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Abstract

This paper re-examines the individual income tax evasion decision in the simple framework in-

troduced by Allingham and Sandmo (1972), where the individual taxpayer decides how much of his

income is invested in a safe asset (reported income) and in a risky asset (concealed income). These

early models could not convincingly reproduce the empirically observed positive in�uence of higher

tax rates and higher gross income on tax evasion simultaneously. We replace the standard assump-

tion that risk aversion is the factor limiting the extent of evasion by assuming risk neutral taxpayers

and argue that this is a reasonable approximation. The observation that concealing income is costly

leads to the conclusion that, instead of risk aversion, evasion costs (such as concealment expenses and

moral cost) might be the factors that limit tax evasion. We reproduce the stylized facts not explained

by older models for very general tax and penalty schemes, including those where the standard model

de�nitely fails to do so.
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1 Introduction

The still widely used neoclassical framework for the analysis of income tax evasion was set out within

the seminal papers of Allingham and Sandmo (1972) and Yitzhaki (1974). One of the most important

questions in these early papers were: How do taxpayers (and evaders) react to changes in the tax rate, and

do people evade more when they get richer? Without doubt, the intuitive answers are: Higher tax rates

lead to more evasion and richer taxpayers will ceteris paribus evade more. And in fact, econometric studies

suggest that in this case intuition is a reliable guide (see e.g. Clotfelter (1983), Dubin et al. (1987), or

Feinstein (1991) for in�uential econometric studies, Andreoni et al. (1998) and Bayer and Reichl (1997)

contain more recent surveys). Unfortunately, the early models couldn�t simultaneously reproduce the

empirically observed relations in a convincing manner. Furthermore, the comparative static results were

not very robust against small changes in the tax and penalty schemes. In a setting where the penalty

depends on the evaded tax (Yitzhaki, 1974) and risk-averse taxpayers maximize expected utility the

two e¤ects even unambiguously point in di¤erent directions. When tax evasion increases with the gross

income it decreases with the tax rate or vice versa.

The neoclassical attempts to solve this puzzle led into two di¤erent directions. Many authors en-

dogenized variables such as public good provision, labour income and wages (see Cowell (1990) for a

comprehensive survey of these attempts). Others tried to incorporate personal perception variables like

equity into the utility function (e.g. Cowell, 1992; Bordignon, 1993). The former approach did not lead

to plausible explanations of the puzzle, while the latter lacked the robustness against small arbitrary

changes of functional forms.1

The second generation of tax evasion models - initiated by Reinganum and Wilde (1985) - came from

game and contract theory. These papers (see e.g. Border and Sobel (1987), Mookherjee and Png (1989),

Mookherjee and Png (1990), or Chander and Wilde (1998)) rather searched for an optimal, incentive

compatible, environment by optimizing tax, penalty and audit schemes, than to try to solve the puzzle

described above. Economic psychologists - mainly in experiments - found a variety of in�uence factors for

tax evasion. But the resulting frameworks were mainly descriptive and did not have too much predictive

power for expected behavioural reactions on changes in the environment (see Webley et al. (1991) for a

good overview).

This paper tries to provide a solution of the tax evasion puzzle by stepping back to the early models,

where we slightly change some assumptions. We assume risk-neutral instead of risk-averse taxpayers

and argue that this might be a viable approximation for the risk preferences in the case of tax evasion.

This assumption is justi�ed by experimental evidence and psychological theories. In some models dealing

with optimal taxation and tax evasion (Cremer and Gahvari, 1994), or with the black market economy

(Cowell and Gordon, 1995), this assumption has been used to keep the models tractable. Furthermore,

we introduce evasion costs, such as the �xed moral cost of doing something illegal or the variable costs

for concealing income and creating opportunities to evade.2

1For a recent review of the relevant theoretical and empirical literature see Slemrod and Yitzhaki (2002).

2A recent model involving avoidance costs is Slemrod (2001).
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In the following section the assumptions are justi�ed and an \example�, which has the generality

level of the early models, is set up. The comparative statics in section 3 show that we can reproduce

the empirically observed e¤ects. Section 4 extends this result to a wide range of tax systems, penalty

schemes, and evasion cost functions. The main conditions for our results to hold are a non-regressive tax

system and what we call a \fair�penalty scheme. We conclude with some �nal remarks.

2 The model

Within the following sections we use a certain speci�cation of the evasion costs, the tax system and the

penalty scheme. This makes the analysis quite easy, since closed form expressions for equilibrium values

and comparative static e¤ects are obtained. In addition the formulation below gives rise to a possible

comparison of our results with the results obtained in the literature. However, the derived results hold

for a broad range of di¤erent cost functions, tax and penalty schemes. The treatment of a general setting

can be found in section 3.

2.1 Opportunities and evasion costs

Di¤erent taxpayers have di¤erent tax-evasion opportunities. These di¤erent opportunities may stem from

di¤erent sources of income. For example employees have few possibilities to evade their working income

in many countries, since their taxes are directly collected and delivered to the tax authorities by the

employer.3 Opportunities to evade have to be created. Collusion with the employer and working in

the shadow economy are examples for creating such opportunities. On the other hand, self-employed

taxpayers have some more means of evading taxes. They can simply not report issued bills or make too

high deductions by handing in bills paid for private purposes. These di¤erent opportunities also apply for

other sources of income. We can think of gains from the capital markets, to. In Germany, for example,

taxes on interest payments have to be collected and delivered by the banks in behalf of their customers.

It is not too easy to get around this legal evasion obstacle. But, there are cases where collusion between

the banks and the taxpayers took place. This opportunity had to be created. By contrast, speculative

gains from trading with shares are easy to hide.4

This story tells us two things. Taxpayers have di¤erent opportunities to evade, and since opportunities

often have to be created or at least information about opportunities has to be gathered, underreporting

is costly. Obviously, the evasion opportunities a person has are closely related to the potential evasion

costs it has to bear. The more opportunities a taxpayer has the easier it is for him to evade, and the

lower are the evasion costs.

If we now consider a rational tax evader with an income y stemming from di¤erent sources, which

is the �rst part of income he will underreport? Obviously, the income from the source with the lowest

evasion costs. Additionally, he will use the cheapest means of underreporting �rst. To conceal further

3This is e.g. the case in Germany and Switzerland.

4Gains from trading with shares in Germany are considered to be speculative and regarded as taxable income, if the

shares are held for less than twelve months.
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income he might have to use costlier means and/or sources. In the German example for capital gains, a

person with income from the capital market may �rst underreport his gains from share trading, which

is related to low evasion costs, than bring some money abroad to create the opportunity to underreport

interest payments, and than try to establish collusion with the bank, which is very costly indeed.

Thus, the additional costs for further evasion are positively related to the share of income already

evaded. Furthermore, these costs decline with the individual opportunities to evade. To avoid the

technical problem to deal with a discontinuous cost function we use a continuous cost function as an

approximation.5 If we consider the relations being linear at the margin, the marginal costs of evading

can be written as:

C 0(h) =
h

y�
;

where h=y is the share of income not reported and � denotes the individual evasion opportunities. The

total evasion costs depend on the unreported income h and can be found by integration. This yields:

C(h) =

8<: �+ h2

2y� if h > 0

0 if h = 0
(1)

The integration constant � can be interpreted as the initial �xed costs of evading; i.e. the cost for

acquisition of information about opportunities to evade and the often claimed moral costs to do something

illegal. Furthermore, they can be seen as the cost of the �rst monetary unit evaded. This �xed cost might

be individually di¤erent as evasion opportunities are. Our notion of �xed evasion costs is related to the

approach in Myles and Naylor (1996). There an honest taxpayer enjoys some utility from conforming

with other honest taxpayers. A motivation why there may be a utility loss simply caused by the act of

evasion was �rst provided by Gordon (1989).

The quite arbitrary looking formulation of evasion costs is less crucial for the results to be derived

later than one might suspect. The properties we need are Ch > 0, Chh > 0, C� < 0 and Cyh � 0, where

subscripts denote partial derivatives. The explicit formulation is used for expositional reasons only.

2.2 Attitudes towards risk

The crucial assumptions driving the results in the early tax evasion models are those about the risk

preferences of the taxpayers. On the �rst sight, it seems very reasonable to assume risk-averse actors,

and consequently to use von Neumann-Morgenstern expected utility functions. But the empirical evidence

about risk preferences is somewhat mixed.6 Decision-making under risk is very sensitive against small

changes in the environment. Hence, to use the same model structure for portfolio decisions with risky

assets and tax evasion does not necessarily mean that it is sensible to use the same risk preferences, too.

Additionally, even for portfolio decisions concave expected utility functions may not be appropriate at

all.7 In our opinion, it is possible to resolve many decision anomalies in the context of tax evasion, which

5This seems to be justi�ed by the fact that there are many means and actions - with di¤erent costs associated - that can

be taken to evade taxes.

6For a survey see Camerer (1995) or Camerer (1998). An older, but more rigorous treatment is found in Machina (1987).

7For obvious de�ciencies of expected utility theory see the stunning calibration exercise in Rabin (2000).

4



are widely discussed in the economic psychology literature, by assuming - as an approximation - risk

neutral taxpayers.

The speci�cation of risk preferences according to the Prospect Theory proves to be a good working

hypothesis (Kahneman and Tversky, 1979). Psychologically, changes in the environment that lead to a

reduction in (economic) freedom (e.g. higher tax rates) are very likely to lead to the so called reactance

phenomenon (Brehm (1966) and Brehm and Brehm (1981)) if we consider the situation of the taxpayer�s

reporting decision. Reactance - in this context - means that people use an available instrument (here:

tax evasion) to win back their freedom.8 This is the basis for the assumption of the risk loving taxpayer

in situations where he wants to avoid a sure loss - as predicted by prospect theory. Beyond the reference

point, where the prospect is a possible gain, it is reasonable to stick to risk aversion as an assumption,

since the taxpayer sees the situation as a usual gamble - again, as prospect theory predicts.9 But just

to incorporate such preferences into a usual framework of tax evasion is not viable and needs further

assumptions. First of all, the individual reference point has to be determined and, secondly, we have to

decide the extent of risk aversion and risk love for the di¤erent net income levels.

The assumptions about relative and absolute risk aversion (using von Neuman-Morgenstern utility

functions) were crucial for the predictions of the early tax evasion models. We claim that in the tax evasion

game - because of the game being played repeatedly and with high stakes - people are approximately

risk neutral. For the case of losses and high stakes experimental evidence shows that people are in fact

approximately risk neutral (Kachelmeier and Shehata, 1992). Furthermore, the fact that the game is

played repeatedly leads to the reasoning that the variance of the average period payo¤ (over all periods)

is much smaller than the variance of an actual period payo¤. This means that the uncertainty in the

repeated game is much smaller than in the one shot game. This should reduce risk aversion. Evidence

for this claimed e¤ect was also found in the mentioned experiments of Kachelmeier and Shehata where

gains or losses were added to or taken from virtual lifetime accounts.

In using risk neutrality as an assumption we have a fairly good approximation for preferences in risky

games with high stakes, regardless whether they are considered as possible gains or possibly avoidable

losses. In the case of tax evasion this assumption might be a better approximation than the traditional von

Neumann-Morgenstern approach. In addition, we do not run into the problem of �nding a reference point

as if we wanted to use the preferences proposed by the Prospect Theory. This makes our further analysis

comparatively simple, and reproduces - as we will show - empirically observed behavioural reactions of

taxpayers to changes in the environment.

8There are several conditions determining whether reactance occurs and what reduction instruments are used. The very

interesting discussion about the consequences for situations where the Prospect Theory can be applied has still to be led.

9That this preference reversal phenomenon is relevant in the case of tax evasion is supported by experimental data

reported in Bayer and Reichl (1997). There tax evasion behaviour is negatively correlated with the change in the degree of

satisfaction with the system, which is used as an indicator for externally caused prospective utility changes.
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2.3 Tax system

We use a progressive tax system to cope with reality. On the other hand, to keep things simple, , we

assume in this example that the tax rate is linearly dependent on the reported income. Furthermore, to

ensure that the decision function of the taxpayers is continuous and di¤erentiable, we assume that already

for the �rst unit of income tax has to be paid and that the maximal tax rate is reached at the highest

income in the population.10 Then (true) tax liability T for a certain income y is given by T (y) = t(y)y,

with t(y) = �y + �, where � represents the marginal rise of the tax rate with respect to income, which

is a measure for the progression of the system. The � is a constant part of the tax rate. Variations of �

can be used to change the tax rate for all incomes by the same amount. We get:

T (y) = �y2 + �y: (2)

Certainly, to obtain the tax liability with unreported income, the true gross income y has to be replaced

by the declared income (d = y � h). The assumed linear dependency of the marginal tax rate on the

declared income is not crucial for our analysis. The main results hold, as long the tax system is not

regressive.

2.4 Detection, penalties and expected payo¤

As in the basic models of tax evasion we assume a �xed probability p of being audited. This can be

interpreted as the given strategy of the tax authority being to audit a certain amount of taxpayers

randomly. We assume further that an audit reveals the true income with certainty. If an audit detects

underreporting the tax cheat will have to pay his true tax liability and an additional penalty. Here, we

assume that the penalty is a linear function of the amount of taxes the taxpayer tried to evade, which

is T (y) � T (y � h) = h(� � h� + 2y�). Thus, denoting the penalty parameter by f , the payo¤ after an

audit D(h) is given by

D(h) = y � T (y)� f [T (y)� T (y � h)]� C(h): (3)

We chose this speci�cation of the penalty scheme, since this is the same as Yitzhaki (1974) used to �nd

that for a proportional tax system (� = 0 in our setting) the relation between tax evasion and tax rate

de�nitely has another sign than the relation between tax evasion and gross income.11 The main results

hold as well for other speci�cations.12 On the other hand, if a tax cheat gets away with his underreporting

his payo¤G(h) will be his true income minus the tax payments associated with his reported income and

the evasion cost. This is expressed by the following equation:

G(h) = y � T (y � h)� C(h): (4)

10The main �ndings of this chapter are not a¤ected by these assumptions as section 4 shows.

11There, for a decreasing (increasing) absolute risk aversion the relationship between tax rate and evasion is negative

(positive), that between gross income and evasion is positive (negative).

12For a general treatment see section 4, where we de�ne the class of �fair� penalty schemes and show that this is a

su¢ cient condition for our results to hold.
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Since we assume that there is no reward for overreporting of income we can restrict h to values bigger or

equal to 0 in both cases.13 A rational risk-neutral taxpayer maximizes his expected ex post income by

choosing an optimal level of non-reported income. The expected ex post income E(h) is the sum of the

with their probability weighted play-o¤s for the two states of the world; i.e. being audited or not:

E(h) = pD(h) + (1� p)G(h) (5)

2.5 Optimal underreporting

Denoting the declared income (y � h) by d, the �rst-order condition for this maximization problem is

given by:
dE(h)

dh
= (1� p)@T (d)

@d
� pf @T (d)

@d
+
@C(h)

@h
= 0: (6)

Examining the �rst-order condition part by part we see that the �rst (positive) part is the expected

marginal gain for a further monetary unit of unreported income, while the following (negative) parts are

the expected marginal penalty from undetected evasion and the marginal evasion cost of a further unit

of unreported income.

We can �nd combinations of the auditing parameters f and p that ensure everyone to be honest. The

condition deterring tax evasion is p + pf � 1. If this condition holds the marginal gain (net of evasion

costs) of not reporting a unit of income is always negative. The gamble against the tax authority is an

unfair one and no risk neutral taxpayer will evade. Since in reality the parameters are such that people

evade taxes, we will not look at such cases. Bernasconi (1998) reports p + pf = :054 for the US and

similar values for other countries. So we restrict our parameters in a way that the following inequality

holds:14

p+ pf < 1:

As easily can be checked, the second derivative is negative and the second order condition for a maximum

is ful�lled if we impose this restriction:15

d2E(h)

dh2
= (p+ pf � 1)@

2T (d)

@d2
� @

2C(h)

@h2
< 0:

Plugging the values for our speci�cation into the �rst-order condition (equation 6) and solving for h

yields, an interior solution assumed, a closed form solution for the optimal amount of income not reported

h�, which is:16

h� =
(1� p� pf)(2�y + �)
2�(1� p� pf) + 1=(�y) (7)

For an interior solution the tax gamble has to be fair and the �xed evasion costs � have to be su¢ ciently

small. In the following section we will assume this to be the case. For a further analysis see section 3.4.

13To assure this, we furthermore have to assume that there is no reward to a negative income such as a negative income

tax.

14For other speci�cations this �more than a fair gamble� condition is slightly more complicated. E.g. in the Alling-

ham/Sandmo setting for �nes we would get ps < 2y�(1� p):
15This is the case since we assumed an indirectly progressive tax system (T 00 > 0) and increasing marginal evasion costs

(C00 > 0).

16Recall that � was the parameter for the evasion opportunity.
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3 Comparative statics

The standard models of tax evasion with taxpayers being risk-averse and having risk preferences, that

are not a¤ected by changes in parameters, are not capable of simultaneously explaining the empirically

observed positive relations between unreported income and tax rates and between true and non-reported

income.17 So it is useful to have a look on the relationships our model predicts. In this and the next two

sections we will restrict ourselves to parameter constellations with interior solutions. The conditions for

corner solutions are examined in section 3.4.

3.1 Changes in the tax system

In the case of tax rate variations there are two di¤erent sub cases of interest. What happens,

1. if the tax rate rises due to a ceteris paribus increase in the progression � ,

2. if the tax rate rises for everyone by the same amount (increase in �)?

The marginal changes in non-reported income in equilibrium is given by implicit di¤erentiation of

the �rst-order condition. For case one, where the marginal tax rate rises, while the income independent

component of the tax rate stays the same, the change in optimal underreporting is given by:18

@h

@�

����
h=h�

= �Eh�
Ehh

=
(1� p� pf)(y � h)�

1=(2y�) + �(1� p� pf) > 0: (8)

We already know that the second derivative of the expected ex-post income with respect to the unreported

income is negative. Thus the sign of equation 8 is given by the sign of the numerator. It is obvious that for

an interior solution (0 < h� < y) ceteris paribus the in�uence of the marginal tax rate on the unreported

income is positive. This result holds for all non-regressive tax systems since the conditions for the positive

sign are Ty� > 0, Tyy � 0 and Chh > 0. The �rst condition can be interpreted as the fact that a ceteris

paribus rise in the progression, holding the tax rate for the poorest taxpayer constant, leads to a higher

marginal tax rate. The second condition assures that the tax system is not regressive; the third that the

marginal evasion costs are rising with unreported income.

The second case, where the tax rate rises for everybody by the same amount, is represented in our

model by a rise in �. Again, implicit di¤erentiation of the �rst-order condition leads to the equilibrium

change of the unreported income:

@h

@�

����
h=h�

=
1� p� pf

1=(y�) + 2�(1� p� pf) > 0:

17For the early basic models see Allingham and Sandmo (1972) and Yitzhaki (1974), who assume constant tax rates,

Christiansen (1980) for progressive tax systems, and Clotfelter (1983) who estimates the e¤ects of changing tax rates with

TCMP data.

18Subscripts denote partial derivatives. Furthermore, we use implicit instead of explicit di¤erentiation, since this makes

the analysis much simpler.

8



We see that the in�uence of an increased constant part of the tax rate on unreported income is positive

as well.19 To see how tax evasion is in�uenced by changes in the tax rate we have to examine the relation

between evaded tax (denoted by F ) and unreported income (h). This relationship is purely technical,

and is determined by the tax system as the di¤erence between the true tax burden and the tax burden

with cheating:

F (h) = T (y)� T (y � h) = h(�� �h+ 2�y) (9)

To �nd the change in the amount of tax evaded if one of the tax rate parameters rises, we have to examine

the sign of the derivatives of F (h) in equilibrium with respect to the interesting parameters.

@F (h�; �; �)
@�

= �
@h�

@�
+ h� + 2�

@h�

@�
(y�h�) > 0 (10)

@F (h�; � ; �)
@�

= �
@h�

@�
+ (2�

@h�

@�
+ h�)(y�h�) > 0 (11)

We see that both derivatives are positive. Considering the assumed inner solution for h� we can state

that raising the tax parameters leads to more income unreported and through that channel to more taxes

evaded. If the taxpayer reported no income before, he will report no income after the change of the tax

rate again. The relations shown above lead to the following Proposition.

Proposition 1 In our example an increase in the tax rate, interpreted as an increase in � or in �; leads

to

1. more income underreported,

2. to more tax evasion if an interior solution is realized before the tax rate change,

3. to a taxpayer that has hidden his entire income before the change, to do so afterwards.

3.2 Changes in the individual parameters

In our model, two individual characteristics, the gross income y and the evasion opportunity �; are

exogenously given parameters. Let us now consider the changes of the taxpayers� behaviour due to

exogenous changes in these parameters. It is quite obvious that a greater opportunity for evasion -

exogenously determined by sources of income, knowledge of evasion possibilities, etc. - should lead to

higher tax evasion. And indeed, a higher � induces more non-reported income, and ceteris paribus more

tax evasion. This is shown by the following equation:

@h

@�

����
h=h�

= �Eh�
Ehh

=
h�

� + 2�2(1� p� pf)=y
� 0 (12)

As intuition and real world data suggest, the non-reported income should increase with the gross

income. The following implicit derivative shows that this is in fact true for our example, since the right

hand side is positive, whenever an interior solution is achieved (1� p� pf > 0):
@h

@y

����
h=h�

= �Ehy
Ehh

=
h�=(y2�) + 2�(1� p� pf)
1=(y�) + 2�(1� p� pf) � 0 (13)

19The e¤ect for a proportional tax system, which makes our result comparable to the Yitzhaki result, is obtained by

setting � equal to 0. Certainly, the result still holds.
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This rather trivial result is quite important. Combining this result with the result of proposition 1 we get

the empirically observed result that both relations - tax rate and income to evasion - point in the same

positive direction. The existing theoretical literature could not unambiguously reproduce these empirical

�ndings 20 A further result we get is that a taxpayer that reported at least a certain amount of income

(h� < y) will at least report a fraction of his additional income. This is true since the implicit derivative

in equation 13 is smaller than one in that case. Using equations 12 and 13 we can state the following

proposition.

Proposition 2 Ceteris paribus in our example,

1. a taxpayer will evade more (less) taxes the higher (lower) his evasion opportunity is,

2. an interior solution assumed, rising income leads to more tax evasion, and

3. an additional unit of income is reported at least partly, if the taxpayer reported some income before.

3.3 Changes in the enforcement parameters

The most obvious results we get for the comparative statics of changes in the enforcement parameters, i.e.

the exogenously given auditing probability and the penalty scheme. As in the classic tax evasion models

a higher audit probability p leads to lower underreporting. The same is true for higher penalties which

is indicated by a higher penalty parameter f . Applying the same procedure as above to determine the

sign of equilibrium changes in the non-reported income due to a variation of the enforcement parameters

we get:

@h

@p

����
h=h�

= �Ehp
Ehh

= � (1 + f)(�+ 2�(y � h
�)

1=(y�) + 2�(1� p� pf) < 0 and (14)

@h

@f

����
h=h�

= �Ehf
Ehh

= � p(�+ 2�(y � h�)
1=(y�) + 2�(1� p� pf) < 0 (15)

The two equations above show that audit probability and �nes are both appropriate instruments to

lower underreporting, since both implicit derivatives are negative.21 As easily can be checked, the e¤ect on

the taxes evaded points in the same direction.22 This is the standard �nding in the tax evasion literature.

More interesting than this rather trivial statement is the question, which instrument is the more e¤ective

in reducing the amount of unreported income. To make the e¤ects on underreporting comparable we

derive the elasticities that show the percentage of reduced underreported income as consequence of a

percentage rise in the enforcement parameter. The two elasticities are:

�h�;p =
p

h�
@h

@p

����
h=h�

= � (p+ pf)(�+ 2�(y � h�)
h� [1=(y�) + 2�(1� p� pf)] (16)

�h�;f =
f

h�
@h

@f

����
h=h�

= � pf(�+ 2�(y � h�)
h� [1=(y�) + 2�(1� p� pf)] (17)

20 In the Yitzhaki model speci�cation this is not possible. In the original Allingham/ Sandmo speci�cation it is possible.

But there are strong conditions the expected utility functions and the system parameters have to ful�l. Further unrealistic

is that there the higher the tax rate is, the less likely is the positive sign for both relations.

21That is true for an interior solution (y > h > 0), which implies a gamble with positive expected value (1� p� ps > 0).

Note, that we assumed an interior solution to exist.

22This is due to the implicit derivatives of th� having the same sign as equations 14 and 15.
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We immediately �nd that the absolute value of the audit probability elasticity �h�;p is higher than

that of the penalty parameter �h�;f . This means that - as empirical evidence suggests - raising the audit

probability is more e¤ective than imposing more severe penalties.23 However, the desirability of using

the instruments depends heavily on the associated costs.

Proposition 3 Raising the audit probability and imposing higher �nes are means of achieving lower

underreporting, but audit probabilities are more e¤ective than �nes.

3.4 Honest taxpayers, evaders and ghosts

Since we assumed that there is an initial �xed cost � of behaving as a cheat, for some taxpayers - in

expected terms - it will not be pro�table to evade taxes, even if the game is a gamble that is better than

fair. The individual will compare the expected payo¤ she yields if she decides to bear the initial �xed

evasion costs and chooses the optimal amount of underreporting with the certain payo¤ she yields if she

does not evade. She will evade if and only if E(h�) > y � T (y). Dividing the net expected value in a

gross component Ê(h�), which depends on the non-reported income, and in the �xed cost � we get the

following condition for evasion Ê(h�)�� > y�T (y). Solving for � we obtain the minimum �xed evasion

cost �l to force an individual taxpayer to be honest:

�l = Ê(h
�)� (y � T (y)) (18)

To study the change of the behaviour of former honest taxpayers due to changed personal or tax

system parameters, we have to examine the change of this minimum �xed cost necessary to prevent

cheating. If the reaction of �l is positive and a continuous distribution of � exists, which assigns positive

frequencies to the whole range of [0; �h] with �h > �l; then at least one formerly honest taxpayer is

becoming a cheat.

Since the �xed cost is an additive constant within the net expected payo¤ function, the implicit

derivative of the net payo¤ with respect to the interesting parameters is equal to that of the gross payo¤;

i.e. @Ê(h�)=@(�) = @E(h�)=@(�). This gives the following equation that decides the change in �l for an

individual taxpayer:
@�l
@(�) =

@E(h�)

@(�) � @[y � T (y)]
@(�) (19)

We immediately see that for changes in the parameters that have no in�uence on the net income after

being honest; i.e. p, f and �; we get the same sign for our change in the minimum �xed evasion cost that

deters from evasion as for the comparative static analysis above. In conclusion we can say - as intuition

suggests - that lower audit probabilities and �nes, as well as greater opportunities to evade, lead to more

formerly honest taxpayers becoming tax cheats.

In the case of a higher tax rate we have to calculate @�l=@� and @�l=@�. Both derivatives are

23This �nding is robust to the changes in the penalty scheme. E.g. the Allingham and Sandmo speci�cation leads to the

same result.
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positive:24

@�l
@�

= (1� p� pf)(2y � h�)h� > 0 (20)

@�l
@�

= (1� p� pf)h� > 0 (21)

Thus, rising tax rates - from an increase either in the income-dependent (�) or the independent (�)

component - induce formerly honest taxpayers to underreport their income.

The question whether a rise in personal income promotes honest taxpayers to become evaders depends

on the sign of the following derivative:

@�l
@y

= h�
�
2(1� p� pf) + h�

2�y2

�
> 0 (22)

The e¤ect of a rise in gross income on a marginally honest taxpayer is positive as well. Summing up our

�ndings about formerly honest taxpayer�s reaction to changes in the model parameters (from equations

20 to 22) gives us the following proposition.

Proposition 4 Under the assumption that the �xed evasion cost distribution provides positive frequencies

for all � 2 [0; ��] such that there always exists at least one taxpayer that is indi¤erent between reporting

his entire income or not reporting h� we can say that there is at least one formerly honest taxpayer that

starts cheating

1. if the tax rate (� and/or �), the income (y), or the evasion opportunity (�) increases, and

2. if the audit probability (p), or the �ne rate (f) decreases.

Another interesting question concerns the condition under which a taxpayer prefers to declare no

income at all and becomes what in the literature is called a \ghost�.25 To �nd the necessary (and for

small � su¢ cient) condition for a taxpayer to prefer to be a ghost, we take equation 7, which determines

the optimal non-reported income h� and set h� equal to y. Solving for � and recalling that h� increases

with �, leads to the following handy inequality:

� � 1

�(1� p� pf) (23)

Proposition 5 For su¢ ciently large opportunities for evasion, a high income independent part of the

tax rate and su¢ cient low audit probabilities and �nes an individual taxpayer will become a ghost and

report no income at all.

4 The general case: income and policy e¤ects

We have already argued that our �ndings about the taxpayers�reactions on changes in parameters are

quite general. In this section we show the necessary conditions for our main results to hold. For this

24Note that here h� is the hypothetical optimal amount of not declared income if honesty was not possible.

25More precisely, a ghost is someone who does not make a tax declaration. However, it is not possible in our model to

distinguish between zero declarations and no declarations at all.
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purpose, we set up a general framework and formulate requirements for the functions that ensure that a

taxpayer ceteris paribus reacts with more tax evasion on higher taxes and on more personal gross income.

More generally, we introduce a policy parameter � that the government can in�uence. This gives us the

possibility of analyzing the reactions of the taxpayer to certain policies.

To make the general analysis as easy as possible we de�ne the decision problem in terms of undeclared

income h and use functional forms for the evasion cost C(h; y; �; �), the tax system T (y; �) and the �ne

F (h; y; �), where y denotes the true income. Sometimes, it might be convenient to replace the declared

income y � h by the variable d. Later on, we impose reasonable restrictions on the functional forms,

which stem from real world observations and allow us to get clear comparative static results.

4.1 Tax system, penalty scheme, and evasion cost

4.1.1 Tax system

The tax system assigns a tax liability to every (declared or true) income. Without much loss of generality

we can specify the tax systems in terms of parameters:

T (y; �) = t[y; �]y = [r(y; �)� z(y; �)]y (24)

The tax system T (y; �) is assumed to be continuous and di¤erentiable with respects to its arguments.

With this speci�cation we can generate nearly every possible continuous and di¤erential tax system. To

exclude non-di¤erentiable (with respect to the average tax rate) tax systems seems to be a severe loss of

generality, since most real systems are not. But if the systems are at least continuous and monotonous

in the average tax rate our results still hold with weak inequality. For other systems a reasonable

continuous approximation might lead to reliable results as section ?? shows. The intuition for our results

going through with weak inequalities in a monotonous tax system, which is continuous but not globally

di¤erentiable, is the following. Changes in parameters will cause changes in the directions we predict,

unless the taxpayers�optimal declaration is at a kink before the parameter change takes place. Then

it is possible that the optimal declaration after the parameter change will still be at the kink. But the

reaction will never be in the direction opposite to the predictions our di¤erentiable model provides.

In our di¤erentiable model t(�) denotes the average net tax rate, which is composed of the tax rate

r(y), and an income-dependent transfer rate z(y).26 It is reasonable to use an additive formulation with

income and the policy parameter � as the common independent arguments. It may seem a bit unfamiliar

to formulate transfers in the way we did, but to express transfers as negative taxes with a certain tax

rate z(y; �) will soon prove to be very convenient. Furthermore, a negative income tax �ts into this

speci�cation, as a constant subsidy does.27 The average tax rate rises when its tax component increases.

It falls with the subsidy component. But the only important decision criteria for the taxpayer is the

26Note, that here, in contrast to the example used above t is a function of y to allow for other than linearly progressive

tax systems.

27Tax allowances are not covered by our speci�cation, since the tax liability function in that case is neither continuous,

nor di¤erentiable. But our speci�cation covers lump sum payments as well as a negative income tax.
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aggregate average net tax rate t(y; �). We may conveniently concentrate on this function, without loss

of generality.

Let us establish the conditions for a tax system to be non-regressive. A tax system is called globally

non-regressive if the average tax rate is monotonously increasing in income over the whole domain. The

condition is:
@r(y; �)

@y
� @z(y; �)

y
� 0 8y

Without any loss of generality we can state the following de�nition:

De�nition 1 A tax system is called globally non-regressive if and only if the following condition holds:

@t(y; �)

@y
� 0 8y (25)

4.1.2 Penalty schemes

Following our general approach, we allow the penalty scheme F (h; y; �) to be dependent on undeclared

income h, true income y and the policy parameter �. Thus the speci�c penalty described by our general

penalty scheme can depend on the amount of non-reported income and on the evaded tax as well, which

were the speci�cations of Allingham and Sandmo (1972) and Yitzhaki (1974), that proved to be crucial

for the results. Furthermore, this general representation allows for an income dependent penalty like it is

the case for many real tax systems. Examining existing penalty schemes more closely we see that usually

two components determine penalties for tax evasion: income and a measure for the severity of the o¤ence.

The amount of tax the taxpayer tries to evade (denoted by Te) or the amount of concealed income h are

the two natural possibilities for the latter. Following the observation that the income and severity parts

are multiplicatively combined in real world tax laws, we can write:

F (h; y; �) = g(y; �) � f(Te; �) or (26)

= g(y; �) � f(h; �)

The German law, for example, uses an income component, which is the income per day (y=365), not only

for tax fraud but for many di¤erent kinds of crime. To include the speci�cations of earlier models, we

also allow for a penalty scheme that has no income component (i.e. g(y; �) = 1 8y). We impose further

restrictions on the parts of the penalty scheme, to obtain a class of penalty schemes, which we will call

\fair�. If a fair penalty scheme has an income component the �ne should be proportional to the income.

The severity component has to be proportional to the severity measure used.28 If we denote the product

of the constant proportionality factors with f(�), we can sum up potentially fair tax systems in table 1.

Our second condition for a fair penalty scheme is that the proportionality factor f(�), which is the

same for all taxpayers should be chosen the way that detected tax evasion does not lead under any

circumstances to a negative ex post net income. That means that y � t(y)y � F (h; �) � 0 has to hold for

all income levels and all evasion levels.

28These properties are widely observed in real world tax systems as far as monetary penalties are concerned. The latter

restriction may not hold for the degree of severity, when the penalty becomes imprisonment. For simplicity reasons we do

not consider those discontinuities of penalty schemes.
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component with income without income

evaded tax f(�) � y � Te f(�) � Te
concealed income f(�) � y � h f(�) � h

Table 1: Potentially fair penalty schemes

component with income without income

evaded tax f(�) � (1� t)=(ty) f(�) � (1� t)=t

concealed income f(�) � (1� t)=y f(�) � 1� t

Table 2: Fair penalty factors

Table 2 reports the maximal proportionality factors to assure that the condition above is ful�lled.

Upper bars denote maximum values in the population.29 Using the conditions imposed above we can

state the following de�nition for a \fair�penalty scheme.

De�nition 2 A penalty scheme is called fair if it has the following properties:

1. It never leaves the taxpayer with negative ex post period income.

2. Its severity of o¤ence component is proportional to the evaded tax or to the concealed income.

3. If it has an income component, the income component is proportional to the gross income.

4. If it has an income component the income component is multiplicatively combined with the severity

of o¤ence component.

4.1.3 Evasion costs

In specifying the evasion cost we stick to the de�nition we made above. In addition, we add the policy

parameter to its arguments, since some governmental action may have an in�uence on the evasion cost.

We assume the evasion cost to be growing with non-reported income. The marginal evasion cost is non-

decreasing in the income non-reported. The costs further depend on the gross income and on the evasion

opportunity. By de�nition evasion costs fall with an increasing evasion opportunity. We can write the

evasion cost as C(y; h; �; �) according to our assumptions:

@C

@h
> 0,

@2C

@h2
> 0 8h 2 [0; y] (27)

@C

@�
< 0 8� (28)

A crucial question is the change in marginal evasion cost when income rises. If we think of a rise in all

di¤erent income sources, then the marginal evasion costs should decrease in our continuous approximation

with a rising income for all levels of evasion, because the cheapest means of evading can be used to evade

29To see, that the condition holds for all incomes and tax rates lower than the maximal values, use the general forms (t(y)

and y) and calculate the derivative with respect to y. Since the derivative is negative, and for non-regressive tax systems t

is non-decreasing in y, we �nd that the maximal values are the crucial ones.
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a bigger amount. The other extreme is that the new source of income has a higher marginal evading cost

than all old sources of income. Then there is no change in the marginal cost of evading up to the old

income. If the new (single) source of income lies with its marginal evasion cost somewhere in between

the lowest and highest sources then the marginal evasion cost sinks for all evasion levels that cannot be

achieved with this source. Expressed in technical terms with respect to the undeclared income we get:

@2C

@h@�
� 0 8h; � (29)

For convenience we de�ne a typical average evasion cost function. The assumption that a higher

income does not systematically more likely stem from a certain source leads to the conclusion that on

average the new income rises equally for the di¤erent income sources. The counterpart - in terms of

an evasion cost function - is a marginal concealment cost, that depends somehow on the share of non-

reported income to gross income. So our evasion cost function of section 2 could be a typical average

evasion cost function. To allow for cost functions of di¤erent steepness we use a parameter 
 as exponent

which has to be larger than one. Policy in�uences are modelled as changes of the evasion-opportunity

level. Then a typical average evasion cost can be de�ned as follows:

De�nition 3 A typical average evasion cost function has the form

C(h; y; �) =
h


�(�) � ywith 
 > 1: (30)

4.2 Optimal reported income

Putting all the parts together we can write down the expected income, conditional on the amount of

undeclared income:

E(h; �) = (1� p)[y � (y � h) � t(y � h; �)]� pF (h; �)� C(h; �) (31)

Having set up the general model, we can state the �rst-order condition for individually optimal non-

reported income:30

Eh = (1� p)Td � pFh � Ch = 0 (32)

We assume that this condition can be met: this means that we have a local extremum for at least

one taxpayer. To check whether we get an interior solution, that maximizes the expected value of the

taxpayer, we have to look on the second order condition. We obtain always an interior solution and a

maximum, whenever the second derivative is globally negative.31 The second order condition is:

Ehh = �(1� p)Tdd � pFhh � Chh < 0 (33)

Tdd is non negative if we assume a globally non-regressive tax system, since it is just the second derivative

of the tax liability. It could only be negative if the marginal tax liability were falling. But this would

violate the condition for a globally non-regressive tax system. In the following we will restrict ourselves to

30Subscripts denote partial derivatives. Using the Tax liability T is convenient to abbreviate the notation.

31A further necessary condition is that there exists a taxpayer with su¢ ciently low �xed evasion costs �. This is assumed

in the following analysis.
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globally non-regressive tax systems, and hence the �rst term has to be non-positive. The second term is

non-positive if the penalty rises proportionally or more than proportionally with the not declared income,

i.e. the marginal penalty is not decreasing with concealed income. The third term is negative, since the

evasion costs rise more than proportionally with the not declared income. In conclusion we can say that

for a penalty scheme, where the penalty is at least proportional to the unreported income, the extremum

found by the �rst-order condition is a maximum. A unique solution is obtained, since the optimization

problem is globally convex in that case. Even for a penalty system that has falling marginal penalties

the optimization problem is well behaved if the curvature of the evasion cost dominates the curvature of

the penalty function. In the following we assume an interior solution.

If we examine the �rst-order conditions for the di¤erent fair penalty schemes, we see that the necessary

conditions for an interior solution are that, on the one hand, the tax system is such that the taxpayer faces

a better than fair gamble, and on the other hand, the evasion costs are growing fast enough to prevent

the taxpayer from becoming a ghost. The latter condition is assumed to be ful�lled in general. The

(global) fair gamble conditions for the di¤erent penalty schedules are shown in table 3. The dependence

of f on � is omitted.

component with income without income

evaded tax 1� p� f � p � y > 0 1� p� f � p > 0

concealed income (1� p)Td � f � p � y > 0 (1� p)Td � f � p > 0

Table 3: Global fair gamble conditions for fair penalties

The fair gamble conditions have to be satis�ed. Otherwise nobody will evade anything. Now it is

easy to check the second order conditions for the di¤erent fair penalty schemes. They are shown in table

4. Since Chh is positive and Tdd is non-negative (under the assumption of a non-regressive tax system),

the second order conditions for a maximum are always met if the fair gamble condition holds.

component with income without income

evaded tax �Chh � Tdd(1� p� f � p � y) �Chh � Tdd(1� p� f � p)

concealed income �Chh � (1� p)Tdd �Chh � (1� p)Tdd

Table 4: Second order conditions

This leads us to the following proposition.

Proposition 6 Under a non-regressive tax system, a fair penalty scheme, su¢ ciently low �xed evasion

costs, and su¢ ciently fast growing typical average evasion costs we obtain a unique, interior solution for

the maximization problem.
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4.3 Changes in gross income

Assuming that the conditions for an interior solution above hold we are able to examine the e¤ects of

policy changes and changes in income. The evaded tax is given by the equation:

Te(h; y) = T (y)� T (y � h)

Di¤erentiation with respect to y leads to

@Te(h; y)

@y
=
@T (y)

@y
� (1 + @h

�

@y
)
@T (d)

@d
, (34)

where @h�=@y represents the change of the optimal unreported income due to a change in gross income.

We see that @h�=@y > 0 is a su¢ cient condition for a higher gross income to lead to a higher amount of

taxes evaded. The reason for this fact is that a non-regressive tax system implies @T (y)=@y � @T (d)=@d.

We have to determine the sign of @h�=@y, which is given by:

@h

@y

����
h=h�

= �Ehy
Ehh

=
(1� p)Tdd � Cyh � pFyh

�� (35)

The second derivative of the objective function (i.e. Ehh) is denoted by �. Since �� is positive, we only

have to look for the sign of Eyh. We know that (1� p)Tdd, which is the incentive to evade in order to get

a lower tax bracket for rising income, is non negative. The mixed derivative of the typical cost function

used here is negative - and so �Chy is positive. The value of the mixed derivative of the penalty scheme

Fyh, can be interpreted as the change in the marginal penalty due to an increasing income, and depends

on the speci�cation. A closer examination leads to the following proposition.

Proposition 7 Under a non-regressive tax system a taxpayer with a typical average evasion cost function

will evade more taxes when his gross income rises, if the fair penalty scheme has no income component. If

the fair tax system has an income component, a taxpayer facing a non-regressive tax system and a typical

average evasion cost function for realistic detection probabilities and tax rates will evade more taxes when

her gross income rises even if the system is least favourable for evasion.

Proof. See appendix.

4.4 Policy e¤ects

After checking the conditions for a higher gross income leading to more tax evasion we now examine the

e¤ects of policy changes on tax evasion. Since the e¤ects of higher audit probabilities p and higher �nes

- i.e. an increased f - are not very interesting and lead to the intuitive result of less tax evasion, we

concentrate on changes in the tax system and the evasion opportunity. We again restrict our attention

to non-regressive tax systems, fair penalties and typical average evasion costs.

4.4.1 Changes in the tax system

A policy change a¤ecting the tax laws is expressed by a change in the policy parameter �. Here we

assume that such a policy change does not in�uence the evasion opportunities and the evasion costs,
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i.e. Ch� = 0. But since the penalty for detected tax evasion may depend on the tax rates, the e¤ective

penalty can be changed by a change in the tax law.

The e¤ect of a policy change is given by:

@h

@�

����
h=h�

= �Eh�
Ehh

(36)

Since we know that the second derivative of the objective function is negative, it is su¢ cient for determ-

ining the sign of equation 36 to �nd the sign of Eh� . If we restrict ourselves to the fair penalty schemes

de�ned above, we can report (in table 5) the mixed derivatives for the schemes based on evaded tax Te

or concealed income h, respectively with or without income components.

component with income without income

evaded tax (1� p� fpy) [t�(d�) + d�td�(d�)] (1� p� fp) [t�(d�) + d�td�(d�)]

concealed income (1� p) [t�(d�) + d�td�(d�)] (1� p) [t�(d�) + d�td�(d�)]

Table 5: E¤ects of policy changes

In the case where the evaded tax Te is the measure for the severity of the o¤ence the �rst term in

brackets (for systems with or without income component) is positive because it is just the fair gamble

condition from table 3.

For the case where the concealed income is the measure the term (1�p) is obviously positive as well. We

see that the sign of equation 36 for fair penalty schemes only depends on the sign of [t�(d�) + d�td�(d�)],

which is just the cross derivative of the tax liability for the formerly optimal income declared (denoted

Td�(d
�)).32 If we postulate that the change does not lead to a regressive tax system we know that for an

increase of the average tax rate (i.e. t�(d) > 0) the change in the marginal tax liability (Td�(d)) has to

be positive as well. The interpretation of this �nding is given in the following proposition.

Proposition 8 A change in a non-regressive tax system with a fair penalty scheme, which leaves evasion

opportunities unchanged and results in another non-regressive tax system, leads to a taxpayer concealing

more income if the average tax rate at his formerly optimal declared income rises.

Tax evasion due to changes in the tax system is promoted by two things - average tax rates and

progression. The former in�uence - if average tax rates rise - dominates the latter in non-regressive tax

systems. That means that for example a tax reform which results in higher average tax rates induces

more tax evasion, even when the progression is lowered. The opposite conclusion is not necessarily true.

A reform leading to a lower average tax rate for a taxpayer at his formerly declared income, but to a

higher progression as well does not necessarily induce less concealed income.

4.4.2 E¤ects of changes in the evasion opportunities

The e¤ects of policies that a¤ect the evasion opportunities such as the introduction of tax collection at

source are straight forward. Such policies have in�uence on the marginal evasion costs. Lower evasion

32Recall, that t(d) denotes the net average tax rate for the declared income d, and T (d) represents the tax liability for

reported income d, which is d � t(d).
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opportunities ceteris paribus lead to higher marginal evasion costs and consequently to less tax evasion

and vice versa. In technical terms, the sign of the change in non-reported income depends only (if the

policy does not change tax rates and penalties) on the negative cross derivative of the evasion costs �Ch� .

With the typical average evasion cost function we get

�Ch� =
��h

�(
�1)

�2y
(37)

If the policy reduces the evasion opportunity (�� < 0) the expression above is negative. The taxpayer

will report more income. For a policy that makes evasion easier (�� > 0) we get a positive sign, and

consequentially more tax evasion.

Proposition 9 For a typical average evasion cost function, a policy that reduces (improves) evasion

opportunities leads to less (more) tax evasion.

5 Conclusion

In the previous sections we showed that it is possible to obtain the empirically observed reactions of

taxpayers to changes of tax rates and gross income for a broad range of di¤erent tax systems by using

an easy portfolio choice approach, as the early tax evasion models did. In order to obtain such results

a slight change of the assumptions was necessary. We claim that risk neutrality is a fair approximation

of the taxpayer�s risk preferences if some psychological e¤ects as reactance are considered. Reactance

(Brehm, 1966; Brehm and Brehm, 1981) is the phenomenon that people who have lost some (economic)

freedom due to exogenous changes immediately try to regain their freedom without taking into account the

potentially negative consequences of their actions. As the factor limiting evasion - instead of risk aversion

- we introduce evasion costs. These are costs such as moral costs to do something illegal, expenses arising

with tax evasion, and costs for the creation of evasion opportunities. It might be worth investigating the

predictions of an extended model with our assumptions that e.g. has features like endogenous working

time or public good provision. Furthermore, it might be interesting to have a closer look on the notion of

evasion costs. They can be seen as some kind of investment in evasion possibilities and/or lower detection

probabilities. Then, if it is assumed that tax authorities have some (at least imperfect) information or

conjectures about those investments, a rich hidden action and signaling environment is created.

In general, this paper showed that in the case of tax evasion, where complex psychological in�uences

are going along with basic optimization reasoning, economic models do not necessarily fail to explain

individual behaviour. In order to obtain a viable model important psychological in�uences have to be

considered and simpli�ed in a way that they can be implemented in standard economic models. This might

have been relatively easy in the case of the reactance phenomenon, where a reasonable translation into

risk preferences was possible. To include other phenomena such as in�uences of attitudes on behaviour

or social comparison e¤ects (equity considerations and fairness) - without losing the robustness against

small changes in the speci�cation - remains di¢ cult. Maybe some newer developments dealing with social

preferences might be of value to further understand tax evasion.33

33For such approaches to incorporate social aspects into preferences see for example Fehr and Schmidt (1999), Bolton
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A Proof of proposition 7

Proof. To prove proposition 7 it is su¢ cient to evaluate @h�=@y. If this derivative is positive, @Te(h; y)=@y

for a non-regressive tax system is positive as well (see equation 34). We have to check our four di¤erent

cases for a fair penalty scheme.

Penalties without income component

The two possible fair penalty functions without an income component are:

i) F (h) = f � h and ii) F (h; y) = f [T (y)� T (y � h)].

For i) the derivative is given by

@h

@y

����
h=h�

= �Eyh
Ehh

=
(1� p)Tdd � Cyh

�� > 0

This derivative is unambiguously positive, since (1� p)Tdd � 0, �Cyh > 0, and �� > 0.

For the second case ii) we get

@h

@y

����
h=h�

= �Eyh
Ehh

=
(1� p� fp)Tdd � Cyh

�� > 0

As above Tdd � 0, �Cyh > 0, and �� > 0. The crucial term in the brackets (1�p�fp) is positive, as well,

because it is just the corresponding fair gamble condition (see table 3). Hence @h�=@y is unambiguously

positive in this case.

Penalties with income component

For the cases with an income component the fair penalty schemes are

iii) F (h; y) = f [T (y)� T (y � h)]and iv) F (h; y) = fyh.

The change in concealed income due to a higher income for case iii) is

@h

@y

����
h=h�

= �Eyh
Ehh

=
(1� p� fpy)Tdd � fpTd � Cyh

��

Since �� is positive, we can concentrate on the numerator. 1�p� fpy is positive (fair gamble condition

from table 3). To examine the least favourable environment we consider a linear tax system where

Tdd = 0. Recall, that progression was favourable for evasion. Now @h�=@y is positive whenever

�Cyh > fpTd

Solving the �rst-order condition (1� p� fpy)Td�Ch = 0 for Td and substituting in the inequality above

leads to

�Cyh >
fpCh

1� p� pfy
Since Ch = (
h
�1)=(y�) = y(�Chy) = (y
h
�1)(y2�) we can rewrite the inequality as

1 >
pfy

1� p� pfy

To consider the least favourable fair penalty scheme for this case we consider f to be at its upper bound

(where a detected tax evader concealing his entire income will be left without any ex post period income).

Plugging in the upper bound f = (1� t)=(ty) from table 2 and solving for t we get:

t >
2p

1 + p
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The tax rate t necessary for @h�=@y > 0 rises with p 2 [0; 1]. For realistic values for the detection

probability, such as p = :05 (or p = :1) t has to be larger than :095 (or :181), which is realistic.

For case iv) @h�=@y is given by:

@h

@y

����
h=h�

= �Eyh
Ehh

=
(1� p)Tdd � fp� Cyh

��

Again, it is su¢ cient to examine the numerator (because �� > 0). The incentive to obtain a lower tax

rate by evasion (1� p)Tdd is non negative for a non-regressive tax system. The least favourable case for

evasion is given again by a linear tax rate system, where Tdd = 0. Using this condition and, as above,

substituting Ch=y for �Cyh we obtain the following condition for @h�=@y > 0:

Ch
y
� fp > 0

Substituting Ch from the corresponding �rst-order condition (i.e. (1 � p)t � fpy � Ch = 0) into the

inequality yields
(1� p)t
y

� 2pf > 0

Again, using the least favourable (and con�scating) penalty factor (here: f = (1� t)=y from table 2) and

solving for t leads to the condition

t >
2p

1 + p
;

which is the same as in case iii).
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