
ELSEVIER 
Journal of Economic Dynamics and Control 

21 (1997) 739-752 

Chow’s method of optimal control: 
A numerical solution 

Yum K. Kwan”, Gregory C. Chow*vb 

“Hong Kong University of Science and Technology. Clear Water Bay, Hong Kong 

bDepartment of Economics, Princeton University Princeton, NJ 08544, USA 

Keywords: Dynamic optimization; Lagrange method 

JEL classification: C61; C63 

1. Introduction 

We are indebted to Michael Reiter (1996) for pointing out possible shortcom- 
ings of an algorithm suggested by Chow (1993) in solving dynamic optimization 
problems. The main purpose of Chow (1993) was to suggest that dynamic 
optimization problems can be more conveniently solved by the method of 
Lagrange multiplier than by dynamic programming, from both the analytical 
and the computational points of view. The former method provides a set of 
first-order conditions for determining the optimal control function and the 
Lagrange multiplier; the latter involves solving the Bellman equation for the 
value function, which is bypassed when the former method is used. This major 
point was not challenged by Reiter (1996). Reiter (1996) examines a particular 
numerical implementation in solving the first-order conditions for the control 
function and the Lagrange function. A suggestion of Chow (1993) was to 
approximate the (vector) optimal control function u(x) and the associated 
(vector) Lagrange function n(x) by linear functions about any value xI for which 
we need to evaluate the optimal control function. The first-order conditions 
are then linearized at xt and solved for the parameters of the two linear 
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functions. These parameters differ according to the point x, chosen for the 
linearizations. 

If the linearization are performed only at the steady-state values (X, U, X) of the 
variables which solve the deterministic version of the optimal control problems, 
as done in Eqs. (6)-(9) below, the resulting linear optimal control function can 
serve as a (globally) linear approximation to the optimal control function. Chow 
(1993) suggested performing the linearizations at each value x, for which one 
needs to evaluate the optimal control function and using the resulting linear 
control function as an approximation of the optimal control function in the 
neighborhood of xt. By examples, Reiter (1996) correctly points out the possibly 
poor performance of this approximation. The reason for possibly poor perfor- 
mance is that the first-order conditions apply to the two functions u(x) and n(x) 
globally. When one approximates these functions by linear functions locally at 
x,, the approximations may be poor for the global optimal control functions and 
the Lagrange functions which are supposed to satisfy the first-order conditions. 
In this note, we provide a numerical method to solve the first-order conditions 
provided in Chow (1993) for the optimal control function and the Lagrange 
function. 

2. Galerkin solution 

The problem is to find an optimal feedback control rule U(X) solving the 
stochastic dynamic optimization programme: 

m 

max E, e-p(r-t) r(x(z), u(z)) dz = V(x(t)) 
” (1) 

subject to 

dx =f(x, u) dt + S(x, u) dw, (2) 

where x(t) is a p x 1 vector of state variables, u(t) is a q x 1 vector of control 
variables, p is a discount rate, E, is the conditional expectation operator given 
information at time t which includes x(t), w(t) is a vector Wiener process with 
identity covariance matrix, r(x, u) a differentiable and concave utility function, 
both f and S in the stochastic differential equation (2) are differentiable; the 
covariance matrix of S(x, u) dw equals S(x, u) S(x, u)’ dt = Z(x, u) dt, and V(x) is 
the value function defined by (1). 

As an alternative to stochastic dynamic programming, Chow (1993) suggests 
a Lagrange method which converts the problem into solving a set of functional 
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equations for the feedback control function, u(x) = (ui (x), u*(x), . . . ,u,(x)), and 
a vector Lagrange multiplier function A(x) = @i(x), n,(x), . . ,&(x)): 

+~tr[$($)Z]+~tr[~~]. i=l,2, . . ..p. (3) 

& aft 
~~+~~+~tr g.E =O, 

( ) 
i = 1,2, . . . ,q. 

I 1 I 
(4) 

In operator notation the system in (3)-(4) can be compactly written as 
R(g) = 0, where g = (u, A) E Y, and Y is a function space, R: Y + Y is an 
operator; and the zero on the right-hand side is interpreted as the zero function. 
A standard approach to solving functional equation is to convert the infinite- 
dimensional problem into a sequence of finite-dimensional subproblems from 
which one obtains a corresponding sequence of approximate solutions that 
converge to the solution of the original problem. Let Y, be a finite-dimensional 
subspace of Y. For example, if Y is the space of continuous functions, Y. may be 
the space of polynomials of degree n. Unfortunately, there is, in general, no 
discrete solution gn E Y,, that solves the functional equation exactly, but rather 
the discrete solution generates an error or residual, R(g,,) # 0, even though Y, 
may converge to Y. A general approach is to find gn that makes a projection of 
the residual vanish; and different projections lead to different methods. The 
Galerkin method is characterized by an orthogonal projection while the collo- 
cation method is characterized by an interpolation which is also a projection 
onto a subspace. We refer the readers to Hackbusch (1995, pp. 75-110) and 
Baker (1978, pp. 719-754) for details and proofs; and also Judd (1992) for a lucid 
exposition. 

We now briefly describe the Galerkin method. To this end it is necessary to 
introduce some notations. Let Y be a Hilbert space with inner product (f, g), 
and P,: Y + Y, be an orthogonal projection operator, i.e. P. P, = P, and 
(ef; g) = (f; P,g) (self-adjoint); also assume {@r, i = 1, 2, . . . , n} forms a basis 
in Y, so that there exists representation gn = cr,@, + a& + .s. + a,@,,. The 
Galerkin method requires the projected residual to vanish, i.e. find gn such that 
P,R(gJ = 0. Taking inner product with ~j we may write (P,R(g,), @j) = 
(0, @j) = 0. The left-hand side can be written as 
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(5) 

=(R(~la,Oi)*@j)=O~ j=l,2, . . ..n. 

The last line of (5) gives an algebraic equation system to be solved for 
@l,E(Z, *.. , a,, which determines the Galerkin solution. 

The equation system in (5) is usually nonlinear and has to be solved by an 
iterative method. It is.important to have a good starting value for the nonlinear 
equation solver. In our application, we use as the starting value a linear approxi- 
mate solution obtained by linearizing the first-order conditions (3)-(4) around 
steady state. Since the linear solution is of independent interest and may be 
adequate for many purposes, we will describe the method in detail in the next 
section. 

3. Linearizing first-order -conditions 

This solution is obtained by assuming certainty equivalence (i.e. setting 
S(x, u) = 0) and solving a linearized version of the deterministic first-order 
conditions. The linearization is to be performed around the steady state (2, U, 1) 
which satisfies the first-order condition 

~(Jz,P)++)x=o, i=f(X,ii)=O. 

Given thersteady state, one then linearizesf and the partial derivatives: 

ar ar 
y-& = &‘(Z, ii)-tK,,(x - 2) + K& - ii), 

; = g (cqji-4) t KZl(X - %) + K&4 - ii), 

j-= j-(2, ii) + 44(x - Z) + C(u - ii). 

Let 

1EX-2, izZU-ii, XGI-XSHH~. 

(6) 

(7) 

(8) 
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Eqs. (6)-(8) imply a set of linearized first-order conditions: 

p H? = K1 lx” + K,,u’ + A’ HZ + H(AI + cc), 

K,,I + K& + C’ Hx” = 0. (9) 

Define 

The first-order conditions can be further simplified to 

pHZ=R1lI+~Hx”+H(al+Cu^), K,,u*+C’HZ=O. (11) 

The second equation in (11) gives 

ii = - K,-,‘C’ Hf = &. (12) 

Substituting (12) into (11) and equating coefficients, we obtain an algebraic 
Riccati equation well known in linear control theory (Kwaternaak and Sivan, 
1972): 

pH=I?,,+~‘H+Hk-HCK,;‘C’H. (13) 

In summary, we obtain approximate linear solution by the following steps: 
1. Iterating (13) until convergence to obtain H. This gives 

X=HZ, 

or 

l=h+Hx, h=X-HZ 

2. Compute G = - K,;‘C’H. This gives 

u = ii - K2;1Kz1 x” = (6 - K;;K&f E G1, 

or 

u=g+Gx, g=I--GZ. 

(14) 

(15) 
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4. Optimal growth model 

As an example we are going to obtain a numerical solution to the neo- 
classical growth model 

(16) 

subject to 

k = k(t)” - 6 k(t) - c(t), k(0) given. (17) 

The state and control are (per capita) capital stock, k(t), and consumption, c(t), 
respectively. With state and control so defined, the first-order conditions (3)-(4) 
become 

p3,=(ak”-‘-6)A+~‘(k=6k-c), c-“-,4=0. W) 

One can in principle apply Galerkin method directly to find c(k) and I(k), 
both represented as polynomials in k. In practice, however, it is necessary to 
transform variables appropriately so as to enforce sign constraints and achieve 
better numerical stability when solving the Galerkin projection equations. To 
enforce positivity on c and 1 as indicated by the second equation in (lg), and also 
facilitate the use of Hermite polynomials as basis functions (to be discussed 
below), we transform variables as 

x = In(k), u(x) = ln(c(k)) - x, 4(x) = In@(k)) + (TX, (19) 

and thus, 

4’(x) = i exp(x) + fl. (20) 

The first-order conditions can now be written as 

- au-c#J=O (21) 

a exp((o! - 1)x) - (6 + p) + (4’ - a) {exp((a - 1)x) - 6 - exp(u)} = 0. (22) 

Eqs. (21)-(22) is a functional equation system to be solved for u(x) and 4(x). 
To apply Galerkin method one has to choose a family of basis functions from 

which a series representation of the solution can be constructed. For example, 
polynomials form such a family. In practice, however, the accuracy of 
the solution will depend heavily on the numericat condition of the algebraic 
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equation system in (5). An ill-conditioned system manifests in numerical insta- 
bility and non-convergence of the nonlinear equation solver. The numerical 
condition of the equation system deteriorates quickly when an ordinary poly- 
nomial is used, and the problem is especially serious in this example as the state 
space is the whole real line. It is known that an orthogonal polynomial is far 
more stable numerically and is thus preferred to an ordinary polynomial as basis 
function. In our application we use the family of Hermite polynomials {Hk(x), 
k = 0, 1, 2, . . } whose numbers are mutually orthogonal with respect to the 
inner product 

s 

+m 

as> = fW(4 ewt - x2) dx. (23) 
--oo 

The explicit expression for Hermite polynomial is complicated and inconvenient 
to use. In practice, we use a three-term recurrence relation to generate the 
polynomial and its derivatives. The relevant formula can be found in Davis and 
Rabinowitz (1984, p. 41) 

H,+,(x) = 2x&(x) - 2nH,_,(x); Ha = 1, HI = 2x. 

Further numerical efficiency can be achieved by enforcing the steady-state 
condition on the solution. We thus write the control function and the Lagrange 
multiplier as 

u(x) = a0 + i &C&(X) - J&(W, 4(x) = bo + i bkCfb(X) - Hk(X)l. 
k=l k=l 

(24) 

By construction the two intercept terms should be the steady state of the control 
and Lagrange multiplier, respectively, and thus the number of unknown para- 
meters in each expansion can be reduced by one if such restriction is imposed. 
One can also let the two intercepts remain free and check if they approach the 
corresponding steady states as the degree of polynomial goes up. This will 
provide a convergence check of the numerical method. 

Let Ri(U, b; x), i = 1,2, be the left-hand side of (21)-(22) after substituting (24); 
and a and b denote, respectively, the vector of unknown coefficients in the 
polynomial expansions. The Galerkin projections can be written as 

s 

m 
Ri(U, b; X)Hk(X) exp( - x’) dx = 0, i = 1,2; k = 0, 1, . . . ,n. (25) 

-CC 

We use the nonlinear equation solver NLSYS in GAUSS to solve (25) for the 
2(n + 1) unknowns in vectors a and b. It is important to provide good starting 
value for the nonlinear equation solver. A good candidate is the linear approx- 
imate solution obtained by linearizing first-order conditions as described above. 
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Finally the integral in (25) admits no analytical expression and has to be 
evaluated numerically. We find it adequate to evaluate the integral by an 8-point 
Gauss-Hermite quadrature rule. 

Table 1 reports polynomial solutions up to degree 6 with model parameter 
(a, p, 6, a) = (0.4,0.05,0.025,0.5). Notice that the two intercept terms indeed 
approach the corresponding steady states as the degree of polynomial goes up. 
This indicates that the discrete solution is convergent. The column labeled by 
‘linear’ is the linear approximate solution obtained by linearizing first-order 
conditions. Panel C of the table reports the residual norms given a solution, 
which should be identically zero if the solution is exact. Comparing the residual 
norms, we see that the Hermite polynomial solutions are more accurate than 
linear approximation. Notice that the intercept term of the linear solution is 
precisely the steady state. This is because we have written the linear solution in 
the form as in (24) to be compatible with other columns. This can be checked by 
noting that H,(x) = 2x and using the formula in (15). Figs. 1 and 2 depict the 
control function and the Lagrange multiplier function, with both axes measured 
as deviation from the steady state, so that both functions pass through the 
origin. As can be seen, the gap between the linear solution and polynomial 
solution widens as we move away from the steady state. Figs. 3 and 4 depict the 
same functions from the model with the parameter cr changed to 3. 

5. Endogenous growth model 

Our second example is taken from Reiter (1996) which can be regarded as 
a stochastic version of the so-called ‘AK model’ in the endogenous growth 
literature as in Barro (1990) and Rebel0 (1991) among many others. The model is 

I(X, u) = uy, f(x, U) = 8x - u, S(x, u) = xcr, 0 < y < 1 and 70 < p. 

(26) 

with exact solution 

u(x) = 
[ 

P--l@ 1 
- 
1-Y 

+y2y x 1 
and value function 

y-1 
V(x) = 

[ 

P--Ye 1 
- 
1-Y 

+ y2y 
1 

xy. 

(27) 

(28) 

In the endogenous growth interpretation, u and x are per capita consumption 
and capital stock, respectively; and 8x is a production function which is linear in 



T
ab

le
 

1 

O
pt

im
al

 
gr

ow
th

 
m

od
el

 

L
in

ea
r 

D
eg

re
e 

1 

Pa
ne

l 
A

: 
C

on
tr

ol
 

fu
nc

tio
n 

D
eg

re
e 

2 
D

eg
re

e 
3 

D
eg

re
e 

4 
D

eg
re

e 
5 

D
eg

re
e 

6 

-1
.8

17
07

7 
- 

1.
80

60
86

 
-0

.2
97

35
0 

-0
.0

45
11

1 
O

.o
oo

oo
O

 
O

.O
lX

lO
O

O
 

O
.O

W
O

O
O

 
O

.O
O

O
O

O
O

 
O

.W
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.o

oo
oo

O
 

O
.W

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

G
O

O
O

O
 

Pa
ne

l 
B

: L
ag

ra
ng

e 
m

ul
tip

lie
r 

fu
nc

tio
n 

- 
1.

81
69

54
 

-1
.8

16
93

9 
- 

1.
81

70
73

 
- 

1.
81

70
74

 
- 

1.
81

70
77

 
-0

.0
69

12
6 

-0
.0

69
38

3 
-0

.0
67

86
1 

- 
0.

06
79

02
 

- 
0.

06
80

08
 

0.
00

23
24

 
0.

00
23

77
 

0.
00

18
94

 
0.

00
19

12
 

0.
00

19
68

 
O

.O
O

O
O

O
O

 
-0

.O
O

O
O

O
3 

0.
00

00
61

 
0.

00
00

58
 

0.
00

00
42

 
O

.o
oo

oo
O

 
-o

.o
oo

oo
o 

- 
o.

O
O

O
O

O
3 

- 
o.

O
oO

O
O

3 
-0

.O
O

O
O

O
Q

 
O

.O
O

O
O

M
l 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

- 
o.

oo
oo

oo
 

-O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.o

oo
oo

O
 

O
.O

O
W

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

0.
90

85
39

 
0.

90
30

43
 

0.
90

84
77

 
0.

90
84

70
 

0.
90

85
36

 
0.

90
85

37
 

-0
.1

68
55

0 
0.

02
25

55
 

0.
03

45
63

 
0.

03
46

91
 

0.
03

39
31

 
0.

03
39

5 
1 

O
.O

O
W

O
O

 
O

.O
O

C
O

O
O

 
-0

.0
01

16
2 

-0
.0

01
18

8 
- 

0.
oo

o9
41

 
-0

.0
00

95
6 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

o.
O

O
O

O
O

2 
-0

.O
O

oO
31

 
-0

.0
00

02
9 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
C

K
l 

o.
O

O
O

O
O

2 
o.

O
oO

O
O

O
1 

O
.W

W
O

O
 

O
.C

Q
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
O

O
 

O
.O

O
O

O
M

 
O

Sl
O

O
O

O
O

 
O

.o
oo

oo
O

 
W

O
O

O
oO

 

Pa
ne

l 
C

: 
R

es
id

ua
l 

no
rm

 

0.
90

85
39

 
0.

03
40

04
 

- 
0.

00
09

84
 

-0
.0

00
02

1 
O

.O
O

O
O

O
O

 
O

.o
oo

oo
O

 
-O

.O
O

O
O

O
O

 

5.
97

26
e-

01
 

3.
46

04
e-

02
 

1.
46

19
e-

14
 

1.
68

73
e-

03
 

3.
97

67
e-

13
 

2.
49

87
e-

05
 

3.
67

23
e-

13
 

2.
65

 17
e-

05
 

2.
41

99
e-

15
 

l.O
60

1e
-0

6 
1.

48
78

e-
16

 
7.

80
21

e-
07

 
1.

38
86

e-
16

 
2.

75
47

e-
08

 

T
he

 r
ow

s 
in

 p
an

el
 A

 a
nd

 B
 a

re
, 

re
sp

ec
tiv

el
y,

 
th

e 
co

ef
fi

ci
en

ts
 

(a
,,,

 a
,, 

. .
 , a

6)
 an

d 
(b

,, 
b,

 , 
, b

s)
 o

f 
th

e 
po

ly
no

m
ia

l 
ex

pa
ns

io
ns

 
in

 (
24

).
 

? 2 



748 Y.K. Kwan. G.C. Chow / Journal of Economic Dynamics and Control 21 (1997) 739-752 

Control function 

- ---_ 
---_ 

---_ -- 

-0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 1. D = 0.5. Solid = linear approximation, Dashed = Hermite polynomial solution. 

capital stock. Without S(x, u) the state transition equation will be the capital 
accumulation equation with a zero depreciation rate. The first-order conditions 
(3)-(4) become 

(e - p)l + x {(e + a2) - u} + +A”x2a2 = 0, (29) 

YU 
v-1 -1=o. (30) 

As we have discussed above it is important to define state and control 
appropriately in order to obtain accurate numerical solution. In view of (30) we 
redefine state and control and transform the Lagrange multiplier as follows: 

Y = ln x, V(Y) = in(W) - Y, NY) = W(x)) - (Y - 1)~. 

Then 

4’ = exp(y) G, 4” = exp(2y) g - (4’ + y - l)(f$’ + y - 2). 

(31) 

(32) 
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* 
d 

Lagronqe multiplier 

d 

0 
d- -- 

___--- -- 

_--- 
_- 

I _--- 

d- 
I 

e 
da ( ’ ” m ” ” ” “I’ 1 ” * 
I -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2. u = 0.5. Solid = linear approximation, Dashed = Hermite polynomial solution. 

Thus, the first-order conditions can be written as 

(0 - p)J + (4’ + y - l){p + g2 - exp(v)) 

+ $0’ {@’ -I- (f#I’ + y - l)(@ + y - 2)) = 0, (33) 

In(r) + (y - 1)v - 4 = 0, (34) 

Eqs. (33) and (34) can be solved analytically. Consider linear solution of the form 
u = g + Gx and 4 = h + Hx. The two equations can be written as 

(e - p) + (H + y - l)@ + 02) + 90” (H + Y - l)W + Y - 2) 

- (H + y - 1) exp (g + Gy) = 0, (35) 

{In y + (y - 1)g - h) + {(y - l)G - H}y = 0. (36) 
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Control function 

-t 
6 

l-4 

d 

0 
d- 

I 

N 

d- 
I 

t 
d- 

I 

In 

d 
I -0.0 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1 .o 

Fig. 3. u = 3. Solid = linear approximation, Dashed = Hermite polynomial solution. 

The functional equation system (35)-(36) is meant to hold for all conceivable 
y so that all coefficients associated with y must be zero. Thus, we have 

h = In y + (y - l)g, H = (y - l)G, G = 0. (37) 

Setting H = G = 0 in (36) and solving for g, we obtain the exact solution which 
can be checked by taking log in (27) and using the definition in (31). 

Table 2 reports Hermite polynomial solutions with model parameter 
(y, p, 0, a) = (0.5,0.5,0.3,0.01). As can be seen, the numerical solutions are 
accurate up to 6 digits. The numerical computation also reveals that it is 
extremely important to define state and control having a steady state. For 
example, if the control variable is defined as In(u) rather than In(u) - y, the 
numerical solution is unstable and very sensitive to initial guess, even though 
one can still obtain the exact solution by solving the first-order conditions 
analytically. In this example of endogenous growth the transformations in (31) 
amounts to detrending along the balanced growth path. This can be checked by 
differentiating the current value Hamiltonian of the deterministic version of the 
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Fig. 4. u = 3. Solid = linear approximation, Dashed = Hermite polynomial solution 

Table 2 
Endogenous growth model 

Exact Degree 1 Degree 2 Degree 3 Degree 4 

Panel A: Control function 

-0.356639 -0.356639 
O.OOOOOO O.OOOOOO 
O.OOOOOO O.OOOCQO 
O.Oi%OO O.oooooO 
O.OOOOOO O.OOOOOO 

Panel B: Lagrange multiplier function 

-0.514828 -0.514828 
O.OOOOOO -o.OOOOOO 
O.OOOOOO O.OOOOOO 
O.OOOOOO O.OOOOOO 
O.OO4)OOO O.OOOOOO 

Panel C: Residual norm 

O.OOOOOO 3.11542e-14 
O.OOQOOO 1.7803&-08 

-0.356637 
- o.OOOOO2 

O.OOCQOO 
O.OOWOO 
O.OOOOOO 

-0.514829 
O.OOOOOl 

-o.OOOOOO 

2.25596e-12 
8.12218e-07 

-0.356632 
- 0000005 

O.OOOOOl 
O.oOOOOO 
OSIOOOOO 

-0.514831 
o.OOOOO3 

-0.OOOOOo 
-o.OOOOOO 

O.OOOOOO 

2.98192e-12 
2.63448e-06 

-0.356640 
O.OOOOOO 

-0IrOOOOO 
0.000000 

-0.OOtxlO8 

-0.514827 
-O.OOOOOO 

O.OOOOOO 
-o.OOOOoo 

O.OOOOOO 

6.81953e-14 
6.81631e-08 

The rows in panel A and B are, respectively, the coefficients (co, a,, , a4) and-(&, b,, . . . , b.+) of the 
polynomial expansions in (24). 
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problem. Along the balanced growth path, it can be shown that 

ti i1 -=- 
U 

x’j=(Y-l);. (38) 

thus, suggesting the detrending scheme in (31). 
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