for inexperienced subjects and χ = 0.74 for experienced subjects. Thus

inexperienced subjects behave very much like fully-cursed bidders, and experienced subjects appear

much closer to fully-cursed than uncursed.

5 Voting

A recent rational-choice literature on voting in elections and juries assumes that people vote with

a sophisticated understanding that they should predicate their votes on being pivotal. Because

a voter�s vote only matters when she is pivotal, she should vote as if she is pivotal, even when

she suspects that she is not.23 Being pivotal can affect a voter�s preferences if she believes that

other voters have private information about the proper way to vote, information that is revealed

from the fact that she is pivotal. Hence, a sophisticated voter asks herself what information other

23See Razin (2000) for a version of the sophisticated-voter model when voters care not just about who wins an
election, but also about the margin of victory.
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voters would have to make her pivotal, and then how she wants to vote when she combines that

information with her own private information.

In a series of papers, Feddersen and Pesendorfer (1996, 1997, 1998) explore the implications

of such sophisticated reasoning by voters. Feddersen and Pesendorfer (1996) study a variant of

this reasoning in which uninformed voters strictly prefer abstaining to voting, because they realize

that if they are pivotal they are more likely to decide the election in favor of the wrong candidate.

By analogy to the winner�s curse in auctions, they label this the �swing-voter�s curse�. The label

is apt, since less-than-fully-sophisticated voters may fall prey to such a curse much as bidders in

common-values auctions fall prey to the winner�s curse. In this section we apply cursed equilibrium

to the model developed in Feddersen and Pesendorfer (1998) of a jury that must decide whether

to convict a defendant of some crime. We discuss some general implications of cursedness in this

model, as well as how our results Þt the Þndings of McKelvey�s and Palfrey�s (1998) experimental

test of the model.

A jury of size M ≥ 2 must decide whether to convict some defendant of some crime. Let ωG

be the state of the world where the defendant is guilty, and ωI be the state of the world where

the defendant is innocent, and suppose that jurors share the common prior µ(ωG) = µ(ωI) =

1
2 . Juror k receives a private signal sk ∈ {γ, ι}, correlated with the state of the world, with
Pr [γ|ωG] = Pr [ι|ωI ] = θ ∈

¡
1
2 , 1
¢
. Signals are independent conditional on the state of the world.

Each juror k chooses an action ak ∈ {g, i}, where g is a guilty vote and i an innocent vote. Let
σk : {γ, ι}→4{g, i} be k�s strategy, which maps her signal to a probability distribution over guilty
and innocent votes. Let nG denote the number of jurors who vote guilty, n−iG denote the number

of jurors j 6= i who vote guilty, and nI =M − nG denote the number of jurors who vote innocent.
Let a ∈ {A,C} be the outcome of the jury process, where A denotes acquit and C convict. The

voting rule determines how the outcome depends on the jurors� votes. Under unanimous voting,

the defendant is convicted if nG = M ; under majority voting, he is convicted if nG > nI . More

generally, let N ∈ £M2 ,M¤ be the number of guilty votes needed to convict the defendant, so that
the defendant is convicted if nG ≥ N.

All jurors share the preferences

u(a|ωG) =
½
q − 1 a = A
0 a = C

and u(a|ωI) =
½
0 a = A
−q a = C,

where q ∈ (0, 1) is a parameter measuring the voters� trade-offs associated with either convicting
the innocent and acquitting the guilty. The higher q, the more jurors are bothered by convicting
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an innocent defendant relative to acquitting a guilty defendant. A juror prefers to convict if and

only if she thinks the probability that the defendant is guilty exceeds q.

Given that the two states, ωG and ωI , are equally likely, and that each private signal reßects

the true state with probability θ > 1
2 , a juror believes that the defendant is guilty with probability

θ when her signal is γ and with probability 1− θ when her signal is ι. We shall assume throughout
that 1 − θ < q, so that a juror who receives an innocent signal never votes to convict based on

her information alone. In many applications, we shall consider the case of q = 1
2 , so an individual

making a decision alone with only one signal would vote to convict if and only if the signal is guilty.

Because a juror�s vote only matters if she is pivotal, it only matters if exactly N−1 other jurors
cast guilty votes. Thus a juror votes to convict if she thinks the probability of the defendant�s

being guilty is at least q given her own signal and the event that N − 1 other jurors vote guilty.
To Þnd a symmetric equilibrium, consider the strategy σk, where

σk(ak = g|sk) =
½
1 sk = γ
σ sk = ι

,

where σ ∈ [0, 1). Under strategy σk, Juror k votes guilty with probability one when she receives a
guilty signal, and votes guilty with probability σ when she receives an innocent signal. Feddersen

and Pesendorfer show a symmetric Bayesian Nash equilibrium of this form always exists. Of

particular note is that the equilibrium often involves σ > 0, so that people with an innocent signal

vote guilty with positive probability. To see why this leads to σ > 0, note for instance that when
N
M > θ voters realize that even when the person is guilty they typically will not convict him based

on guilty votes alone; if all those with innocent signals were to vote innocent, then a person with

one of those innocent signals should realize that if she is pivotal it is almost surely the case that

the defendant is guilty. More generally, when q is low and N
M is high, proper voting requires some

of those with innocent signals to vote guilty.

In order for there to be a mixed-strategy χ-cursed equilibrium of the form described above with

σ ∈ (0, 1), a juror must be indifferent between voting guilty and innocent when she gets a ι signal.
The expected utilities for Juror i with an innocent signal, ι, from each of her two possible votes are

u(g|ι) = Pr
£
n−iG 6= N − 1 | ι¤ · u(g | n−iG 6= N − 1) + Pr £n−iG = N − 1 | ι¤ · Vg(σ)

u(i|ι) = Pr
£
n−iG 6= N − 1 | ι¤ · u(i | n−iG 6= N − 1) + Pr £n−iG = N − 1 | ι¤ · Vi(σ),

where Vg(σ) and Vi(σ) are the juror�s perceived payoffs from voting guilty or innocent if she is

pivotal and receives an innocent signal. Because u(g | n−iG 6= N − 1) = u(i | n−iG 6= N − 1) � a
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voter only cares about her vote when it is pivotal � u(g | ι) = u(i | ι) if and only if Vg(σ) = Vi(σ).
From this,

σ∗ = max
½
0,
θz − (1− θ)
θ − (1− θ)z

¾
, where z =

µ
1− q − θχ
q − (1− θ)χ

¶ 1
N−1

µ
1− θ
θ

¶M−N+1
N−1

.24

When θ > 1
2 and q ≥ 1

2 , σ
∗ > 0 if

χ <
1− q − ¡1−θ

θ

¢2N−M+2

θ − ¡1−θ
θ

¢2N−M+3
,

and σ∗ = 0 otherwise.

That is, when χ is small, then those with innocent signals vote guilty with positive probability

when N is close enough to M , just as Feddersen and Pesendorfer found. More generally, cursed

equilibrium shares many features of Bayesian Nash equilibrium. For example, when χ is sufficiently

small, jurors with innocent signals sometimes vote guilty. Various comparative statics hold irre-

spective of χ. For all χ, ∂σ
∗

∂q ≤ 0, meaning that the higher the burden of proof the jurors need to
convict the less likely they are to vote guilty. For all χ, ∂σ

∗
∂N ≥ 0, meaning that the higher the

number of guilty votes needed to convict, the more likely the jurors are to vote guilty.

Although partially-cursed jurors may vote strategically, they underinfer one another�s informa-

tion when they condition their votes on being pivotal. This affects their voting strategy, and hence

the extent to which voting is efficient � the likelihood that an innocent defendant is acquitted

and a guilty defendant convicted. The formula above shows that ∂σ
∗

∂χ ≤ 0, meaning that the more
cursed are jurors, the less likely are jurors with innocent signals to vote guilty. Because cursed

jurors are less inclined to infer from the fact that they are pivotal that others have received guilty

signals, cursedness causes jurors with innocent signals to be more likely to vote innocent. Indeed,

when χ = 1, voters simply vote their signals.

One of the striking results in Feddersen and Pesendorfer (1998) is that Þxing the number of

jurors, M , the probability of convicting an innocent person may increase as the number of guilty

24To determine the equilibrium values of Vg(σ) and Vi(σ), we Þrst deÞne

A(σ) = Pr
h
ι, n−iG = N − 1 | ωG

i
=

Ã
M − 1
N − 1

!
(θ + (1− θ)σ)N−1((1− θ)(1− σ))M−N (1− θ)

B(σ) = Pr
h
ι, n−iG = N − 1 | ωI

i
=

Ã
M − 1
N − 1

!
((1− θ) + θσ)N−1((θ(1− σ))M−Nθ,

the probability that Juror i receives an innocent signal and is pivotal in the guilty and innocent states, respectively.
A cursed juror with an innocent signal who knows she is pivotal believes that the defendant is guilty with probability
Pg ≡ (1 − χ) A(σ)

A(σ)+B(σ)
+ χ(1 − θ) and innocent with probability Pi ≡ (1 − χ) B(σ)

A(σ)+B(σ)
+ χθ. By observing that

Vg(σ) = Pi · (−q) and Vi(σ) = Pg · (q − 1), Vg(σ) = Vi(σ), we get the result presented in the text.
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votes needed for conviction, N, increases; this is because the probability with which a juror with

an innocent signal votes guilty may increase so much in response to a higher N that the odds of

convicting an innocent defendant increase. Cursedness mitigates this connection. While increasing

N can raise the probability of conviction even when χ > 0, it decreases the probability of conviction

for χ sufficiently close to 1 because in that case jurors with innocent signals always vote innocent

irrespective of N .

Feddersen and Pesendorfer (1998) characterize the likelihood of acquitting a guilty defendant

and convicting an innocent defendant under the unanimity rule when the size of the jury becomes

arbitrarily large. Under the unanimity rule, an innocent defendant is convicted with probability

Pr [C|ωI ] = [(1− θ) + θσ∗]M and a guilty defendant with Pr [A|ωG] = 1− [(1− θ) + θσ∗]M . When
χ < 1−q

θ ,

lim
M=N→∞

Pr [C|ωI ] =

µ
(1− q)(1− θ)− θ(1− θ)χ

qθ − θ(1− θ)χ
¶ θ

2θ−1

lim
M=N→∞

Pr [A|ωG] = 1−
µ
(1− q)(1− θ)− θ(1− θ)χ

qθ− θ(1− θ)χ
¶ 1−θ

2θ−1

.

Pr [C|ωI ] is decreasing in χ, and Pr [A|ωG] is increasing in χ: cursedness decreases the probability
of convicting an innocent defendant and increases the probability of acquitting a guilty defendant.

When χ > 1−q
θ , Pr [C|ωI ] = 0 and Pr [A|ωG] = 1; that is, sufficiently cursed jurors vote their signals,

so the defendant is never convicted.25

While in the context of juries comparing unanimity rules to majority rules is natural, in large-

scale elections it is of greater interest to compare intermediate cases where the share of votes needed

to pass a proposition or elect a candidate is between one half and one. While winning an election

typically requires a majority of votes, passing a proposition often requires a supermajority such as
2
3 .
26 To consider the role of cursedness in such contexts, we consider the limit as M becomes very

large and when N = kM, where k > 1
2 is a Þxed parameter representing the percentage of guilty

votes needed to �convict�. In this case,

lim
M→∞,N=kM

σ∗ =


( 1−θ

θ )
1−k
k − 1−θ

θ

1−(1−θ
θ )

1
k

for χ < 1−q
θ

0 for χ > 1−q
θ .

25When χ = 0, limM=N→∞ Pr [C|ωI ] =
³

(1−q)(1−θ)
qθ

´ θ
2θ−1

and limM=N→∞ Pr [A|ωG] = 1 −
³

(1−q)(1−θ)
qθ

´ 1−θ
2θ−1

,

which coincides with the results in Feddersen and Pesendorfer (1998).
26 In a multi-candidate race with only two viable candidates, requiring a majority to avoid a run-off amounts de

facto to requiring a super-majority.
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When χ < 1−q
θ , neither χ nor q affects the equilibrium proportion of guilty votes in the limit.27

But both χ and q help to determine whether there is a mixed-strategy equilibrium in which voters

with innocent signals sometimes vote guilty. Indeed, in the limit for k < 1, the election is fully

efficient � always acquitting the innocent and convicting the guilty � if and only if the above

mixed-strategy equilibrium exists. If the defendant is guilty, proportion θ+(1−θ)σ∗ of voters vote
guilty, and if the defendant is innocent, proportion (1−θ)+θσ∗ vote guilty. Voting is efficient when
(1−θ)+θσ∗ < k < θ+(1−θ)σ∗. This holds for all values of θ > 1

2 and k < 1 when χ <
1−q
θ .

28 Note

that 1− θ < k < θ holds even when σ∗ = 0 if θ > k. That is, if a higher percentage of voters get
guilty signals than are needed to convict, guilty votes by those with innocent signals are needed.

Given that whether σ∗ > 0 is the sole determinant when k > θ of whether voting in large

elections will be efficient, it is of special note that the condition for σ∗ depends on χ but does not

depend on k. Since χ = 0 always guarantees that σ∗ > 0 when k > θ, this means that any threshold

election rule is efficient for large elections when voters are sufficiently uncursed. When χ > 1−q
θ , by

contrast, the election rule is efficient if and only if θ > k > 1
2 ; that is, the only election rules that

guarantee efficiency for sufficiently cursed voters require conviction when voters vote naively.

A general principle is that voting mechanisms matter more for cursed than uncursed voters.

Uncursed voters vote in a sophisticated manner by adjusting their behavior to whatever mechanism

they face to assure as best they can that voting is efficient. By contrast, very cursed voters who

vote based on their private information alone do not adjust their behavior to the mechanism to

achieve efficiency. An efficient mechanism with cursed voters, therefore, needs to implement the

27The intuition for this independence from χ and q depends on the fact that in a mixed-strategy equilibrium a voter
must be indifferent between voting innocent and voting guilty when she is pivotal and has an innocent signal. Recall
from an earlier footnote that a cursed voter with an innocent signal who knows he is pivotal believes that the defendant
is guilty with probability Pg ≡ (1−χ) A(σ)

A(σ)+B(σ)
+χ(1− θ) and innocent with probability Pi ≡ (1−χ) B(σ)

A(σ)+B(σ)
+χθ

, where A(σ) and B(σ) are the actual probabilities that a voter receives an innocent signal and is pivotal in the two
states. Since the voter is indifferent between voting guilty and innocent only if Pi · (−q) = Pg · (q−1), these equations
imply that σ must be such that A(σ)

B(σ)
∈ (0, 1). Intuitively, if the voter�s perceived probabilities � and, hence, the

actual probabilities � of the two states were not of the same order of magnitude, then she would strictly prefer

voting innocent or to guilty. Because A(σ)
B(σ) =

h
θ+(1−θ)σ
(1−θ)+θσ

ikM−1 h
(1−θ)
θ

i(1−k)M+1

,

lim
N≡kM→∞

A(σ)

B(σ)
= lim

N≡kM→∞

"µ
θ + (1− θ)σ
(1− θ) + θσ

¶k µ (1− θ)
θ

¶(1−k)
#M

.

That is, A(σ)
B(σ)

is a likelihood function describing the relative probability that a voter with an innocent signal is pivotal

in each of the two states; if the fraction being raised to the power M does not equal 1, then in the limit A(σ)
B(σ) is either

inÞnite or zero. In fact, σ∗ is the value of σ that such that limN=kM→∞
A(σ)
B(σ)

= 1.
28This can be proven by noting that when θ = 1, (1− θ) + θσ∗ = 0 and θ + (1− θ)σ∗ = 1, and that when θ & 1

2
,

(1− θ) + θσ∗ = θ+ (1− θ)σ∗ = k. The result is then established by showing that (1− θ) + θσ∗ is strictly decreasing
in θ and θ + (1− θ)σ∗ is strictly increasing.
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right choice when voters vote naively. This suggests, in turn, that an efficient voting mechanism

exists whenever there is a sufficiently large number of voters whose �naive preferences� depend on

their private signals, so that aggregate voting behavior depends on whether the true state is that

the defendant is guilty or innocent.

The only experimental test of the Feddersen and Pesendorfer model of which we are aware is

McKelvey and Palfrey (1998), who study the laboratory behavior of students at Cal Tech. Subjects

were assigned randomly to groups with either 3 or 6 members. Each group was assigned with equal

probability to one of two urns, the �innocent� urn with 7 innocent balls and three guilty balls, or

the �guilty� urn with 3 innocent balls and 7 guilty balls.29 Subjects did not know to which urn

their group had been assigned, but each subject privately and independently drew a ball at random

(sequentially with replacement) from her group�s urn. After observing her ball, each subject voted

either innocent or guilty. McKelvey and Palfrey�s experiment corresponds to parameter values

of µ(ωG) = µ(ωI) = .5, q = .5, and θ = .7 in the model outlined above. Different groups faced

different rules determining how their votes were aggregated into a decision. There were four different

conditions: unanimous and majority rules in 3- and 6-person juries. That is, they ran four different

combinations of M and N : (N,M) = (2, 3), (3, 3), (4, 6), and (6, 6).30 Subjects received 50 cents

if their group�s decision matched their urn and 5 cents if it did not.

McKelvey and Palfrey (1998) analyze their data using quantal-response equilibrium (QRE), both

to test how well Feddersen and Pesendorfer�s model explains behavior and to test how well QRE

explains subjects� errors. Quantal-response equilibrium posits that the subjects make mistakes with

some frequency, making a greater number of errors the less costly are those errors, but otherwise

play a best response to other subjects� behavior, taking into account the errors these others are

making.

In principle, one could deÞne a χ-cursed quantal-response equilibrium by combining a cursed

misunderstanding of the relationship between actions and signals with the error structure embedded

in quantal-response equilibrium. While we do not conduct this (complicated) analysis, we use their

results to make some crude attempt to say whether cursedness adds any explanatory power the

results.31 Subjects faced eight situations�each of the four voting rules, and each of the two possible

29We follow the authors in using the langauge of �guilty� and �innocent� in describing the experiment, although
the actual states described to the subjects were the more neutral terms �Red� and �Blue�.
30For each of these four cases, McKelvey and Palfrey ran an additional condition, which we do not analyze, in

which subjects conducted a non-binding �straw poll� before voting.
31Subjects� exhibit a statistically-unlikely greater tendency to vote guilty on an innocent signal than innocent on a

guilty signal, even in the three-voter, majority-rule case where subjects simply should vote their signals. Fom this,
we infer that there was some �spillage� among conditions in which subjects primed to vote one way in the asymmetric
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signals.32 In six of the eight contingencies�in all cases where the observed signal is γ, and in the

two majority-rule cases where the signal is ι�predicted behavior does not depend on χ. The Þrst

two lines of Table 5 supply some statistics on the two cases where does behavior depends on χ�the

voters who have received innocent signals on three- and six-member unanimous juries .

Table 5: Jury Voting (from McKelvey and Palfrey 1998)

M N s σ∗(0) σ∗(1) σ σ∗∗ Errors Cost per Error
3 3 ι .31 .00 .36 .00 36% .02
6 6 ι .65 .00 .48 1.00 52% .03
Majority/ι .00 .00 .14 .00 14% .14
All/γ 1.00 1.00 .95 1.00 5% .20

Columns 4 and 5 report the shares of voters in the Bayesian Nash and cursed equilibria who

should vote guilty, and Column 6 shows the percentage of subjects, σ, who actually voted guilty.

As can be seen, too many people voted guilty in the three-person anonymous case�the opposite of

the error predicted by cursedness. On the other hand, too few people voted guilty in the six-person

unanimous case, consistent with cursedness. Column 7 indicates how each individual subject should

have voted had she known how others were voting. Given that too many subjects voted guilty in

the three-person case, the optimal strategy for an individual voter would be to vote innocent for

sure; given that too many were voting innocent in the six-person case, the optimal strategy would

be to vote guilty for sure. Hence, Column 7 shows that 36% of subjects were voting erroneously

in the direction opposite of cursedness in the three-person case, and 52% of subjects were voting

erroneously in the direction predicted by cursedness in the six-person case, suggesting that subjects

were more prone to cursed errors than uncursed errors. For further comparison, the third row of

Table 5 lists together the other two innocent-signal conditions, indicating that only 14% of subjects

make errors in these cases. The fourth row shows average behavior by subjects getting guilty signals

in the four conditions, indicating that only 5% of subjects vote incorrectly in these cases.

Subjects make more errors in the one case where those errors are �cursed� than in any other

case. However, these error rates is complicated by the fact that some errors are costlier than others.

Column 9 shows the expected cost of each error, measured in terms of how much each error lowers

the expected likelihood of reaching the correct verdict. Since the expected cost of voting incorrectly

in the conditions represented in the last two rows is much higher than in the Þrst two conditions,

cases did so in the symmetric conditions as well (or subjects were biased towards voting for red balls over blue).
32The number of votes taking place in each of this eight situations varied between 143 and 202; in the two rows

of Table 5 where we average across conditions we take the simple average of the conditions rather than weighting by
the number of subjects.
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the lower number of errors may merely reßect their costliness rather than the uncursed nature of the

error. Yet the expected cost of voting innocent in the six-person case is greater than the expected

cost of those voting guilty in the three-person case, which suggests that the greater number of these

cursed errors cannot be fully explained by their low cost.33

An alternative method of estimating subjects� cursedness in this experiment is by computing

the maximum-likelihood estimate of χ under the maintained hypothesis that almost nobody makes

any error except cursedness. In this case, the huge number of subjects voting incorrectly in the six

cases where cursedness should not affect behavior are merely �ßukes�, and we look for the χ that

best Þts subjects� behavior in the two cases where the mixed-strategy played depends on χ. In this

case, the maximum-likelihood value of χ is .10.34 Because neither method of estimating χ is very

satisfying, and neither method yields a very high estimate of χ, we conclude that whatever support

McKelvey and Palfrey�s voting data provide for cursedness is very weak.

6 Signaling

In this section, we brießy apply cursed equilibrium to two different signaling contexts, starting with

classical simple signaling games. Because it causes the receiver to infer less from signals than she

should, it is natural to suppose that cursedness may make a high-quality type of sender unable to

separate herself from a low-quality type by sending a costly signal, and hence unwilling to send the

signal. This intuition is not, however, always valid: because a cursed receiver does not fully infer

that a sender who does not send a costly signal is a low type, cursedness may make a low type of

sender less desperate to mimic a high type and hence make the high type able and willing to reveal

herself by sending a costly signal.

To illustrate this, consider a situation where a sender is with equal probability one of two types,

t = b, (�bad�) and t = g (�good�). After learning her type, the sender can send one of two signals,

e = l (�low�) and e = h (�high�). A receiver infers the sender�s type from her signal, where epl andeph represent the receiver�s beliefs about the probability that the sender is type g following signals
l and h. After observing the signal the receiver chooses an action a ∈ [0, 1] and has utility function
33 If instead we compared the expected cost of the error conditional on being pivotal, the difference would be more

dramatic: 19% vs. 6%, rather than 3% vs. 2%.
34This solves the maximum-likelihood from the observed data in these two cases:
maxχL(χ) ≡

¡
186
67

¢
(σ∗(M = N = 3,χ))67 (1− σ∗(M = N = 3,χ))121 ·¡

186
89

¢
(σ∗(M = N = 6,χ))89 (1− σ∗(M = N = 6,χ))97
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u(a, g) = −(1 − a)2 and u(a, b) = −a2.35 Hence, a receiver with beliefs ep about the sender�s type
maximizes his expected utility −ep(1 − a)2 − (1 − ep)a2 by choosing a = epl and a = eph following
signals e = l and e = h.

We assume that there is a continuous, increasing function f : R → R and real numbers cb >

cg > 0 such that (presented in reduced form that integrates the receiver�s optimal response of a = ep)
ub = ug = f (epl) is the payoff to both types of sender if the signal l is sent, while ub = f(eph) − cb
and ug = f(eph)− cg are the payoffs to the bad and good types of sender, respectively, if the signal
h is sent. Thus, both types of sender want the receiver to believe that she is the good type; the

signal h can potentially serve as a signal because it is more costly for the bad type than for the

good type.

Because cb > cg, any separating Bayesian Nash equilibrium must involve type g sending signal

h and type b sending l. For a separating equilibrium to exist, the good type must prefer to send h,

so that f(1)− cg ≥ f(0), and the bad type must prefer to send l, so that f(1)− cb ≤ f (0). Hence,
a separating Bayesian Nash equilibrium exists if and only if cg ≤ f(1)− f (0) ≤ cb.

When is there a separating χ-cursed equilibrium? In a separating equilibrium, because a χ-

cursed receiver believes that type g sends hwith probability 1−χ
2 and type b sends h with probability

χ
2 , he forms the beliefs epl = χ

2 and eph = 1− χ
2 . Hence, a separating χ-cursed equilibrium exists if

and only if cg ≤ f(1− χ
2 )− f(χ2 ) ≤ cb. When χ = 1, f

¡
1− χ

2

¢− f ¡χ2 ¢ = f ¡1
2

¢− f ¡1
2

¢
= 0, so that

no signaling can occur when the receiver is fully cursed. Intuitively, no sender would send a costly

signal that would not affect the receiver�s beliefs.36

While fully-cursed receivers always destroy the potential for signaling, however, less extreme

cursedness can create the potential for successful signaling. Indeed, if cb < f(1)− f(0), so that no
separation can occur in a Bayesian Nash equilibrium, then because f

¡
1− χ

2

¢− f ¡χ2 ¢ is decreasing
in χ, there is some χ ∈ (0, 1) such that there is a separating cursed equilibrium. Intuitively, if
the cost of being identiÞed as the bad type is so high that the bad type prefers sending the costly

signal to being identiÞed, then full separation is not compatible with Bayesian Nash equilibrium.

If the receiver is cursed enough that the bad type is just barely willing to behave differently than

the good type, then the good type will be willing to reveal herself.

We now turn to an example of signaling that we call a �the revelation game,� modeled after

politicians who feel constrained not to lie to voters, but who do not feel constrained to reveal the
35The action a can be thought of as an investment that the receiver Þnds attractive if the sender is a good type

but unattractive if he is a bad type.
36While a separating Bayesian Nash equilibrium may not be a separating cursed equilibrium, recall that Proposition

3 demonstrates that every pooling Bayesian Nash equilibrium is a pooling χ-cursed equilibrium, for every value of χ.
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full truth. In the 1999-2000 American presidential campaign, candidate George W. Bush has said

that he has never had an extramarital affair, and that he has not used cocaine in the past 25 years.

But he refuses to say whether he used cocaine more than 25 years ago. Especially since Governor

Bush volunteered the precise number 25, fully rational voters probably should infer that Governor

Bush used cocaine 26 years ago. But what would cursed voters infer from his (non)report?

Suppose a sender is of some type t ∈ [0, 1], where t is a measure of her age the last time she
engaged in some unseemly activity. A receiver does not know t, but has uniform priors on [0, 1].

The sender chooses a message m ∈ [0, 1]∪ {S}: she either announces that she is some type in [0, 1]
or chooses S, meaning she remains silent. After observing the sender�s message, the receiver forms

beliefs about the sender�s type; let Pm(t) be the receiver�s beliefs about the probability that the

sender�s type is less than t following the message m. We assume that the receiver picks an action

a(m) ∈ [0, 1] to maximize the expectation of his payoff −(a(m)− t)2. This means that the receiver
chooses the action that coincides with his expectation of the sender�s type given her message. The

type t of sender�s payoffs are −a(m) if m ∈ {t, S} and −a(m) − c if m /∈ {t, S}. Hence, she wants
the receiver�s beliefs to be as low as possible, but she pays a cost of c if she misreports her type.

We assume that c > 1, so no sender ever has incentive to misreport her type.

The most plausible Bayesian Nash equilibrium in this game is that all types reveal themselves

fully.37 What are the cursed equilibria? Suppose the sender follows the cutoff strategy r ∈ [0, 1],
revealing her type iff t < r. A χ-cursed receiver forms beliefs χ1

2 +(1−χ)
¡

1
2 +

r
2

¢
= 1

2 +(1−χ) r2 ,
so the sender prefers to reveal whenever t < 1

2 + (1 − χ) r2 . Because the marginal type r must be
indifferent between revealing and not revealing, r = 1

2 + (1 − χ) r2 , which implies r = 1
1+χ . Such a

cutoff strategy is optimal for the sender, since types t < r prefer revealing, while types t > r prefer

pooling.

When χ = 0, r = 1, and all types reveal. The intuition is familiar: the lowest type always

prefers to reveal herself. If only the lowest types reveal, then the lowest types who are supposed

to pool will also prefer revealing, since they will have types lower than the average of all pooling

37 In fact, if we deÞned the game such that the sender cannot misreport her type, then this would be the unique
perfect Bayesian equilibrium. But because we have not deÞned cursed equilibrium for games where a player�s action
space depends on her type, we could not apply cursed equilibrium to this game. In the conclusion, we discuss some
of the problems that accompany cursed equilibrium in such games. In the game as we have deÞned it, there are other
perfect Bayesian equilibria. One is that each type of sender chooses the action S, and the receiver chooses a(S) = 1

2

and a(m) = 1 for m 6= S. In this equilibrium, no sender reveals her type because the receiver �punishes� any
announcement of the sender�s types with the extreme action a = 1. This strategy does not survive other reÞnements
such as iterated weak dominance or the intuitive criterion�the receiver should not beleive that the message m could
be sent by any type of sender other than t = m since any other type t0 6= m could do better by announcing either
m = t0 or m = S, whatever the receiver�s continuation strategy.
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types. For χ > 0, however, some types pool. Because the receiver mistakenly believes that some

types of sender who reveal pool, and that some types of sender who pool reveal, when the receiver

sees a sender who refuses to reveal her type he thinks that she has a lower type than she actually

does.

We conclude with an experiment by Forsythe, Isaac, and Palfrey (1989) that provides some

evidence for cursedness in a game very similar to the revelation game. Their game is inspired by

the American Þlm industry, where movie distributors auction the rights to show Þlms to movie-

theater operators. Forsythe, Isaac, and Palfrey report that over 90% of Þlms are auctioned off

before they are shot. Theater owners dislike this practice, possibly because they suffer a winner�s

curse on movies auctioned before being shot. Distributors privately informed about the quality of

their Þlms pre-production who are obliged to reveal quality post-production may auction off bad

movies before production and good ones after, much as in the revelation game good types reveal

while bad types conceal. In Forsythe, Isaac and Palfrey�s (1989) experiment, each of four sellers

was endowed with one unit of an object whose common value (in cents) to each of four bidders was

drawn from a uniform distribution on {1, 2, ..., 125}. Each seller knew the value of her object, but
the bidders did not. The sellers chose whether to reveal the value of their objects to the bidders or

conceal them; a seller who revealed her value had to do so truthfully. Following this, the objects

were auctioned to the bidders using Þrst-price auctions, where each buyer bid on each of the sellers�

items. Just as in the revelation game, there is a cutoff χ-cursed equilibrium where sellers with

objects valued more than r = 125χ+1
1+χ reveal their values, while sellers with objects valued less than

r = 125χ+1
1+χ conceal their values. Intuitively, low-value sellers conceal the value of their objects

because cursed bidders mistakenly think that some high-value sellers conceal, causing them to bid

too high for objects whose values are concealed. When χ = 0, all sellers (except possibly ones with

the lowest possible valuation) reveal. When χ = 1, sellers with valuations under 63 conceal, and

those with valuations above 63 reveal. Each bidder bids her expectation of the valuation of each

seller�s object, which is r for those sellers who conceal.

Forsythe, Isaac, and Palfrey ran 60 trials of this experiments with three groups of undergraduate

subjects; the Þrst group participated in 16 trials, and the second and third groups participated in

22 trials. Table 6 summarizes the data.
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Table 6: Revelation Game (from Forsythe, Isaac, and Palfrey 1989)

Group Sellers Conceal Value Conceal Bid Conceal χ

All 240 85 31 39 0.44
Experienced 120 32 23 27 0.27
Experienced* 72 12 11 19 0.17

The Þrst row of the table shows the data for all sellers. For objects whose value was revealed,

the winning bid was always approximately equal to the value of the object. Columns 2 and 3

show that 85 of 240 sellers (35%) concealed the value of their objects. For sellers who concealed,

the average value of their objects was 31, but the average winning bid was 39. Hence buyers

suffered a winner�s curse, paying an average of 8 cents more than the value of the objects they

won. There are two natural ways to estimate χ from the data, one from the average winning bid

and one from the average value of the objects concealed. Consider the data from the Þrst row

and suppose that the sellers follow a cutoff strategy�revealing when their values were high and

concealing otherwise. Then because the average value of the sellers� objects is 31, sellers would

be revealing when their objects were worth more than 61 and concealing otherwise. Then since in

equilibrium 61 = r = 125+χ
1+χ , χ ' 0.83; that is, sellers who thought that bidders were cursed with

χ = 0.83 would reveal with values over 61 and conceal otherwise. If sellers were following this

strategy, however, then cursed bidders would bid an average of 61, far more than the 39 that they

actually bid. The other method of estimating χ is to assume that cursed bidders believe that sellers

follow a cutoff strategy, and estimate χ from the average winning bid. In this case, χ ' 0.44. In
Table 6, we present estimates of χ using the second of these methods since it corresponds better to

bidder behavior as well as to seller behavior with the notable exception of a few outlying high-value

objects whose values were concealed in early rounds of the experiment: 68 of 88 sellers (77%) with

values less than 39 concealed , and 17 of 152 (11%) of sellers with values more that 39 concealed;

by contrast, only 74 of the 128 (58%) of the sellers with values less than 61 and 11 of the 112 (10%)

sellers with values greater than 61 concealed. Thus, given bidders� behavior, 37 of 240 sellers (15%)

made mistakes: the 20 with objects worth less than 39 who revealed, and the 17 with objects worth

more than 39 who concealed. In other words, those sellers whose objects were worth less than 39

and revealed had objects with signiÞcantly higher valuations than those sellers with objects worth

less than 39 who concealed.38

38 In fact, seller behavior is better described by a simple step rule: sellers with the lowest valued concealed; sellers
with intermediate values conealed half of the time; and sellers with high values revealed. 43 of 44 sellers with objects
valued less than 25 concealed, and the average value of their objects was 14; the value of the object of the lone seller
who revealed was 16. 31 of 58 sellers (53%) with values between 25 and 49 concealed, and the average value of their
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The second row of the table describes only those subjects who have already participated in 10

trials or more � trials 11 to 16 for the one group that participated in 16 trials, and trials 11 to

22 for the other two groups. 27 percent of sellers concealed the value of their objects; the average

value of these sellers� objects was 23, and the average winning bid was 27. Thus even experienced

bidders suffered a winner�s curse, albeit half of what it was in the aggregate data. Again, if cursed

bidders in these Þnal rounds believed that sellers followed a cutoff strategy, concealing if their value

was less than r and revealing otherwise, then from the data r = 27, so χ ' 0.27. Seller behavior

is very close to this as 20 of the 22 sellers (91%) with objects worth 27 or less concealed, and 12 of

98 sellers (12%) of sellers with objects worth more than 27 concealed.

Finally, because in one of the three groups a single subject won 16 of the 20 of the auctions

where the seller concealed her value, bidding an average of 35, the third row excludes this subject�s

group from the pool of experienced subjects. This time, only 17% of sellers concealed the value of

their objects. The winner�s curse is larger than for experienced subjects, as the average value of

sellers� objects was 11, while the average winning bid was 19. Thus the winner�s curse was larger.

For this group, χ ' 0.17.

7 Discussion and Conclusion

We believe that cursed equilibrium can provide insight in many additional domains. One is in

organizational and sequential decision-making, where we believe that cursedness may capture a form

of exaggerated fear that some parties may have of putting other parties in charge of decisions, under-

appreciating the fact that unanticipated future decisions by others may be based on unanticipated

information. Consider, for instance, a grand jury that must decide whether to indict some defendant

of a crime. If the defendant is indicted, the case proceeds to trial where a jury hears the evidence

and decides whether to convict the defendant. In this case, a sufficiently cursed grand jury that is

not yet convinced of the defendant�s guilt may be too reluctant to indict. This is because it fears

that the jury will convict when the defendant is innocent, even though it should realize that the

jury only convicts if it has strong evidence that the defendant is guilty. Similarly, principals in

organizations may be reluctant to delegate decisions even to parties whose interests coincide with

objects was 34; the average value of the 27 who revealed was 36. Finally, 11 of the 138 sellers (8%) with objects
worth at least 50 concealed (8%), and the average value of their objects was 88; the average value of the 127 who
revealed was 86. The fact that within each of these groups the average value of the objects of sellers who concealed
roughly equals the average value of the objects of those sellers who revealed suggests that sellers decisions to reveal
did not depend on their objects� values.
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their own out of fear that the these other parties would make different decisions than they would,

underappreciating how often those different decisions reßect superior information.39

Many applications of cursed equilibrium point to limitations and problems with the solution

concept as we have deÞned it, and we conclude by discussing some of these shortcomings and

possible extensions of the solution concept. One limitation of cursed equilibrium is that we have

only deÞned it in games where each player�s action space is independent of her type. In games

without such independence, cursed equilibrium should presumably be deÞned such that players

do not assign positive probability to a type playing an action that is impossible for that type. A

problem with this approach, however, is that a cursed equilibrium in the game where an action is

impossible for a type of a player might differ from a cursed equilibrium in the related game where

that same action is possible, but strictly dominated, for that type.

This problem, in turn, suggests a modiÞed deÞnition in which we assumed that no player thinks

that any type of any other player plays a strictly dominated action in equilibrium. More generally,

cursed equilibrium could be revised to incorporate the notion that the worse an action is for a

type, the less likely other players think that type is to take that action. Developing a new concept

incorporating this notion seems important both intuitively and for practical application, but would

raise new problems such as determining how to measure and compare how irrational a given action

is for different types of a player, and precisely how to restrict beliefs as a function of the degree of

irrationality associated with a rule. And the enterprise would be inherently limited, since the very

notion of cursed equilibrium is meant to capture limits to the degree to which people think through

the relationship between others� relevant information and their behavior.

Perhaps a more urgent direction for developing the idea of cursed equilibrium concerns a more

important limitation to our current deÞnition. The notion of cursed equilibrium is meant to capture

a general intuition that people tend to underappreciate the relationship between others� actions and

the information these others have at the time they take those actions. Yet our formal deÞnition

39To illustrate with a simple principal-agent model, let Ω = {ω1,ω2} be the set of possible states of the world,
where the principal and agent share the common prior µ(ω1) = µ(ω2) = 1

2
. If the principal invests in an experiment,

the agent learns which is the true state, otherwise the agent learns nothing about the state. Once the agent has
received his information, he chooses an action a ∈ {a1, a2, a3}. The principal and the agent share the common payoffs
u(a1,ω1) = u(a2,ω2) = 2, u(a1,ω2) = u(a2,ω1) = −2, and u(a3,ω) = 1 for each ω. That is, the agent attempts to
match action ai to state ωi, while the safe action a3 pays one in each state. Then if the agent learns the true state,
he matches his action to the state, earning a payoff of 2. If the agent does not learn the state, he chooses a1, earning
a payoff of 1. A rational principal therefore prefers that the agent learn the true state. But if the principal is cursed,
her perceived payoff from performing the experiment is (1−χ)2+χ ¡ 1

22 +
1
2 (−2)

¢
= 2(1−χ),which exceeds one only

when χ < 1
2
. Thus a sufficiently cursed principal prefers that the agent not learn the true state and hence take the

safe action, because she innappropriately fears that the �risky� action following the experiment might mismatch the
state.
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makes an artiÞcial distinction between private information represented by a type space in a Bayesian

game and private information that is not represented by the type space. In sequential games, for

instance, our deÞnition assumes that Player 3 does not fully appreciate how Player 2�s actions

depend on Player 2�s types, but does fully appreciate how Player 2�s actions depend on any actions

that Player 1 might take that Player 2 observes but Player 3 does not. We hope to move towards a

more complete notion of cursed equilibrium which allows for �cursedness� over more general types

of unobservable information that others have.40

Many other generalizations of cursed equilibrium seem important to add more realistic variation

in the degree of �cursedness� in different situations. For instance, we Þnd it intuitive that players are

less likely to ignore the informational content of given actions by other players when they have not

actually observed those actions than when they have; observing actions seems likely to induce more

strategic interpretations. This might imply that the reactions by players to the observed actions in

certain sequential games are �less cursed� than they would be in corresponding simultaneous-move

games. For example, Dekel and Piccione (2000) show in a rational model of binary voting that the

set of informative equilibria is not affected by whether voters vote sequentially or simultaneously.

While we believe the same equivalence holds with cursed equilibrium as we have deÞned in this

paper, a better model may have a cursed voter understand the relationship between other voters�

signals and votes better when she can observe their votes than when she cannot, leading to more

rational voting in the sequential than in the simultaneous-move voting procedure.

A Þnal generalization of cursed equilibrium, manifestly needed to more tightly Þt the data,

is to allow different players to be cursed to different extents. Such heterogeneity is the natural

interpretation of many of the experiments cited above, for instance; while we believe that in many

cases behavior was usefully characterized by positing a uniform χ > 0 across subjects, the behavior

would be even better described by allowing for heterogeneity.41

40The different treatment of �exogenous� and �endogenous� private information seems not only intuitively and
psychologically wrong to us, but creates some highly artiÞcial differences in predictions based on the way a game
is formally written down. In particular, insofar as a Bayesian game where one player has private information can
be rewritten as an alternative Bayesian game where a Þctitious player is added who takes actions observable by the
privately-informed player, our deÞnition of cursed equilibrium is not robust.
41 In fact, we suspect that in some circumstances heterogenous cursedness may lead to some qualitatively-different

predictions than homogenous cursedness.
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8 Appendix

Proof of Lemma 1 From Bayes� Rule,

bptk(t−k|a−k, σ−k) =
(1− χ) σ−k(a−k|t−k) + χσ(a−k|tk)P

t0−k∈T−k
¡
(1− χ)σ−k(a−k|t0−k) + χσ(a−k|t0k)

¢
p(t0−k|tk)

p(t−k|tk)

=

µ
(1− χ) σ−k(a−k|t−k)

σ(a−k|tk) + χ

¶
p(t−k|tk).

Proof of Proposition 1 Consider the alternative game (A,T, p, uχ), where (A,T, p) are all the

same, but u is replaced by

uχk (ak, a−k; tk, t−k) ≡ (1− χ)uk(ak, a−k; tk, t−k) + χ
X

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k).

The utility function of type tk of Player k is the χ-weighted average of her actual utility function

and her �average utility function�, averaged over all possible types of her opponents. σ is a Bayesian

Nash equilibrium of G
χ
if for each Player k and each type tk ∈ Tk, and each a∗k such that σk(a∗k|tk) >

0,

a∗k ∈ arg max
ak∈Ak

X
t−k∈T−k

pk(t−k|tk)
X

a−k∈A−k
σ−k(a−k|t−k)uχk (ak, a−k; tk, t−k)

= (1− χ)
X

t−k∈T−k
pk(t−k|tk)

X
a−k∈A−k

σ−k(a−k|t−k)uk(ak, a−k; tk, t−k)

+χ
X

t−k∈T−k
pk(t−k|tk)

X
a−k∈A−k

σ−k(a−k|t−k)
X

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k).

But

χ
X

t−k∈T−k
pk(t−k|tk)

X
a−k∈A−k

σ−k(a−k|t−k)
X

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k)

= χ
X

a−k∈A−k

X
t−k∈T−k

pk(t−k|tk)σ−k(a−k|t−k)
X

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k)

= χ
X

a−k∈A−k

X
t−k∈T−k

pk(t−k|tk)uk(ak, a−k; tk, t−k)σ−k(a−k|tk)

= χ
X

t−k∈T−k
pk(t−k|tk)

X
a−k∈A−k

σ−k(a−k|tk)uk(ak, a−k; tk, t−k),

and hence X
t−k∈T−k

pk(t−k|tk)
X

a−k∈A−k
σ−k(a−k|t−k)uχk (ak, a−k; tk, t−k) =X

t−k∈T−k
pk(t−k|tk)

X
a−k∈Ak

[χσ−k(a−k|tk) + (1− χ)σ−k(a−k|t−k)]uk(ak, a−k; tk, t−k).
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Thus if σ is a Bayesian Nash equilibrium of G
χ
, it is also a cursed equilibrium of G. Because G

χ

is Þnite, it has a Bayesian Nash equilibrium, and so G has a cursed equilibrium. ¤

Proof of Proposition 2 If each type tk of each player k�s expected payoff from playing ak when

the other players play a−k in the χ-virtual game G
χ
is independent of χ, then the result follows since

the set of Bayesian Nash equilibria of G
0
= G coincides with the set of Bayesian Nash equilibria of

G
χ
, which by Proposition 1 is the set of χ-cursed equilibria of G. Hence it suffices to show thatX

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k)

=
X

t−k∈T−k
pk(t−k|tk)

X
t−k∈T−k

pk(t−k|tk)uk(ak, a−k; tk, t−k)

The second expression can be rewrittenX
t−k∈T−k

pk(t−k|tk)
X

t−0k∈T−0k

pk(t−0k|tk)
X
t0∈T0

pk(t0|tk, t−0k)uk(ak, a−k; t0, tk, t−0k)

=
X

t−k∈T−k
pk(t−k|tk)

X
t0∈T0

pk(t0|tk, t−0k)uk(ak, a−k; t0, tk, t−0k)
X

t−0k∈T−0k

pk(t−0k|tk),

since E [uk(ak, a−k; t0, tk, t−0k)|tk, t−0k] is independent of t−0k. Hence, the expression simpliÞes to

=
X

t−k∈T−k
pk(t−k|tk)

X
t0∈T0

pk(t0|tk, t−0k)uk(ak, a−k; t0, tk, t−0k)

=
X

t−0k∈T−0k

pk(t−0k|tk)
X
t0∈T0

pk(t0|tk, t−0k)uk(ak, a−k; t0, tk, t−0k)

=
X

t−k∈T−k
pk(t−k|tk)uk(ak, a−k; tk, t−k)

as desired. ¤

Proof of Proposition 3 Suppose that σ is strategy proÞle such that for each Player k there exists

some ak ∈ Ak such for each tk ∈ Tk σ(ak|tk) = 1. Then

σ−k(a−k|tk) ≡
X

t−k∈T−k
pk(t−k|tk)σ−k(a−k|t−k) = σ−k(a−k|t−k)

X
t−k∈T−k

pk(t−k|tk) = σ−k(a−k|t−k),

since σ−k(a−k|t−k) does not depend on t−k. If σ is a χ-cursed equilibrium, then ak maximizesX
t−k∈T−k

pk(t−k|tk) ·
X

a−k∈A−k
[χσ−k(a−k|tk) + (1− χ)σ−k(a−k|t−k)]uk(ak, a−k; tk, t−k)

=
X

t−k∈T−k
pk(t−k|tk) ·

X
a−k∈A−k

σ−k(a−k|t−k)uk(ak, a−k; tk, t−k),
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which does not depend on χ. Therefore, whatever χ, ak maximizes Player k�s expected payoff given

that players j 6= k play σ−k(a−k|t−k), so σ is a χ-cursed equilibrium for every χ ∈ [0, 1]. ¤
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