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Abstract

The standard economic model of decision making assumes a decision maker makes her choices
to maximize her utility or happiness. Her current emotional state is not explicitly considered.
Yet there is a large psychological literature that shows that current emotional state, in particular
positive a¤ect, has a signi…cant e¤ect on decision making. This paper o¤ers a way to incorporate
this insight from psychology into economic modeling. Moreover, this paper shows that this
simple insight can parsimoniously explain a wide variety of behaviors.
Keywords: A¤ect, morale, emotion.
JEL: B41, D99, C70, C73, D81.

1 Introduction

A moment’s introspection will convince most people that their decisions are in‡uenced, in part, by
their mood. For instance, the decisions we make when happy are not always the same as those we
make when unhappy. Nor is this merely an impression: There is a large psychological literature
based on experiments that …nds a relationship between a¤ect—what non-psychologists might call
mood, emotions, or feelings—and decision making (see Isen, 1999, for a survey). In particular,
this research shows that relatively small changes in positive a¤ect—what a lay person might call
happiness and what an economist might call utility—can markedly in‡uence everyday thought
processes and that such in‡uence is a common occurrence. Economic modeling of decision making
and game playing has, however, essentially ignored the role of a¤ect. The purpose of this paper
is to make amends. In particular, we seek to demonstrate that the addition of a¤ect allows us to
explain a wide variety of decisions and observed behaviors that are di¢cult to explain under the
standard economic paradigm and to do so within a single, simple framework.

A common reaction by economists to the introduction of psychological insights into economics
is that it means abandoning or relaxing the standard assumption of rationality. While it is true that
many such attempts have had that ‡avor (see, e.g., discussions in Lewin, 1996; Rabin, 1998; Elster,
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1998), our approach does not. In particular, the actors in our models are completely rational—they
make their decisions to maximize the (discounted) value of their utility ‡ow. What distinguishes
our approach from the traditional model of decision making is that we assume that current positive
a¤ect or utility in‡uences preferences going forward. For instance, consistent with experimental
evidence (Isen and Levin, 1972), positive a¤ect tends to increase a person’s willingness to aid others;
that is, an increase in mood either increases an individual’s pleasure from helping or lowers the
psychic cost of helping. More generally, the happiness or utility level at the time of decision making
a¤ects preferences, which then a¤ects the decision made.

In a one-shot setting, such a change in modeling assumptions would be di¢cult to distinguish
from the more usual assumption of …xed preferences. Moreover, in a one-shot setting, why a person
holds certain preferences over others is not, generally, an interesting question in economics. On
the other hand, if we consider dynamic settings, then a¤ect becomes much more important: A¤ect
at the beginning of a period in‡uences preferences, which determine decisions, which modify the
a¤ective state at the end of the period, which then becomes the relevant a¤ect at the beginning
of the next period, and so on. In other words, if ut denotes a¤ect (possibly a multi-dimensional
variable) at the end of period t and xt denotes a vector of decisions made in period t, then we have
the dynamic:

ut = U (xt;ut¡1) ,

where U is a function that recognizes that period-t preferences are determined, in part, by a¤ect
at the beginning of the period. As we will show, primarily through examples, such dynamics can
explain interesting aspects of people’s decision making and how they play certain games.

A nice feature of this model is that, although simple, it can encompass a wide range of behaviors.
As we will demonstrate, it can, for instance, explain why employers want to hire “happy” workers,
workers with “good attitudes,” and why they want to take actions that boost morale. It can
reconcile rational decision making with the apparent paradox of people eschewing behaviors that
correlate with happiness (e.g., socializing, becoming sober, etc.). It o¤ers insights into why moods
tend to be persistent and why, for example, pharmacological intervention can be necessary in
treating the depressed. It even explains why, in common-interest situations, players try to boost
each others’ morale and why, in opposing-interest situations, players try to demoralize each other.
It also provides a single alternative explanation for behavior that has been explained by a wide
variety of assumptions: for example, increased incentives from raising …xed wages (i.e., a result
resembling e¢ciency wages), seemingly fair or cooperative play in …nitely repeated games, and
cooperative play without punishment strategies in in…nitely repeated games.

As Elster (1998) points out, reference to moods and other emotions in economics is rare. When
such reference is made, it’s usually to make sense of some behavior that seems inconsistent with
narrow self interest. For example, honesty in situations where dishonesty would appear to have
a larger payo¤. If detection is possible, even if not assured, then honesty can be rationalized by
assuming that it will be punished with su¢cient severity to make the expected utility from being
dishonest less than the utility from being honest. But there are many situations in which detection
is impossible, or so unlikely, that even the most severe allowable punishment couldn’t be a deterrent.
In such cases, economists have typically “rationalized” honesty by appealing to the cost of guilt
(see, e.g., Becker, 1976; Frank, 1988). Observe, however, that this approach considers only the
emotional consequences of actions. Decision making is, thus, a¤ected only by the anticipation of
those consequences. In contrast, our model also has the reverse feedback: Having triggered certain
emotions, those emotions will a¤ect decision making going forward. That is, for instance, a guilty
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person will behave di¤erently from a person who doesn’t feel guilty (e.g., in search of atonement,
the former may donate more to charity than the latter).

Two recent papers in economics (MacLeod, 1996; Kaufman, 1999) have, like us, worried about
the e¤ect of emotional state on decision making. They di¤er from us in that they are interested
in modeling the adverse consequences of emotional state on cognitive abilities.1 In contrast, our
actors enjoy normal cognition, and we consider the e¤ects of normal, everyday mild emotional states
or feelings. To be sure, we are certainly sympathetic to the view that extreme emotional state
can a¤ect cognitive ability,2 but is worth exploring how emotional state a¤ects behavior without
departing from the rational-actor paradigm. Moreover, there is a substantial body of evidence (see
Isen, 1999) that at least some a¤ective states (e.g., positive a¤ect) in‡uence behavior without
diminishing cognitive ability.3

Another strain of the economics literature focuses on “rationalizing” emotions; in particular,
to explain why evolutionary forces may have produced them (see, e.g., Frank, 1988; Romer, 1999).
Under the supposition, consistent with the fossil record on brain cases (see, e.g., Johanson, 1996),
that our homonid predecessors had less cognitive ability than we do, the case can made that there
was some advantage to “hardwiring” certain responses. For example, Romer notes that people
(like rats) exhibit nausea aversion: If we su¤er nausea—for whatever reason—within a short time
after eating a particular food, we become averse to that food. For a species with limited cognitive
ability, this would seem to be a good way to “learn” what foods are harmful. In contrast, although
there is an obvious appeal to such evolutionary theorizing, we do not seek to explain why people
have emotions. We take the existence of emotions as given. Our question is what do they in‡uence
when it comes to decision making?

The idea that decisions in one period can a¤ect well-being in future periods is a well-known
one in economics. The most common formulation of this is in consumption-savings models, where
increasing the level of consumption today reduces possible consumption tomorrow. Such “choice-
set” e¤ects are absent here—the choice set remains constant over time in our models.4 In addition,
the intertemporal linkage in our model runs solely through a¤ect. In particular, a¤ect, ut, at time
t is a su¢cient statistic for predicting future a¤ect levels. Among other implications, this means
that there is no direct e¤ect of an individual’s past behaviors (decisions) on her future behavior: If
consumption paths fx¿gt¿=1 and fx0¿gt¿=1 both get the individual to a¤ect level ut, then behavior
thereafter will be the same. Consequently, this paper di¤ers from the habit-formation literature
(see, e.g., §4.4 of von Auer, 1998, for a survey), which assumes that the present utility function

1MacLeod turns to emotions to justify his model of heuristic problem solving versus the standard optimization
techniques that economists typically model decision makers as using. He argues, based on clinical observations of
brain-damaged individuals reported in Damasio (1995), that people’s heuristic problem-solving abilities are tied to
their emotions. MacLeod does not, however, consider how di¤erent emotional states a¤ect decisions, as we do.
Kaufman, building on solid, but preliminary, work in psychology (e.g., Yerkes and Dodson, 1908), suggests that
emotional state can enhance or inhibit cognitive function: People who are completely uninterested in a problem or
who are panicked over it are less able to solve it (or solve it less e¢ciently or e¤ectively) than people exhibiting less
extreme emotions.

2See Ashby et al. (1999) for a hypothesis concerning the role of the neurotransmitter dopamine in tying a¤ect to
cognition.

3 In a related vein, Laibson (1996) has sought to borrow from psychology to understand how preferences and
choices can come to be sensitive to contextual variables.

4This isn’t to suggest, however, that we can’t conceive of a¤ective state playing a role in determining the choice
set, nor that our model wouldn’t apply when the choice set varies over time (for whatever reason). In fact, some
work already suggests that positive a¤ect can increase the choice set (Kahn and Isen, 1993). A time-invariant choice
set, however, makes more straightforward what the role of the a¤ective state is.
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takes past consumption as an argument.5 Moreover, that literature is concerned with “rational
addiction” primarily, whereas our approach has broader application.

The rest of the paper proceeds, in the next section, by presenting the basic model and analyzing
two example applications. In Section 3, we move from a deterministic model to one with random
shocks. In Section 4, we return to a deterministic set-up to explore how a¤ect can a¤ect the play
of games. We conclude in Section 5.

2 A Model of Positive A¤ect & Decision Making

Consider the following model in which positive a¤ect or utility level in‡uences decision making. An
individual begins period t with utility ut¡1 2 R determined by her past experiences. In period t,
she makes decisions xt 2 X , where xt is a vector and X is the time-invariant feasible set. Let her
utility at the end of the period, ut, be

ut = U (xt; ut¡1) .

The basic behavioral implication of this formulation is captured by the following proposition:

Proposition 1 Assume that a solution, x¤ (u), exists for the program

max
x2X

U (x; u) (1)

for all possible u. Assume, too, that,

if u > u0, then U (x; u) > U
¡
x; u0

¢
for all x 2 X . (2)

Then the solution to

max
fxtgTt=1

TX

t=1

±tU (xt; ut¡1) (3)

(where ± > 0 and less than one if T = 1) is xt = x¤ (ut¡1); that is, the discounted ‡ow of utility is
maximized by making the decisions that maximize each period’s utility. Moreover, if u > u0, then
U (x¤ (u) ; u) > U (x¤ (u0) ; u0); that is, given rational decision making (i.e., in equilibrium), utility
at the end of a period is an increasing function of utility at the beginning of the period.

Proof. Since future utility is increasing in current utility and current decisions directly af-
fect current utility only, maximizing current utility period by period must maximize (3). Hence,
x¤ (ut¡1) are the optimal decisions in period t. The last part of the proposition follows from revealed
preference and the strict monotonicity of U (x; ¢):

U (x¤ (u) ; u) ¸ U
¡
x¤

¡
u0

¢
; u

¢
> U

¡
x¤

¡
u0

¢
; u0

¢
.

5Admittedly, in some models current utility is isomorphic to past consumption (e.g., Benhabib and Day, 1981),
in which case the approaches are similar—although the motivation is di¤erent—but in many contexts there is no
isomorphism: Of two equally unhappy people, only one may consume heroin today because only he has consumed it
in the past.
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In our general analysis, we will maintain the assumptions that the program (1) has a solution for
all u and that (2) holds (i.e., all else equal, utility at the end of a period is greater, the greater it is
at the beginning of the period). In the speci…c examples, it is readily shown that these assumptions
are met.

Observe that the relationship between current utility and past utility is monotonically increas-
ing. This distinguishes our analysis from some related work by Benhabib and Day (1981), where
U can be seen as a non-monotonic function of ut¡1.6 Although this non-monotonicity yields inter-
esting dynamics—including possibly chaotic dynamics—Benhabib and Day don’t o¤er what we see
as a compelling behavioral justi…cation for their utility function.7

As a consequence of Proposition 1, utility is de…ned by the di¤erence equation:

ut = U [x¤ (ut¡1) ; ut¡1] . (4)

Consider, now, a couple of examples.

Example 1 (Creativity & Cooperation): We assume now the decision is one-dimensional.
Speci…cally, xt 2 R+. Let this choice denote some measure of work e¤ort by an individual. It
could, for instance, be some measure of help provided a co-worker; it could be a measure of
creativity of thought; or it could just be some measure of e¤ort. There is experimental evidence
that positive a¤ect can increase willingness to help (Isen and Levin, 1972); enhance creativity
(Isen et al., 1987); and increase intrinsic motivation (Isen and Reeve, 1992). These results can,
in turn, be captured by assuming

U (xt; ut¡1) = xt
p

2¯ ¡ x2
t

2ut¡1
+ ¹u (1 ¡ ¯) ; (5)

where ¯ 2 (0; 1) determines the marginal bene…t of e¤ort and ¹u is some constant. To keep the
model from being pathological, assume ¹u ¸ 0 and u0 > 0, where u0 is the individual’s time
0 utility. Note that we’ve chosen to model the e¤ect of positive a¤ect as a reduction in the
marginal cost of x; we could, however, equivalently model it as enhancing the marginal bene…t
of x. In this example, x¤ (ut¡1) = ut¡1

p
2¯. Consistent with the experimental evidence, x¤ (¢)

is an increasing function. Equation (4) becomes

ut = ¯ut¡1 + ¹u (1 ¡ ¯) .

The solution to this di¤erence equation is

ut = u0¯t + ¹u
¡
1 ¡ ¯t¢ . (6)

As t ! 1, ut ! ¹u; that is, ¹u is the long-run steady-state of this di¤erence equation. Observe
that, at any time t, ut is the weighted average of the steady-state utility and the previous
period’s utility. Hence, utility is improving if ¹u > ut¡1, falling if ¹u < ut¡1, and unchanging if
¹u = ut¡1. Consequently, ¹u is a stable …xed point of this di¤erence equation.

Suppose that the individual in question is employed. Let the per-period bene…t to her
employer from x be vx, where v > 0. Observe that, ceteris paribus, the employer prefers to hire
a “happier” individual, since the employer’s per-period revenue is

v
p

2¯
£
u0¯t¡1 + ¹u

¡
1 ¡ ¯t¡1¢¤ ,

6Benhabib and Day actually assume that current utility equals x
g(xt¡1)
1;t x

1¡g(xt¡1)
2;t , where g (¢) is an increasing

function of x1. One could, however, make g (¢) a function of previous utility, which would make their analysis more
similar to ours.

7They suggest that an individual is choosing the amount of leisure to enjoy each period and that the greater the
level of past leisure, the more leisure the individual desires today (e.g., the less the individual worked last period, the
more vacation she desires today; conversely, the harder she worked last period, the less vacation she desires today).
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which is clearly increasing in u0. This corresponds to the well-known adage that “happy workers
make good workers.” If we also supposed that ¹u denoted a steady-state utility of the individual—
e.g., something akin to “attitude”—then we see, in part, why employers seek employees with
good attitudes or other attributes associated with long-run positive a¤ect. Relatedly, to the
extent that the employer can undertake activities to raise u0 or ¹u or both (e.g., pay a signing
bonus or ensure a pleasant working environment), he will have incentive to do so, since this
yields him greater bene…t.

Worker output can also be a function of incentives. Suppose, for instance, that ¹u is ° (w),
where °0 > 0 and °00 < 0 is a function relating the per-period wage, w, to utility. For convenience,
assume in…nite employment. Assume a constant discount factor of ± 2 (0; 1); i.e., assume an
interest rate of (1 ¡ ±) =±. Then the wage will be set to maximize

1X

t=0

±t
h
v
p

2¯
£
u0¯t + ° (w)

¡
1 ¡ ¯t¢¤ ¡ w

i
.

The solution is de…ned by

°0 (w¤) =
1 ¡ ¯±

± (1 ¡ ¯) v
p

2¯
. (7)

Note …rst that, although the employer is paying a …xed wage, it nevertheless has important
incentive e¤ects. In some ways, it is like an e¢ciency-wage story (see, e.g., Akerlof, 1982;
Shapiro and Stiglitz, 1984), but di¤ers in so far as it is not explicitly dependent on the threat
of unemployment or the existence of an alternative employment sector. The two models could
be more closely linked by assuming that ° (w) is also a function of the unemployment rate and
relative wages, similar to what Akerlof (1982) does.

Inverting the right-hand side of (7), we see the derivative of the inverse with respect to ¯ is

1
2
±v

p
2
1 ¡ 3¯ + ¯± + ¯2±

(1 ¡ ¯±)2
p

¯
.

This is positive for ¯ less than

1
2±

3 ¡ ± ¡
q¡

9 ¡ 10± + ±2¢

and negative for ¯ greater than that, which means w¤ is increasing in ¯ for ¯ less than that
and is decreasing in ¯ for ¯ greater than that (° (¢), recall, is concave). In words, the wage is,
at …rst, increasing in the worker’s intrinsic motivation,

p
2¯, and, then decreasing in it. This

occurs because, when intrinsic motivation is low, utility is mostly a function of the wage. Hence,
raising the wage has a big impact on utility. The impact of this, however, depends on intrinsic
motivation. The greater the intrinsic motivation, the greater the return from inducing positive
a¤ect. Consequently, as intrinsic motivation rises, the marginal return to the employer from
raising the wage is increasing, so he increases the wage. When, however, intrinsic motivation is
high, utility is relatively insensitive to the wage. Consequently, there is less to be gained from
a high wage, so the wage rate begins to fall with intrinsic motivation.

If x can be measured directly, then we could also consider paying a piece rate, s, as an
incentive. Changing the model somewhat, suppose

U (xt; ut¡1) = sxt ¡ x2
t

2ut¡1
+ ~u.

Then x¤ (ut¡1) = sut¡1 and the di¤erence equation becomes

ut =
s2ut¡1

2
+ ~u.
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Its solution is

ut =
µ

s2

2

¶t

u0 +

"
1 ¡

µ
s2

2

¶t
#

~u
1 ¡

¡s2

2

¢

= ¯ (s)t u0 +
h
1 ¡ ¯ (s)t

i ~u
1 ¡ ¯ (s)

hence,

xt = s
µ

¯ (s)t¡1 u0 +
h
1 ¡ ¯ (s)t¡1

i ~u
1 ¡ ¯ (s)

¶

The employer’s time-0 problem is, thus,

max
s

1X

t=0

±t (v ¡ s) s
µ

¯ (s)t u0 +
h
1 ¡ ¯ (s)t

i ~u
1 ¡ ¯ (s)

¶

= max
s

s (v ¡ s)
1 ¡ ±

·
(1 ¡ ±)u0 + ±~u

1 ¡ ¯ (s) ±

¸

= max
s

s (v ¡ s)
1 ¡ ±

H (s) .

We see that H (s) > 0 and

H 0 (s) =
(1 ¡ ±)u0 + ±~u
(1 ¡ ¯ (s) ±)2

¯0 (s) > 0.

Suppose ± = 0—that is, only one period mattered or, equivalently, U (xt; ut¡1) was standard
and didn’t depend on ut¡1—then s¤ = v=2.8 For ± > 0 (i.e., in our model), s¤ > v=2. Hence,
in our model we should see stronger piece rates than the standard model: It pays to invest in
a “happy” worker, which means raising the piece rate. Observe, as well, that s¤ is independent
of u0;9 that is, the piece rate does not depend on the level of initial a¤ect—yet a¤ect is still
important for determining the piece rate through its dynamic e¤ect.

As a second example,

Example 2 (Socializing & Sobriety): Again assume the decision is xt 2 R+. Let xt denote
energy or e¤ort expended on some task. For instance, xt could be e¤ort at socializing with
others; or energy spent keeping to a diet or staying sober; or some other e¤ort similar to that
considered in the previous example. Suppose that

U (xt; ut¡1) = Á (ut¡1)xt ¡ x2
t

2
;

that is, here, utility at the beginning of a period modi…es the marginal bene…t of the action, xt.
Assume that Á (¢) is at least twice continuously di¤erentiable, that Á (¢) ¸ 0, and that Á0 (¢) > 0.
These assumptions re‡ect the idea that socializing is more pleasurable the happier one is, that
a positive mood makes it more rewarding to keep to a diet or stay sober, or the other behavioral
evidence cited in Example 1. Observe that x¤ (ut¡1) = Á (ut¡1). Hence, equation (4) becomes

ut =
Á (ut¡1)

2

2
. (8)

8To ensure that ¯ (s) < 1, it’s necessary that v < 2
p
2.

9Note that we need to assume that u0 > 0 and 4 > 2±v2 for the model to make sense.
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Unless Á (u) / p
u, this is a nonlinear di¤erence equation. The second derivative of the right-

hand side function is
£
Á0 (ut¡1)

¤2 + Á (ut¡1)Á00 (ut¡1) .

From this it follows that if Á (¢) is strictly concave—improving initial utility has a bigger impact
on future utility when initial utility is small than when it’s large—then this di¤erence equation
can be convex for low values of ut¡1 and concave for high values of ut¡1. In turn, this means
it is possible that the right-hand side function crosses the 45±-line three times (see Figure 1).
This would be true, for instance, if

Á (u) =
¯u

u + 1
, (9)

where ¯ >
p

8. The three points of crossing would then be 0, 1
4¯2 ¡ 1 ¡ 1

4¯
p

¯2 ¡ 8, and
1
4¯2 ¡ 1 + 1

4¯
p

¯2 ¡ 8 (e.g., if ¯ = 3, the points would be 0, 1
2 , and 2). Returning to the

general case in which (8) crosses the 45±-line three times, each point of crossing is a …xed point.
Only the …rst, û1, and third, û3, however, are stable: To the left of the second, û2, the process
converges toward û1 and to the right of û2, the process converges toward û3. Some points about
this model:

² Small di¤erences in initial utility (level of positive a¤ect) can lead to large di¤erences in
future utility: Consider two individuals, one with initial utility û2 ¡ " and one with initial
utility û2 + " (assume û3 ¡ û2 > " > û2 ¡ û1). The former’s utility will be constantly
decreasing, while the latter’s will be constantly increasing. For example, if Á (¢) is given
by (9) with ¯ = 3, then starting the two individuals at :499 and :501 respectively will lead
to them having utilities of .206 and .802 respectively by t = 20. By t = 43, both will be
within " of their stable …xed points (0 and 2, respectively). Correspondingly, there will
be increasing di¤erences in behavior: Initially, they will expend .999 and 1.001 units of
e¤ort or energy, but, by t = 20, it will be .642 and 1.266, respectively (nearly a two-to-one
margin).

² As indicated by the previous point, the population will tend to divide between the “very
happy” and the “less happy.” Moreover, this di¤erence in a¤ective state will tend to be
persistent all else being equal.10

² There will be a strong correlation between behavior and a¤ect (e.g., happy people social-
ize more), but the conventional causal inference will be wrong: People are not so much
unhappy because they don’t socialize or fail to keep to a diet or drink too much, rather
they behave in these ways because they aren’t happy. That is, although behavior a¤ects
a¤ect, a¤ect a¤ects behavior and it is not, therefore, always possible to modify a¤ect in
a desired way through behavior. It is even possible that unhappy people themselves con-
fuse correlation for causation: Mistakenly declaring that they would be happier if they
socialized more, kept to their diets, stayed o¤ the bottle, etc.11

² Recall that our decision makers are behaving optimally, there is no way for them to modify
their behavior to achieve a better utility time path.12 Hence, it would be wrong to blame
the unhappiness of the “recluse” or failed dieter on his or her lack of e¤ort or will power;
and it would seem wrong, as well, to blame it on irrational behavior.

10This could, however, be interrupted by actions of others. For instance, harmful acts, even neglect, by others
could be a shock to the dynamic system. We consider such shocks in the next section and strategic interactions with
others in Section 4.

11The idea that people might not understand why they’re unhappy (or even what would make them happy) is
not implausible: If people were expert at understanding their own psychology, why would there be any market for
psycho-therapists?

12Since we’re considering a single-dimensional choice set of actions, we’re abstracting from the possibility of actions
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In terms of policy, this suggests that in an employment situation (i.e., one in which x is a
measure of e¤ort), the …rm wants to identify workers with initial utility (happiness, attitude,
etc.) greater than û2 or induce such a utility initially (e.g., by giving a signing bonus) and
arrange conditions so that positive a¤ect is not dispelled. A policy prescription for the recluse
or the failed dieter might be to directly try to improve utility rather than focus on the de…cient
behavior. For instance, pharmacological or other intervention might be bene…cial by directly en-
hancing mood (e.g., by a¤ecting the amount of a neuro-transmitter like dopamine or serotonin).
In extreme cases physicians may prescribe a mood elevating drug, and once ut gets above û2,
the pharmacological intervention could be discontinued.13

Returning to the general formulation, de…ne U¤ (u) = U [x¤ (u) ; u]. Assume that u0 2 U and
U¤ : U ! U , where U is an interval in R. Let IU be the greatest lower bound on U and SU be the
least upper bound on U ; that is,

IU = inf U and SU = supU .

If U¤ (¢) has no stable …xed point, then, given that U¤ (¢) is increasing, ut must trend, but never
reach, either IU or SU . Particularly if that limit is +1 or ¡1, such a dynamic would seem
unrealistic: One’s a¤ective state is, ultimately, a function of physical processes in the brain and
all physical processes are bounded. Assuming that U¤ (¢) is continuous and di¤erentiable,14 the
following proposition establishes conditions under which this dynamic process must have a stable
…xed point.

Proposition 2 Assume that U¤ : U ! U is continuous and di¤erentiable,15 that u0 2 U, and that
U is an interval in R. Assume, in addition, that there is no u such that

u ¡ U¤ (u) = 1 ¡ U¤0 (u) = 0. (10)

Then the dynamic process that de…nes a¤ect, ut = U¤ (ut¡1), possesses at least one stable …xed
point in U if at least one assumption in column “A” holds and if at least one assumption in column
“B” holds.

A B
(i) limu#IU U¤ (u) ¡ u > "I > 0 (i) limu"SU u ¡ U¤ (u) > "S > 0
(ii) IU 2 U (ii) SU 2 U

Where "I and "S are arbitrary positive constants.

on other dimensions (e.g., going to an enjoyable …lm or giving oneself a treat to self-induce positive a¤ect). But
the point carries over to a vector of activities. That is, “happy” people could tend to choose the vector x, while
“unhappy” people tend to choose the vector x̂, x̂ 6= x. Yet this di¤erence is not the cause of happiness or unhappiness,
but merely a correlate. In particular, the “therapy” of behaving like happy people would still be inappropriate.

13This is not inconsistent with actual medical practice. Informal discussions with physicians indicate that “accepted
practice” for …rst-time treatment with selective serotonin reuptake inhibitors (SSRIs) is to put someone on them for 6
to 12 months and, then, wean him or her o¤ them. For many patients this is su¢cient (i.e., ut is now greater than û2),
and future medication is not necessary. Other patients cycle on and o¤ them, suggesting that their brain chemistry
or life experience is such that they are periodically and randomly thrown well below û2, necessitating intervention to
escape. Of course, intervention by others (e.g., taking the person to an enjoyable …lm or giving her a treat) can also
be e¤ective in many cases.

14Note continuity is a su¢cient, but not necessary, condition for a …xed point to exist. Almost all our analysis
would carry through if U¤ (¢) were not continuous everywhere (although, since it is monotonic, it must be continuous
almost everywhere). Indeed, there could be important threshold (discontinuous) phenomena. These, however, lie
outside the scope of this paper.

15Since U¤ (¢) is strictly increasing by Proposition 1, it is continuous and di¤erentiable almost everywhere. Whereas
continuity everywhere is necessary for what follows, we could carry out the same analysis with it merely being
di¤erentiable almost everywhere. Assuming it’s di¤erentiable everywhere, however, simpli…es the proof.
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Figure 1: Possible relationship between ut¡1 and ut in Example 2
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Proof: Please see Appendix.

Remark 1 The menu eliminates the non-existence that would occur if

[u ¡ U¤ (u)] £
£
u0 ¡ U¤ ¡

u0
¢¤

> 0

for all u, u0 2 U. Condition (10) rules out the non-existence that could occur if every …xed point
lay in an interval of …xed points (i.e., if U¤ (¢) coincided with the 45± line for an interval of u’s).
Alternatively, we could rule out this second type of non-existence by assuming that, for any u
satisfying the equations in (10), U¤00 (u) = 0 and U¤000 (u) < 0 (see Theorem 1.14 of Elaydi, 1996).
Even without these assumptions, we would still be assured of a stable bounded range: For any T ,
there would exist a bounded set U¤ (T ) ½ U such that ut 2 U¤ (T ) for all t > T if at least one of
the assumptions in column A held and at least one of the assumptions in column B held.

3 Random E¤ects

In the model considered so far, utility follows a deterministic path. Moreover, this path is always
monotonic: Utility either improves steadily over time or it declines steadily (although the pace of
change slows as it approaches a stable …xed point). Formally,

Proposition 3 Assume that U¤ : U ! U is continuous, that u0 2 U, and that U is an interval
in R. Then, in equilibrium, utility changes monotonically over time. Speci…cally, it is either non-
decreasing or non-increasing (i.e., (ut+1 ¡ ut) (ut ¡ ut¡1) ¸ 0 for all t).

Proof. If ut ¡ ut¡1 = 0, then we’re at a …xed point, so ut+1 ¡ ut = 0, which establishes the
result. So assume, instead, that jut ¡ ut¡1j > 0. We’ll consider only the case ut ¡ ut¡1 > 0. The
case ut ¡ ut¡1 < 0 is proved similarly. Since U¤ (¢) is continuous, there exists an open interval16

in U containing ut¡1 such that U¤ (u) > u for all u in that interval. Let (I; S) be the largest such
interval. Now I is either a …xed point or it’s IU . Similarly, S is either a …xed point or it’s SU . Either
way, since U¤ (¢) is increasing, I · U¤ (I) < U¤ (S) · S. Hence, U¤ [(I; S)] µ (I; S). Consequently,
ut is also in this interval, implying ut+1 = U¤ (ut) > ut. The result follows.

Taken literally, these monotonicity results (Proposition 3) are somewhat unrealistic. People’s
moods do not move monotonically: We can have good days, followed by bad days, followed by good
days, and so forth. A more realistic model can be achieved by assuming that mood is subject to
random events outside the decision maker’s control (e.g., for many people, sunny days boost mood,
while grey days lower it). Consequently, there is a stochastic aspect:

~ut = Û
¡
xt; ~ut¡1; ³t¡1

¢
,

where ³t¡1 is a random shock. The t ¡ 1 index re‡ects our interest in the impact of a¤ect on
decision making; that is, we assume that ³ is realized before xt is chosen. Since we can always
transform the random shock as necessary, we are thus free to write

Û
¡
xt; ~ut¡1; ³t¡1

¢
= U

¡
xt; ~ut¡1 + ³t¡1

¢
.

16Half open if ut¡1 = IU or = SU .
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Figure 2: Random path of utility for Example 1 (u0 = 5, ¯ = :5, ¹u = 5, ³ » U [¡1:5; 1:5]).

Note the dynamics are precisely the same if we write

ut = U (xt; ut¡1) + ³t,

where ut = ~ut + ³t. Since this last formulation is the most convenient, it’s the one we’ll use in
what follows. Provided ³ can be both positive and negative, then utility won’t, in general, move
monotonically (see, e.g., Figure 2, which is based on Example 1, where ³t is an i.i.d. draw from a
uniform distribution on

£
¡3

2 ;
3
2

¤
).

If we assume that U (¢) is de…ned by expression (5), then

ut = ¯ut¡1 + (1 ¡ ¯) ¹u + ³t;

hence,

ut = ¯tu0 +
¡
1 ¡ ¯t

¢
¹u +

t¡1X

¿=0

¯t¡¿¡1³¿ .

Note that the direct impact of any random shock, ³¿ , is diminishing over time: d¯t¡¿¡1=dt =
¯t¡¿¡1 ln¯ < 0 (since ¯ < 1). This makes sense: Mood-a¤ecting random events last year likely
have little impact on your mood today, whereas this morning’s mood-a¤ecting events probably do.
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Since if ³ had a non-zero mean, we could build it into ¹u, there’s no loss of generality in assuming
that E f³tg = 0. It follows then that

Efutg = ¯tu0 +
¡
1 ¡ ¯t

¢
¹u;

that is, the non-stochastic model considered in Example 1 represents an unbiased predictor of the
dynamics of the stochastic model. Finally, note that if ³ 2 [³L; ³H ], then

¯tu0 +
¡
1 ¡ ¯t

¢
¹u + ³L

1 ¡ ¯t

1 ¡ ¯
· ut · ¯tu0 +

¡
1 ¡ ¯t

¢
¹u + ³H

1 ¡ ¯t

1 ¡ ¯
;

that is, at any time there is a bounded neighborhood of ¹u, the non-stochastic stable …xed point,
in which ut must lie. Moreover, as time passes, that neighborhood depends less and less on initial
utility.

Figure 3 illustrates a stochastic a¤ect path for a variation on the model in Example 2. Here,

Á (u) =
½ 3u

1+u , if u ¸ 0
0, if u < 0

.

In this model, there are three …xed points, 0, 1
2 , and 2, of which only the …rst and last are stable.

Starting at the unstable …xed point, 1
2 , we see, in this example, that utility “bounces” around the

low …xed point for awhile, then, due to a positive a¤ect shock, jumps to hang around the high …xed
point.

Figure 3 raises the question of whether stochastic utility can always “escape” oscillating around
a low …xed point (e.g., 0) to reach a higher …xed point and, conversely, whether oscillations around a
high …xed point can jump down towards a low …xed point. Here we will explore only the possibility
rather than the likelihood of such escapes (the latter can be explored using the techniques in Fre¼¬lin
and Wentzell, 1984, for instance). Assume that the largest possible ³ is z > 0 and the smallest is
¡z.17 Clearly, if z is large, then escape must be possible.18 But what if z isn’t large? To answer,
consider the deterministic processes: yt = U¤ (yt¡1) + z and wt = U¤ (wt¡1) ¡ z (where, again,
U¤ (u) = U [x¤ (u) ; u]). It follows that, at any time,

U¤ (ut¡1) ¡ z · ut · U¤ (ut¡1) + z.

Consequently, by examining the dynamic paths wt and yt, we can determine whether escape is
possible. Figures 4a and 4b illustrate two possibilities based on the dynamics of Example 2. In
both …gures, ut must lie between the bounds represented by the two dashed curves (the upper one
corresponds to U¤ (ut¡1) + z and the lower one to U¤ (ut¡1) ¡ z). In Figure 4a, the lower bound
crosses the 45± line once (from above). This means that it is possible for ut to fall towards the
lower stable …xed point of U¤ (¢). The absolute lower bound on ut is de…ned by where U¤ (ut¡1)¡z
crosses the 45±. Note that the upper bound crosses the 45± three times (like U¤ (¢) itself). Since
û+1 is a stable …xed point of U¤ (ut¡1) + z, it follows that ut can never get above û+1 if u¿ · û+1 for
any ¿ < t. In other words, although ut can escape the higher stable …xed point in Figure 4a, it
cannot escape the lower stable …xed point (in contrast to the path shown in Figure 3). Moreover,
ut is “doomed” to eventually fall below û+1 if u¿ · û+2 at some time ¿ . Figure 4b is essentially

17Symmetry is not necessary, but it simpli…es the analysis.
18 It can be shown that the z in Figure 3 is a large enough for ut to escape any neighborhood around a stable …xed

point of the deterministic process.
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Figure 3: Utility (positive a¤ect) path when U has three …xed points (0 and 2 are stable, .5 is unstable).
The error, ³, is distributed uniformly on [¡:5; :5].
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the reverse scenario. Now ut can escape the neighborhood of the lower stable …xed point of U¤ (¢),
but it can’t escape a neighborhood of the higher stable …xed point: Speci…cally, if u¿ ¸ û¡2 , then
ut ¸ û¡2 for all t ¸ ¿ . Moreover, ut is “destined” to be high if u¿ ¸ û¡1 at some time ¿ . In both
…gures, if we shrunk z, the size of the bound, then there would exist neighborhoods around each
stable …xed point of U¤ (¢) such that ut could never escape that neighborhood. In other words, if
the perturbations to utility are small, then conclusions similar to those reached in Example 2 will
continue to hold.

It is worth noting that nothing in this analysis requires that ³ be an i.i.d. random variable.
In particular, experience suggests that people tend to recall positive events more or with greater
frequency than negative events. Hence, a ³ > 0 leads to positive serial correlation in “shocks,” as
the recall of past positive shocks boosts positive a¤ect. In contrast, a ³ < 0 could have a much less
serial correlation going forward. Indeed, there is no reason that ut and ³t couldn’t be described by
complicated lag structures. We leave this issue, however, to future research.

To this point, we’ve assumed that the random e¤ects are outside the control of the decision
maker (e.g., they’re due to weather, tra¢c, …nding money, etc.). We could also consider decision
making over gambles. In particular, there is evidence that individuals in whom positive a¤ect has
been induced behave in a more risk-averse fashion than a control group; i.e., those in a “neutral”
a¤ective state (see Isen et al., 1988, for evidence). This is not surprising if the dynamic process
resembles the one in Figure 1: An individual above the unstable …xed point û2 faces a dire downside
risk—she could get switched from trending up toward û3 to trending down toward û1—versus a
modest upside potential. In contrast, an individual below û2 faces a sizeable upside potential—
switching from trending down toward û1 to trending up toward û3—versus a modest downside risk.
We are not, however, claiming that all the dynamic processes considered here will exhibit a positive
correlation between utility and risk aversion—if the dynamic process is described, for instance, by
equation (6), then attitudes toward risk will be independent of utility. Rather our point is that
a model of decision making that is sensitive to the impact of a¤ect can provide new insights into
decision making under uncertainty and explain experimental results about such decision making.

4 The Impact of Positive A¤ect on Game Playing

We’ve so far considered only individual decision makers. In this section we extend our analysis to
situations in which our decision makers interact (i.e., games). Although there are many potential
models to explore, we will consider only one: There are two decision makers (players), indexed by
superscripts. A given player’s utility at the end of the tth period is assumed to be

uit = xit + ®ixjt ¡
¡
xit

¢2

2uit¡1
;

that is, each player i’s utility is the same as in Example 1 (with ¯ = 1
2 and ¹u = 0) but with the

addition of the impact of the other player’s (j’s) action on her utility. For simplicity, j’s externality
on i is assumed to enter linearly. If ®i > 0, then it’s a positive externality. If ®i < 0, then it’s
negative. It seems reasonable—at least in many contexts—to imagine that the externality is not
too large relative to the direct e¤ect. Consequently, we limit attention to models in which

¯̄
®i

¯̄
· 1

for i = 1; 2.
To begin, consider the following sequential play game: Player 1 chooses her x in period 1, Player

2 chooses his x in period 2, and then the game ends. Given the …nite time horizon, we may ignore
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discounting. Hence, the sums of the two periods’ utilities are

U1 = ®1x22 + x11 ¡
¡
x11

¢2

2u10
and

U2 = x22 ¡
¡
x22

¢2

2®2x11
+ ®2x11,

respectively. So that Player 2 has a well de…ned strategy, assume ®2 > 0; Player 1 provides a
positive externality for Player 2. Solving for the subgame perfect equilibrium, we see that Player
2’s optimal play is

x2¤2
¡
x11

¢
= ®2x11.

Hence, Player 1 maximizes

®1®2x11 + x11 ¡
¡
x11

¢2

2u10
.

Solving yields

x1¤1
¡
u10

¢
=

¡
1 + ®1®2¢u10.

Some remarks: Observe that Player 1’s behavior when there’s a Player 2 is di¤erent than when
there is no Player 2. Speci…cally, she does more x when ®1 > 0 (Player 2’s action provides a positive
externality for her) and she does less when ®1 < 0 (Player 2’s action imposes a negative externality
on her). When she does more (i.e., when ®1 > 0), it might appear that she is “internalizing”
the bene…t she provides Player 2. This, however, would be an incorrect inference: She is playing
sel…shly, but she understands that doing more of something Player 2 likes bene…ts her because the
happier is Player 2, the more Player 2 does of an action she likes. If Player 2 couldn’t act or,
equivalently, if ®1 = 0, then Player 1 would cease to seem so generous. Consequently, although it
can yield similar behavior, our model is di¤erent than an altruism model in which Player 2’s utility
would be an argument of Player 1’s utility function. Note, too, that x2¤2 (¢) is an increasing function.
Particularly when ®1 > 0, the resulting behavior of more x1 leading to more x2 could be viewed as
Player 2 reciprocating Player 1’s “generosity” or Player 2’s behavior being governed by a fairness
norm. Again, such a view would be, here, inaccurate: Player 2 doesn’t produce more x2 because
he has a preference for reciprocating or being fair—in fact, he doesn’t possess such preferences at
all—rather he produces more because Player 1’s action has changed his preferences such that he
…nds that he enjoys more of the action.

We are not arguing, however, that our approach is superior to assuming altruism or norms of
fairness and reciprocity. Rather we are pointing out that behavior consistent with such motives
need not be due to those motives (even in one-shot or …nite-horizon games). Of course, these
other approaches could be complementary to our approach: We could, for instance, assume that
Player 2’s utility is boosted from the “warm glow” that comes from knowing that Player 1 has done
something extra for him (e.g., we could assume

~U2 = x22 ¡
¡
x22

¢2

·0 + ·1
¡
x11 ¡ ¹x1

¢ + ®2x11,
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where ·0 and ·1 are positive constants and ¹x1 is the optimal level of x were Player 1 not playing
with Player 2—here, u10).

Consider now a two-period game with simultaneous moves. Now,

ui2 = ®ixj2 + xi2 ¡
¡
xi2

¢2

2ui1
and

ui1 = ®ixj1 + xi1 ¡
¡
xi1

¢2

2ui0
.

Solving for the subgame perfect equilibrium, we see that

xi¤2
¡
ui1

¢
= ui1.

Hence, player i chooses xi1 to maximize

ui2z }| {

®i

0
B@®jxi1 + xj1 ¡

³
xj1

´2

2uj0

1
CA

| {z }
xj¤2

+
1
2

Ã
®ixj1 + xi1 ¡

¡
xi1

¢2

2ui0

!
+

ui1z }| {

®ixj1 + xi1 ¡
¡
xi1

¢2

2ui0
. (11)

Thus,

xi¤1
¡
ui0

¢
=

µ
1 +

2
3
®i®j

¶
ui0.

For future reference, note that xi¤t is a linear function of i’s t ¡ 1 utility only; in particular, the
other state variable, ujt¡1, is not relevant to her decision.

De…ne three scenarios:

Friendly game: ®1 > 0 and ®2 > 0;

Antagonistic game: ®1 < 0 and ®2 < 0; and

Mixed game: ®i®j · 0, i 6= j.

Observe that, relative to a situation in which player i is alone, her choice of xi1 is greater in
a friendly or antagonistic game (since ®i®j > 0), but smaller in a mixed game (since ®i®j < 0).
The intuition is straightforward: When ®i > 0, player i wants to make player j happier, since
that will yield a greater externality in the next period. Conversely, when ®i < 0, she wants to
reduce player j’s happiness, since that will yield less of the externality in the next period. Player
i boosts (reduces) player j’s happiness by increasing x11 when her action has a positive (negative)
externality on j. She boosts (reduces) his happiness by decreasing x11 when her action has a negative
(positive) externality on him. This makes sense: Consider, for example, that, in many sporting
events (examples of antagonistic games), the players seem to expend more energy or play with
greater intensity in the …rst half than the second.19 Similarly, as an example of a friendly game,

19Admittedly, physical fatigue also plays a role in explaining this pattern.
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the home team tries to get its fans “into the game” early on and the fans tend to cheer a lot at
the beginning (e.g., during player introductions). Note that if just one player is una¤ected by the
other’s action, then neither player deviates from what he or she would have done if playing alone.
That is, the apparent concern about the other player in the …rst period is strategic and not inherent
(an insight also borne out by the fact that the last-period action is equal to the playing-alone action
for both players regardless of scenario).

Substituting the de…nitions of xi¤1 and xj¤1 into player i’s “lifetime” utility, expression (11),
yields

U i =
·
®i®j

µ
1 +

2
3
®i®j

¶
+

3
2
µ
µ

1 +
2
3
®i®j

¶¸
ui0 + ®i

µ
1 +

2
3
®i®j

¶µ
2 ¡ 1

3
®i®j

¶
uj0,

where µ (q) = q ¡ 1
2q

2. The sign of the last term equals the sign of ®i, since min 1 + 2
3®
i®j = 1

3
and min2 ¡ 1

3®
i®j = 2

3 . Hence, when j’s action provides a positive externality for i, she prefers
that j have high initial utility. Conversely, when j’s action imposes a negative externality on her,
she prefers that j have low initial utility. This is consistent, for example, with the observation
from sports that teams do better against demoralized opponents. It could also explain norms of
sportsmanship and even why there are rules against directly trying to demoralize opponents (e.g.,
against excessive celebration after a touchdown).20

Finally, consider an in…nite-horizon version of this simultaneous-move game. Let ± be the
common discount factor. Once we consider an in…nite horizon, a myriad of equilibria arise because
of the players’ abilities to reward cooperative play and punish uncooperative play. Since such
equilibria would also emerge in a game with externalities but without moods a¤ecting behavior,
we won’t explore such equilibria here. Instead, we will focus on a Markov equilibrium of the game.
In a Markov equilibrium, play at period t can be conditioned only on the state variables, in this
case u1t¡1 and u2t¡1. Moreover, if

¡
u1t¡1; u

2
t¡1

¢
=

¡
u1¿¡1; u

2
¿¡1

¢
for any t and ¿ , then the equilibrium

strategies of the players going forward from either t or ¿ must be the same. Note that Markov
equilibria are also subgame perfect. In the Markov equilibrium of the game in which past utility
didn’t matter (e.g., one in which uit = ®ixjt + xit ¡

¡
xit

¢2 =2), a player would play the same x each
period and that x would maximize his utility without regard for his opponent’s utility. This will
not be true in a Markov equilibrium of the game where past utility does matter.

Proposition 4 There exists a Markov equilibrium of the in…nite-horizon game in which

xi¤t = ¹¤uit¡1,

where

¹¤ = 1 ¡ 2
1
3Y

3±Z
+

Z

3± £ 2
1
3
,

Y = 6± ¡ 3±2 ¡ 6®i®j±2, and

Z =
µ

54®i®j±3 +
q

4Y 3 + 2916 (®i®j)2 ±6
¶1

3

.

20Under current NCAA rules for American football, a team guilty of excessive celebrating is cited for unsports-
manlike play and penalized 15 yards on the next play. Note that the motivation for this penalty is unlikely to be
(solely) the fact that celebrating delays play: There already exists a delay-of-game penalty (a …ve-yard penalty).
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Proof: Please see Appendix.
Observe that if ®i = 0 or ®j = 0, then the equilibrium response constant, ¹¤, equals one—the

same value it would take if each player were playing in isolation (see Example 1). Consequently, as
in the two-period game, if just one player is una¤ected by the other’s action, then neither player
deviates from what he or she would have done if playing alone. It follows that what distinguishes
this equilibrium from isolated play is ®i®j 6= 0. The next proposition addresses how:

Proposition 5 The equilibrium response constant, ¹¤, is increasing in ®i®j. Hence, if the game
is friendly or antagonistic (®i®j > 0), then both players do more of the action conditional on their
utility than they would if they played alone. Conversely, if the game is mixed (®i®j < 0), then both
players do less of the action conditional on their utility than they would if they played alone.

Proof. Observe that the right-hand side of equation (14) equals 1 if ¹¤ = 0. Hence the right-
hand side of (14) must cross the 45± line from above. Hence, since the right-hand side is increasing
in ®i®j, it follows that increasing ®i®j must increase the ¹¤ at which the right-hand side crosses
the 45± line.

As noted, we would observe larger responses in both friendly and in antagonistic games. For
the observer of a friendly game, a natural interpretation would be that the players are exploiting
in…nite repetition to sustain a cooperative outcome (i.e., that promotes the positive externality)
or otherwise playing in some reciprocal fashion. In this case, that interpretation would, however,
be wrong. Here cooperation is not a consequence of in…nite repetition nor any other direct motive
to reciprocate. The players appear to cooperate only because each player understands it’s better
to have a happy opponent than an unhappy opponent. For the observer of an antagonistic game,
a natural interpretation—at least at the start of the game—is that the players are punishing each
other for not cooperating (not doing less of the action in recognition of the negative externality).
Again, this interpretation would be incorrect in this context. The players are not punishing so
much as attempting to “demoralize” their opponents, since, now, it’s better to have an unhappy
opponent than a happy opponent.

The equilibrium dynamics are

uit = µ (¹¤)uit¡1 + ®i¹¤ujt¡1 and

ujt = ®j¹¤uit¡1 + µ (¹¤)ujt¡1.

De…ne

ut =
µ

uit
ujt

¶
and M =

µ
µ (¹¤) ®i¹¤

®j¹¤ µ (¹¤)

¶
,

so

ut = Mut¡1.

It can be shown (see, e.g., Elaydi, 1996, §3.1) that

ut =

0
@

1
2

¡
¸t1 + ¸t2

¢ 1
2
¸t1¡¸t2p
®i®j

®i

1
2
¸t1¡¸t2p
®i®j

®j 1
2

¡
¸t1 + ¸t2

¢

1
Au0,
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Figure 5: Example path for xi¤t for friendly and antagonistic games plus for playing alone.

where ¸h = µ (¹¤) + (¡1)h¡1 ¹¤
p

®i®j are the eigenvalues of M.21

Restricting attention to the friendly and antagonistic cases, we see that

uit >
1
2

¡
¸t1 + ¸t2

¢
ui0

in the friendly case (since ®i > 0), but

1
2

¡
¸t1 + ¸t2

¢
ui0 > uit

in the antagonistic case (since ®i < 0). Hence, the players’ utilities are always greater in a friendly
game than in an antagonistic game. More importantly, consider the friendly game with ®i and ®j

and the “polar” opposite antagonistic game ~®i and ~®j, where ~® = ¡®. In these two games, ¹¤

would be the same. Yet, since xt = ¹¤ut¡1, the actions would be less in every period (except the
…rst) in the antagonistic game than in the friendly game. An observer might be tempted to interpret
this as the players in the antagonistic game internalizing the negative externality (perhaps because
of repeated play). This, however, wouldn’t be correct: The players do less in the antagonistic game
because they want to do less having been “demoralized” by their opponents. Figure 5 illustrates
an example time path of xi¤t (here, ± = :9, ®i = ®j = :35, ~®i = ~®j = ¡:35, and ui0 = uj0 = 10).
Observe that, in Figure 5, the level of action is initially higher in an antagonistic game than in
isolated play, but then falls below it. Again, the tempting interpretation is that, after an initial
“mistake,” the players cooperate by doing less of the action because of the negative externality.
And again, that’s an incorrect interpretation in this model: The players do less, because the initial
high level has succeeded in demoralizing them.

Finally, in a game, a given player’s utility no longer needs to follow a monotonic path—see
Figures 6. Hence, consistent with earlier discussion, strategic interactions can introduce non-
monotonicity into an individual’s utility time path.

21 It might seem this wouldn’t apply in the mixed case, where ®i®j < 0. But working through with the resulting
complex numbers, it can be shown that it also applies in the mixed case. We will, however, restrict attention to the
cases in which ®i®j > 0. In any case, note the model is only valid as long as uit is not driven below zero. In the
examples considered, this property is satis…ed.
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Figure 6: uit in a friendly game where ®i = :86, ®j = :23, ± = :9, and ui0 = uj0 = 10.

Admittedly, we’ve analyzed only a limited number of games in which a¤ect could be relevant.
Yet, our analysis gives some sense of the issues that arise. In particular, behavior that can be
explained by altruism, fairness norms, reciprocity norms, or the exploitation of repeated play can
also be explained by a¤ect. In many ways, particularly for …nite games, a¤ect is more consistent
with conventional models of rationality and more parsimonious: It doesn’t require players obeying
norms that aren’t in their immediate self interest or taking someone else’s utility as an argument
in their own utility functions. Rather, using a¤ect, players simply want to do what’s best for
them, but they recognize that the a¤ect they induce in their opponents will, through interaction,
feedback on them (see Batson, 1991, for empirical evidence that striving to increase others’ moods
can be motivated by self-interest). Moreover, a¤ect models in games build directly on behavior in
single-player decision problems in a way that these other approaches don’t. Finally, a¤ect models
o¤er an explanation within the rational-actor paradigm for such behaviors in strategic situations
of trying to demoralize your rivals or cheering on your allies, phenomena for which these other
approaches don’t account.

Clearly, our approach can be applied to a much larger set of games. Moreover, as we’ve suggested
above, it could serve to complement other approaches. People, for instance, may strive to be fair
or reciprocate in cooperative situations because they’ve found, as a rule of thumb, that the positive
a¤ect it induces in others, and consequently the level of others’ actions, ultimately pays o¤ for
them.

5 Conclusions

In this paper, we have shown that incorporating the psychological …nding that a¤ect in‡uences de-
cision making can greatly enrich rational-actor models of decision making and strategic interaction.
Although a modest change in our standard assumptions—yet possessing strong empirical backing
(e.g., Isen, 1999)—it nevertheless gives insights into a number of behavioral phenomena:

² the persistence of mood, especially a happy mood;

² increased incentives from increases in a …xed wage (similar to an e¢ciency-wage story);

² the setting of piece rates;
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² the paying of signing bonuses and other non-contingent rewards that serve to boost worker
morale;

² the apparent paradox of people not pursuing behaviors correlated with well-being;

² pharmacological treatment strategies for depression;

² decision making under uncertainty;

² apparently cooperative play in …nite-period games; and

² attempts to demoralize opponents and to build the morale of friends.

Moreover, we suspect that we’ve only scratched the surface with respect to the economic applica-
tions. We can, for instance, foresee applications to issues of morale building within organizations,
promotion of products, building of customer loyalty, relationship marketing, and policy issues and
social welfare, among others.

Perhaps more importantly, the methodology outlined here can be extended to other emotions
(we’ve focused on positive a¤ect—happiness—because the experimental evidence gave us a clear
guide as to the nature of the relationship between a¤ect and behavior in that context). For instance,
we might imagine that guilt a¤ects behavior; perhaps according to a dynamic similar to

ut = ¡gt¡1e¡xt and gt = gt¡1ext

where gt is the level of guilt at time t and xt is a guilt-inducing action (xt < 0 is a guilt-reducing
action).22 For example, xt could be the amount of money the individual spends on herself in
period t (a negative xt would, then, indicate spending on others). Although simple, this model
does capture the ideas that guilt reduces utility and engaging in a guilt-inducing activity increases
guilt going forward, but is pleasurable today. Other emotions could be similarly incorporated into
models.

Both psychological theory, including evolution-based theorizing (e.g., Johnston, 1999), and em-
pirical work (e.g., Isen, 1999; LeDoux, 1998)—to say nothing of common sense—make it clear that
behavior is a¤ected by emotions. In addition, increasingly work in neuro-science (e.g., Damasio,
1995; Ashby et al., 1999; LeDoux, 1998) is working out the links and underpinnings between feel-
ings and behavior. Further, clinical evidence from those who’ve su¤ered certain brain injuries
demonstrates a rather suggestive set of correlations between behavior and emotion. Given all this,
it seems that economic modeling of behavior should pay attention to emotions. Otherwise, our
models will be better suited to Mr. Spock and his fellow Vulcans than to homo sapiens. On the
other hand, one of the amazing things about our species is the ability to employ rational thought,
including planning. Consequently, we’ve sought to develop a model that integrates these elements.
Building on over 20 years of psychological research on positive a¤ect, we’ve shown it’s possible
to build a model that re‡ects what we know about its role in decision making while maintaining
the assumption of rationality. Moreover, we believe, that we’ve shown this combination o¤ers real
explanatory power with regard to real-life behavior.

22The idea that guilt is, for some, a persistent emotion is borne out by numerous anecdotes of people who devote
large portions of their lives seeking to atone for their misdeeds or the misdeeds of their family or people.
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Appendix

Proof of Proposition 2: We’ll …rst prove a related proposition: If there exist I and S, both in
U , such that

U¤ (I) ¡ I ¸ 0 ¸ U¤ (S) ¡ S and (12)
I · u0 · S, (13)

then the dynamic process ut = U¤ (ut¡1) has at least one stable …xed point. To see this, observe
…rst, since U¤ (¢) is continuous and increasing, that U¤ ([I; S]) = [U¤ (I) ; U¤ (S)] ½ [I; S]. From the
Brouwer Fixed-Point Theorem, it follows, then, that U¤ (¢) has at least one …xed point. Suppose,
…rst, that I < U¤ (I) < U¤ (S) < S. Then, since U¤ (¢) starts out above the 45± line and ends below
it, it must cross it at least once from above. Let u¤ be such a point. Since U¤ (¢) crosses from above,
U¤0 (u¤) · 1. Condition (10) rules out equality; that is, U¤0 (u¤) < 1. It follows from Theorem 1.12
of Elaydi (1996) that u¤ is a stable …xed point. If I = U¤ (I) or U¤ (S) = S or both, then I or S
is a …xed point, respectively, or they both are. Assume I = U¤ (I) (the case for S is similar). If
u0 = I, we’re done—the process will stay there. Assume, then, that u0 > I. If U¤0 (I) > 1, then
there exists an I+ 2 (I; u0) that satis…es the conditions (12) and (13) with U¤ (I+) > I+, so the
above argument can be applied. Otherwise, U¤0 (I) < 1; so I is, itself, a stable …xed point. This
establishes our related proposition.

We now show that the assumptions in the “menu” imply conditions (12) and (13). If A(ii)
holds, then, since U¤ : U ! U , U¤ (IU) ¸ IU , and we can set I = IU in conditions (12) and (13).
A similar argument works for B(ii). If IU =2 U , then the interval (IU ; u0) ½ U is non-empty. By
A(i), there exists an ¹I 2 U such that U¤ (u) ¡ u > "I > 0 for u 2

¡
IU ; ¹I

¢
½ U . Now pick I from

the intersection of (IU ; u0) and
¡
IU ; ¹I

¢
. Clearly, this I satis…es (12) and (13). A similar argument

works for B(i).
Proof of Proposition 4: Suppose that player j is playing this strategy. We need to show that it
is a best response for player i to do the same. As before, de…ne µ (q) = q ¡ q2=2. Then, for player
j,

ujt = ®jxit + µ (¹¤)ujt¡1.

Solving this di¤erence equation yields

ujt = ®j
tX

¿=1

µ (¹¤)t¡¿ xi¿ + µ (¹¤)t uj0

(note we’re employing the convention that
P0
¿=1 q (¿) = 0). Player i’s utility is

uit = xit ¡
¡
xit

¢2

2uit¡1
+ ®i¹¤ujt¡1

= xit ¡
¡
xit

¢2

2uit¡1
+ ®i¹¤®j

t¡1X

¿=1

µ (¹¤)t¡1¡¿ xi¿ + ®i¹¤µ (¹¤)t¡1 uj0.

If i is playing a best response to j, then her strategy,
©
xit

ª1
t=1, maximizes

1X

t=1

±tuit =
1X

t=1

±t
Ã

xit ¡
¡
xit

¢2

2uit¡1
+ ¹¤®i®j

t¡1X

¿=1

µ (¹¤)t¡1¡¿ xi¿ + ®i¹¤µ (¹¤)t¡1 uj0

!
.
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The “principle of optimality” (see, e.g., Stokey and Lucas, 1989, §4.1) tells us that we can solve this
maximization problem by ensuring that each xit maximizes the discounted sum of all the utilities
it directly a¤ects. This yields the …rst-order condition for xit:

±t
Ã

1 ¡ xit
uit¡1

+ ±¹¤®i®j
1X

¿=0

±¿µ (¹¤)¿
!

= 0.

Hence,

xit =
µ

1 +
±¹¤®i®j

1 ¡ ±µ (¹¤)

¶
uit¡1.

Observe that the expression in the large parentheses is time-invariant. The proof is, therefore,
complete if

¹¤ = 1 +
±¹¤®i®j

1 ¡ ±µ (¹¤)
. (14)

Tedious algebra reveals that is precisely what it equals.23

References

Akerlof, George A., “Labor Contracts as Partial Gift Exchange,” Quarterly Journal of Eco-
nomics, November 1982, 97 (4), 543–569.

Ashby, F. Gregory, Alice M. Isen, and And U. Turken, “A Neuropsychological Theory of
Positive A¤ect and its In‡uence on Cognition,” Psychological Review, 1999. Forthcoming.

Batson, C. Daniel, The Altruism Question: Toward a Social-psychological Answer, Hillsdale, NJ:
Erlbaum, 1991.

Becker, Gary S., The Economic Approach to Human Behavior, Chicago: University of Chicago
Press, 1976.

Benhabib, Jess and Richard H. Day, “Rational Choice and Erratic Behaviour,” Review of
Economic Studies, July 1981, 48 (3), 459–471.

Damasio, Antonio R., Descartes’ Error, New York: Avon Books, 1995.

Elaydi, Saber N., An Introduction to Di¤erence Equations, Berlin: Springer-Verlag, 1996.

Elster, Jon, “Emotions and Economic Theory,” Journal of Economic Literature, March 1998, 36
(1), 47–74.

Frank, Robert H., Passions within Reason, New York: Norton, 1988.

Fre¼¬lin, Mark I. and Alexander D. Wentzell, Random Perturbations of Dynamical Systems,
Berlin: Springer-Verlag, 1984.

23 It can be shown that the equation (14) has only one real solution (the other solutions are imaginary).

24



Isen, Alice M., “Positive A¤ect and Decision Making,” in Michael Lewis and Jeannette M.
Haviland, eds., Handbook of Emotions, 2nd ed., New York: The Guilford Press, 1999. In press.

and John Marshall Reeve, “The In‡uence of Positive A¤ect on Intrinsic Motivation,” 1992.
Working paper, Cornell University.

and Paula F. Levin, “E¤ect of Feeling Good on Helping: Cookies and Kindness,” Journal of
Personality and Social Psychology, March 1972, 21 (3), 384–388.

, Kimberly A. Daubman, and Gary P. Nowicki, “Positive A¤ect Facilitates Creative
Problem Solving,” Journal of Personality and Social Psychology, June 1987, 52 (6), 1122–1131.

, Thomas E. Nygren, and F. Gregory Ashby, “In‡uence of Positive A¤ect on the Subjective
Utility of Gains and Losses; It is Just not Worth the Risk,” Journal of Personality and Social
Psychology, 1988, 55 (5), 710–717.

Johanson, Donald, From Lucy to Language, New York: Simon & Schuster, 1996. With contri-
butions by Blake Edgar.

Johnston, Victor S., Why We Feel, Reading, MA: Perseus Books, 1999.

Kahn, Barbara and Alice M. Isen, “The In‡uence of Positive A¤ect on Variety Seeking among
Safe, Enjoyable Products,” Journal of Consumer Research, 1993, 20, 257–270.

Kaufman, Bruce E., “Emotional Arousal as a Source of Bounded Rationality,” Journal of Eco-
nomic Behavior & Organization, 1999, 38, 135–144.

Laibson, David I., “A Cue-Theory of Consumption,” 1996. Working paper, Department of
Economics, Harvard University.

LeDoux, Joseph, The Emotional Brain: The Mysterious Underpinnings of Emotional Life, New
York: Simon and Schuster, 1998.

Lewin, Shira B., “Economics and Psychology: Lessons for Our Own Day from the Early Twen-
tieth Century,” Journal of Economic Literature, September 1996, 34 (3), 1293–1323.

MacLeod, W. Bentley, “Decision, Contract, and Emotion: Some Economics for a Complex and
Confusing World,” 1996. Working paper, C.R.D.E., Université de Montréal.

Rabin, Matthew, “Psychology and Economics,” Journal of Economic Literature, March 1998,
36, 11–46.

Romer, Paul M., “Thinking and Feeling,” 1999. Working paper, Graduate School of Business,
Stanford University.

Shapiro, Carl and Joseph E. Stiglitz, “Equilibrium Unemployment as a Worker Discipline
Device,” American Economic Review, June 1984, 74 (3), 433–444.

Stokey, Nancy L. and Robert E. Lucas Jr., Recursive Methods in Economic Dynamics,
Cambridge, MA: Harvard University Press, 1989. With Edward C. Prescott.

25



von Auer, Ludwig, Dynamic Preferences, Choice Mechanisms, and Welfare, Berlin: Springer-
Verlag, 1998.

Yerkes, R.M. and J.D. Dodson, “The Relation of Strength of Stimulus to Rapidity of Habit-
Formation,” Journal of Comparative Neurology and Psychology, 1908, 18, 459–482.

26


