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Abstract. This paper surveys a selection of the literature on the private provision of public goods using the
Kolm triangle. (The Kolm triangle is the analogue of an Edgeworth box in an economy with a public good.)
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1. Introduction

Private contributions to public goods are important phenomena for many reasons. In
the U.S. annual reported donations to charity amount to approximately 2% of its GDP.
In Kenya, the voluntary cooperation of members of the community is essential for the
provision of social infrastructure (Wilson 1992). Bergstrom, Blume and Varian (1986)
developed a model to study the private provision of public goods which applies to the
examples given above as well as to many other less obvious instances. Campaign funds
for political parties or interest groups also fall under the scope of this model. In addition,
much of the activity that takes place within the family unit can be explained as the out-
come of voluntary contributions, see Becker (1981), and Konrad and Lommerud (1995).
Kemp (1984), and Boadway, Pestieau and Wildasin (1989) have used this model to study
multilateral foreign aid issues. The provision of national defense in alliances can also
be studied within this model —see,e.g., Bruce (1990). More recently, Hoel (1991) and
Chichilinsky and Heal (1994) have used variants of this model to tackle global environ-
mental issues. See Bergstrom, Blume and Varian (1986) —and references therein— for
further discussion on the relevance of this model.
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2 E. Ley

In this paper, we provide simple geometrical proofs to various results from the public-
goods literature using the Kolm triangle. The Kolm triangle is the analogue of the
Edgeworth box for an economy with two agents, one private good and one pure pub-
lic good. Malinvaud (1971) refers to unpublished ‘research papers’ by Serge-Christophe
Kolm, while the triangle managed to appear a bit earlier than Malinvaud’s paper in Ch. 9
(pp. 211–221) of Kolm’s text on public economics (Kolm 1970). Schlesinger (1989)
describes it in good detail and illustrates its use in analyzing Lindahl and Nash equilibria.
Despite its potential, the Kolm triangle hardly appears in the literature.1 Sullivan and
Schlesinger (1986) analyze the relationship between various canons of ‘just’ taxation
with the help of this graphical device. Groves and Ledyard (1987) use the triangle to
illustrate incentive-compatibility problems in an economy with public goods. More re-
cently, Chander (1993) uses the triangle to discuss dynamic procedures and incentives in
public-good economies. William Thomson uses this tool in various papers dealing with
allocation mechanisms (Thomson 1987), lecture notes (Thomson 1990), and concepts
of equity (Thomson 1993). Leamer (1987) uses a similar device to prove factor price
equalization in international trade. More surprising, perhaps, is the fact that the Kolm
triangle has not found its way in public economics textbooks. An exception is Laffont
(1988) who displays a few diagrams of the Kolm triangle, although he just barely refers
to them in the text.

The focus of this paper is merely expositional. Our reference framework will be the
model of private contributions to public goods used by Bergstrom, Blume and Varian
(1986), which we describe in section 2. With the Kolm triangle (introduced in section
3), we can easily study the existence and uniqueness of Nash equilibria (section 5), the
effects of redistribution of the initial income (subsection 5.1), the level of provision in
Stackelberg equilibria (section 6), the effects of subsidizing private contributions (section
7) and the implementation of Lindahl equilibria (section 8).

2. The Model

We have two agents,i = 1,2, each of whom consumes one private good,xi, and one
shared public good,G. Agenti has a preference ordering over the pairs (xi, G) that can
be represented by a differentiable and strictly quasi-concave utility function,Ui(xi, G).
Both goods are assumed to be strictly normal goods. We shall assume that the public
good can be produced at a constant marginal cost. Choosing units suitably, we can make
the (constant) marginal rate of transformation between the private good and public good
equal to one. Finally, let (w1, w2) be the agents’ initial endowments of private goods.

The agents choose their private contributions,gi, to the public good. The total amount
of public good provided is determined by the sum of the individual contributions,G =

1 A search made on the March 1993EconLitCD (covering theJournal of Economic Literaturesince 1969)
for entries containing ‘Kolm’ and ‘triangle’ returned only Schlesinger (1989).
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g1 + g2. Each agenti solves

max
xi,gi

Ui(xi, g1 + g2)

s.t. xi + gi = wi
xi, gi ≥ 0.

We can use the budget constraint to eliminatexi and write the individual’s optimization
problem more compactly as

max
gi

Ui(wi − gi, g1 + g2)

s.t. 0≤ gi ≤ wi.
(1)

A more general version of this model, with any number of agents, has been extensively
studied by Bergstrom, Blume and Varian (1986).

3. The Kolm Triangle

Figure 1 shows a Kolm triangle for our simple model economy. The height of the
(equilateral) triangle is given by the total amount of resources available,w1 +w2. Since,
in anequilateraltriangle, the sum of the distances to the sides is constant and equals the
height of the triangle,2 then, for any point inside the triangle, we have

x1 + x2 +G = w1 +w2.

Therefore, any point inside the triangle is associated with a feasible allocation. In any
allocation,z, agenti’s private consumption is given by the distance fromz toOiO0. The
amount of public good,G, associated withz is simply given by the distance fromz to the
base of the triangle,O1O2.

In figure 2 we represent the agents’ indifference maps. We start from a given allocation,
z. To the right of the dashed line which is parallel toO1O0, agent one has more of the
private good than atz. Above the dashed line which is parallel toO1O2, agent one has
more of the public good than atz. It follows that any other allocation in the setB must be
better thanz for agent one since inB she gets more of both goods than inz. InW , on the
other hand, agent one gets less from both goods so she must be worse off. The direction
of the preferences is shown in figure 2. Agenti’s indifference curves are convex to his
origin,Oi, whenever his preferences are quasiconcave.3

Since alongO1O2 we have thatG = 0, then any point alongO1O2 is associated with an

2 A simple proof of this fact based on Thomson (1990) follows. LetS be the area of the triangle in figure 1, let
b denote the common length of the three sides, andh denote the height of the triangle. Note thatS must equal
the sum of the areas of the three trianglesO1zO2,O2zO0, andO0zO1, this implies thatS = b(x1 +x2 +G)/2
or x1 + x2 +G = 2S/b, where the quantity on the right does not depend on the position of the pointz. Since
S = bh/2 we must also havex1 + x2 +G = h ≡ w1 +w2.

3 As noted in Schlesinger (1989) and Thomson (1990), the transformation from the Euclidean coordinates to
the barycentric coordinates in the Kolm triangle is linear. In particular, if (x1, g) are the Euclidean coordinates
associated with a consumption bundle for agent 1, then its coordinates inside the Kolm triangle (withO1 located
at the origin)with respect to the original Euclidean axesare given by ((2x1 + g)/

√
3, g).
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Fig. 1. A feasible allocation in a Kolm triangle.
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Fig. 2. The indifference maps in a Kolm triangle.

initial allocation,w. Noting that the length ofO1O2 is 2(w1 +w2)/
√

5, then the distance
of w fromO1 will be given by 2w1/

√
5.

4. Other Geometrical Representations

Dolbear (1967) used an alternative geometrical device to study this type of economies.
The Dolbear triangle has been used, among others, by Shibata (1971) and Olsen (1979,
1981). Assuming a linear technology, the production possibilities set can be represented
by a triangle as depicted in figure 3.

The amount of public good,G, is measured on the horizontal axis and thetotal amount
of private good on the vertical axis. Once a combination (G′, x′) is chosen, all that
remains is to divide the amount of private good,x′ between the two agents. Measuringx1

upwards fromO1 andx2 downwards fromx′, any point in the segment betweenG′ and
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Fig. 3. The Dolbear triangle.

Z represents a feasible allocation ofx′ between the two agents. In figure 3,z represents
one such allocation withx′1 consumed by agent one andx′2 by agent two; feasibility is
satisfied since we havex′1 + x′2 = x′ andx′ +G′ = w. Agent one’s indifference map on
this triangle will have the usual representation while agent two’s is harder to visualize.
In figure 3, given an allocation,z, agent two will have less of both goods in regionW
and more of both goods in regionB. The convexity assumption requires his indifference
curves to be convex toO2.

Cornes and Sandler (1985, 1986) choose yet another representation, now on theg1−g2

plane. We show it on figure 4. Atz,G′ = g′1 + g′2 is provided. The dashed line throughz
with slope−1 represents the allocations whereg1 + g2 = G′. In the regionB, above the
g1 +g2 = G′ line and to the left ofg′1, agent one gets more of both goods and is, therefore,
better than inz. Conversely, in regionW , below theg1 + g2 = G′ line and to the right of
g′1, she is worse off than inz. Representative indifference curves are shown in figure 4.

As discussed in Schlesinger (1989), an advantage that the Dolbear triangle and the
Cornes-Sandler box share is that they use the familiar Euclidean coordinates unlike the
Kolm triangle which uses barycentric coordinates. The Dolbear and Cornes-Sandler
representations can be easily extended to more general technologies which cannot be
done with the Kolm triangle. The Dolbear triangle is somewhat more difficult to read
since the agents are not treated symmetrically. (The Cornes-Sandler box omitsG from
the graph although in the case of linear technology it can be easily recovered —e.g., by
drawing the lineg1 + g2 through any allocation.) We shall only use the Kolm triangle
in the remaining of the paper. Nevertheless, all the geometrical proofs that follow can
be (although sometimes more difficulty) reproduced using Dolbear’s triangle and the
Cornes-Sandler box.4

4 See Danziger (1976) for another representation suitable for economies with many agents.
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Fig. 4. The Cornes-Sandler box.

5. Nash Equilibrium

A Nash equilibrium in this model is a vector of contributions (g∗1 , g
∗
2) which solves the

two agents’ following optimization programs:

max U1(w1 − g1, g1 + g∗2) and max U2(w2 − g2, g
∗
1 + g2)

s.t. 0≤ g1 ≤ w1 s.t. 0≤ g2 ≤ w2.

Figure 5 shows a Nash equilibrium, denoted byE. Let A = (w1, w2) represent the
initial allocation. Wheng2 = 0, agent one’s opportunity locus is given by the segment
AC which is parallel toO2O0 —i.e., alongAC we have thatx2 = w2. When agent
two is contributingg∗2 = A′J , agent one’s opportunity locus shifts toA′C ′. The Nash
equilibrium,E, is agent one’s optimal choice on herbudget lineA′C ′. She contributes
g∗1 = A′′I and consumesEH = w1− g∗1 of the private good. When agent one contributes
g∗1 , agent two’s opportunity locus shifts fromAB (whereg1 = 0) toA′′B′′. (Note that
AB andA′′B′′ are parallel toO1O0.) OnA′′B′′, agent two’s most preferred point isE,
where he contributesg∗2 . Since the agents’ indifference curves cross throughE, the Nash
equilibrium is not Pareto optimal. (With differentiable preferences, a Pareto optimal Nash
equilibrium is a possibility only at the endowment point,A.)

Let us denote byg1(g2) and g2(g1) agent one’s and agent two’s optimal solutions
to (1) as functions of the other agent’s gift. Thus,g1(g2) and g2(g1) are the agents’
reaction functions. Then, if (g∗1 , g

∗
2) is a Nash equilibrium, we must haveg∗1 = g1(g∗2),

andg∗2 = g2(g∗1).

We can represent agent one’s reaction function in a Kolm triangle, see figure 6. Again,
let A = (w1, w2) represent the initial allocation. Wheng2 = 0, agent one’s opportunity
locus is given by the segmentAC. Given this constraint, agent one would choose to
contributeg1(0). Wheng2 = g′, the opportunity locus will shift toA′C ′, and agent one
will chooseg1(g′) for a total amount ofG given byg1(g′) + g′. Wheng2 ≥ g′′, we have
thatg1(g2) = 0.
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Fig. 5. A Nash equilibrium.
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Fig. 6. Agent one’s reaction function.

If both goods are normal goods, the reaction functiong1(g2) cannot be steeper than
O1O0 (since that would imply a smaller demand ofx1 as income increases) and it cannot
be flatter thanO1O2 (since that would imply a smaller demand ofG as income increases).
As a result, once agent one’s reaction function hitsAB it has to stay onAB sinceAB
is parallel toO1O0 —of course, the reaction functiong1(g2) doesn’t need to ever hit
AB. Said another way, once agent one contributes nothing to the public good, bigger
contributions by agent two will only induce agent one to keep contributing nothing. The
curveDB in figure 6 represents agent one’s reaction function. (A similar derivation for
agent two will tell us thatg2(g1) has to be flatter thanO2O0 and steeper thanO1O2.)

Given an initial distribution of income, we can plotg1(g2) andg2(g1). The existence of
Nash equilibrium (theorem 2 in Bergstrom, Blume and Varian (1986)) will be established
if we can show that the graphs of the reaction functions cross inside the triangle. Refer
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to figure 7. We have thatg1(g2) must start out somewhere onAC and must reach the
segmentBO0. Agent two’s reaction function,g2(g1), must go fromAB to CO0. Both
reaction functions must always stay inside the romboidACO0B, and by the assumptions
made about the preferences, they both have unbroken graphs. Thus, the existence of Nash
equilibrium is established.

O1 O2

O0

O1 O2

O0

A

C

B

E
E1 E2 E3g2(g1)

g1(g2)

Fig. 7. Existence and uniqueness of Nash equilibrium.

Theorem 3 in Bergstrom, Blume and Varian (1986) says that: “there is a unique
Nash equilibrium with a unique quantity of public good and a unique set of contributing
consumers.” Here the uniqueness follows from the bounds imposed by the strict normality
assumption (Bergstrom, Blume and Varian (1986), page 32) on the slope of the reaction
functions. The first panel in figure 7 shows a unique Nash equilibrium. The second panel
gives an example of multiple equilibria whenG is an inferior good.

5.1. Neutral Income Redistributions

Warr (1983) discovered an interesting neutrality theorem that was later extended by
Bergstrom, Blume and Varian (1986), and Gradstein, Nitzan and Slutsky (1994). Assume
that we have a Nash equilibrium, (g∗1 , g

∗
2). If income is redistributed among contributing

consumers in such a way that none of them loses more income than his original contri-
bution, then there is a new Nash equilibrium, (g∗∗1 , g∗∗2 ), whereg∗∗1 + g∗∗2 = g∗1 + g∗2 , and
x∗∗i = x∗i = wi− g∗i . That is, the same amount of public good is provided and each agent
consumes the same amount of private goods that in the original equilibrium —i.e., every
consumer changes the amount of his gift by precisely the amount of the income transfer.

Figure 8 shows the effect of a redistribution of income from agent one to agent two that
shifts the initial point fromA to A′. The diagram shows the agents’ reaction functions
whose intersection determines the Nash equilibriumE. The portion ofg1(g2) between
AC andA′C ′ is no longer relevant after the redistribution. On the other hand, agent
two’s reaction function,g2(g1), gains an additional portion betweenAB andA′B′ after
the redistribution. However, the old Nash equilibrium is the Nash equilibrum of the new
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Fig. 8. Redistribution of Income.
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Fig. 9. Bounds on the income redistribution.

game. The agents’ consumptions remain unchanged.

Figure 9 shows the bounds on income redistribution. InA′ we have taken away from
agent two an amount of income equal to his gift in the initial Nash equilibrium. This is
the maximum amount that we can take away from him and still get the same equilibrium
level of public good and private consumptions. The maximum redistribution from agent
one to agent two —that will leave the equilibrium amount ofG and (x1, x2) unchanged—
will move the endowment toA′′.

5.2. Inequality and Social Welfare

While the Warr neutrality result establishes that a whole range of initial distributions of
income are mapped into the same final allocation, Itaya, Meza and Myles (1997, IMM
henceforth) establish the remarkable result that social welfare can be raised by creating
sufficient income inequality so that only the rich can afford to provide the public good.
IMM show that, starting from the limit of allowable Warr-type redistributions, increasing
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inequality can be welfare-enhancing —as private consumption by one agent is substituted
by a mix of private consumption by the other agent and public-good provision.

Take two individuals with identical preferences,Ui = U (·), and consider the tradeoff
between agents’ utilities along the different Nash equilibria obtained by redistributing
income. As in IMM, let us redistribute income from agent 2 to agent 1, so that agent 2
has just enough income to afford the same private consumption,x∗2, that he had at any
of the interior Nash equilibria (i.e., we makew2 = x∗2). Now, at the associated Nash
equilibrium, agent 2 is contributing nothing to the public good,g∗2 = 0. Let us denote
this initial allocation byA. Theorem 3 in IMM establishes that, starting atA, a further
(small) redistribution from agent 2 (poorer) to agent 1 (richer) will always be welfare
enhancing.5

Consider the slope of the graph relating the agents’ utilities associated with the different
equilibria that are obtained through redistribution of the initial incomes (Figure 10). We
shall denote the absolute value of the slope of this graph byN . Using the symmetry
assumption and the fact thatA leads to an interior Nash equilibrium (which implies that
Ux = UG), we can establish that, fordt > 0,

N (t) ≡ −dU2

dU1
= −

∂U2
∂t
∂U1
∂t

= − −Ux +UG
∂g1(t)
∂t

Ux

[
1− ∂g1(t)

∂t

]
+UG

∂g1(t)
∂t

= 1− ∂g1(t)
∂t

.

The assumption that both goods are normal means that 0< ∂g1(t)/∂t < 1, which, in turn,
bounds the slope of the graph: 0< N (0+) < 1 (where 0+ indicates a right derivative,
ast ↓ 0). What aboutdt < 0 —i.e., transfers from 2 to 1? The Warr neutrality result
implies that nothing happens until we place agent 2 in his corner solution. From there
on, given the symmetry assumption, everything works out as above only with subscripts
reversed, and we have that:N (0−) > 1.

LetW (U1, U2) be a symmetric and differentiable social welfare function. The (abso-
lute value of the) slope of the welfare indifference curve is given by:W(t) ≡ −dU2

dU1
=

∂W
∂U1
÷ ∂W

∂U2
. Since at the Nash equilibrium the utility levels are equalized (Theorem 1

in IMM), and using the symmetry assumption onW (·), we must have thatW(0+) =
W(0−) = 1.

Starting atA, a small movement to the right (i.e., dt > 0) will result in an equilibrium
allocation that is associated with a higher social indifference curve becauseN (0+) <
W(0+). Similarly, since we haveN (0−) > W(0−), small movements to the left (from
the corresponding initial allocation where agent 2 is just in his corner solution) will also
increase welfare.

Figure 10 shows the utility possibility frontier associated with the Nash equilibria that
result from different initial distributions of income, when the agents have Cobb-Douglas

5 This result holds as long as the utility function at the individual level is not Leontieff and the social welfare
function is not Rawlasian (i.e., W = min{U1, U2}). In either of these two cases, this type of regressive
redistribution willalwayslower social welfare.
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Fig. 10. Utility possibility frontier associated with the Nash equilibria
resulting from different initial distributions of income.

preferences given by:Ui = xaiG
(1−a).6 The scope of regressive redistribution to enhance

social welfare depends on (i) the individual preferences, and (ii) the shape of the social
indifference curves. Figure 10 illustrates the effect of (i): the larger the taste forG (the
smallera), the larger the scope for redistribution to enhance welfare. When there is
no substitution possible among goods (i.e., preferences are of the Leontieff type at the
individual level), then any redistribution will lower social welfare.

We do not show any social indifference curves in Figure 10, but the reader can easily
imagine them to see the effects of (ii). At one extreme, a utilitarian welfare function,
W = U1 +U2, would have social indifference curves that are lines withW(t) = 1, for all
t, offering the largest scope for regressive redistribution to increase welfare. At the other
extreme, a Rawlsian welfare function,W = min{U1, U2}, would have Leontieff-type
social indifference curves and any redistribution would always lower social welfare.

6 Figure 10 plots the graph given by the pairs ofindirectutilities (V1(t), V2(t)) at the corresponding equilibria.
Fordt > 0, first place agent 1 at her corner solutionA, by makingw1 = a/(1− a) ≡ α. Then, sinceg2(t) =
(1−a)(1−α+ t), we have thatV1(t) = (α− t)a[(1−a)(1−α+ t)]1−a, andV2(t) = (1−α+ t)aa(1−a)1−a.
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6. Stackelberg Equilibrium

Varian (1994) studies sequential contributions to public goods. The Kolm triangle is a
useful tool to gain further insights into his results. Let agent one be the leader and agent
two be the follower. Then, the Stackelberg equilibrium will be determined by agent one
choosing her most preferred point in agent two’s reaction function. That is, agent one
solves

max
g1

U1(w1 − g1, g1 + g2(g1))

s.t. 0≤ g1 ≤ w1

whereg2(g1) is agent two’s reaction function —i.e., the solution to (1) for agent two.

Varian (1994)’s main result (theorem 2) states that the leader’s contribution at the
Stackelberg equilibrium is bounded above by her contribution at the Nash equilibrium.
As a corollary, the total amount of the public good in the Stackelberg equilibrium is never
bigger than the total amount provided in the Nash equilibrium. Figure 11 shows these
results.

O1 O2

O0

A

C

B

E

F

D

J

I H

Fig. 11. Stackelberg equilibrium: Agent one is leader.

Figure 11 shows Nash and Stackelberg equilibria. The Nash equilibrium,E, is de-
termined by the crossing of the reaction functions. The Stackelberg equilibrium,F , is
given by agent one’s most preferred point in agent two’s reaction function. We have
drawn agent one’s indifference curves through those equilibria. Looking at the indiffer-
ence curve throughE, we see that agent one will move to points ofg2(g1) to the right
of E. Sinceg2(g1) has a negative slope, this movement necessarily implies lessG in
the Stackelberg equilibrium (Varian (1994), corollary to theorem 3). We can also easily
see why agent one’s contribution at the Stackelberg equilibrium can be no larger than her
contribution at the Nash equilibrium. Since the Stackelberg equilibrium cannot lie to the
left of the Nash equilibrium, it implies that agent one’s contribution will be smaller. In
figure 11, agent one contributesg∗1 = DI at the Nash equilibrium andgs1 = JH at the
Stackelberg equilibrium.
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From figure 11 it can also be concluded that the follower’s contribution at the Stack-
elberg equilibrium is bounded below by his contribution at the Nash equilibrium. This
result is not in Varian (1994). However, once it is noticed, it can be easily proved with
the analytical apparatus developed there.

7. Subsidizing Contributions

Back in a Nash model, Roberts (1987) discovered the puzzling result that rich people
might be made worse off when their contributions are subsidized at a higher rate than
poor people —e.g., when the contributions are tax-deductible in a system of progressive
income taxation. This issue has been examined by Bergstrom (1989) who shows that if
we have twoidenticalindividuals contributing to a public good, each will prefer to face a
price higher than the price faced by the other individual. In Roberts (1987) and Bergstrom
(1989) the subsidy is paid by a lump-sum tax on both agents. Varian (1994) shows that
each agent will prefer to subsidize the other agent even if he must pay the entire amount
of the subsidy himself. In Varian’s model, agents havequasi-linear utilityfunctions.

Boadway, Pestieau and Wildasin (1989) show (theorem 2) that for twonon-identical
individuals withgeneralquasi-concave utility functions, when both goods are normal, an
agent will always want to subsidize the other agent’s contributions even if he must pay
the entire amount of the subsidy himself. We only analyze here the case where we have
interior Nash equilibria before the subsidy.

In the subsidy game, agent one will subsidize agent two at the rates in (0,1). Agent
two solves

max
g2

U2(w2 − (1− s)g2, g1 + g2)

s.t. 0≤ (1− s)g2 ≤ w2,
(2)

and agent one’s problem is

max
g1

U2(w1 − sg2 − g1, g1 + g2)

s.t. 0≤ g1 ≤ w1 − sg2.
(3)

Given the subsidy rate,s, a Nash equilibrium is a vector of contributions (g∗1(s), g∗2(s))
which solves both (2) and (3).

Theorem 2 in Boadway , Pestieau and Wildasin (1989) establishes that —provided that
both agents are contributing at the initial Nash equilibrium wheres = 0— there always
exists a subsidy rate,s, such that agent one —who pays the subsidy— is better off at the
resulting Nash equilibrium,i.e.,

U1(w1 − sg∗2(s)− g∗1(s), g∗1(s) + g∗2(s)) > U1(w1 − g∗1(0), g∗1(0) + g∗2(0)).

Further, agent two —who is being subsidized— is worse off than before the subsidy,i.e.,

U2(w2 − (1− s)g∗2(s), g∗1(s) + g∗2(s)) < U2(w1 − g∗2(0), g∗1(0) + g∗2(0)).
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Fig. 12. The Geometry of a Subsidy.

Figure 12 shows the geometry of a subsidy. The subsidy changes the slope of agent two’s
opportunity loci. In particular, ifαmeasures the angle, in radians, ofAB′ with respect to
O1O2, thens = sin(α−π/3)/ sinα. Whenα = π/3 so thatAB′ is parallel toO1O0, then
s = 0. At the other extreme, whenα = 2π/3 so thatAB′ is parallel toO2O0 thens = 1.
Since agent one has to pay for the subsidy, her opportunity loci will be also affected. In
figure 12, wheng2 = A′D, agent one has to payT = sg2 = A′D − FH. This shifts her
opportunity locus toA′C ′.
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Fig. 13. Agent one subsidizes agent two.

Figure 13 shows the effects of a subsidy from agent one to agent two. We display the
initial Nash equilibrium,E, where the agents’ reaction functions cross. We have also
represented the agents’ indifference curves throughE. When agent one subsidizes agent
two, agent two’s new reaction function has to be above his old reaction function. At the
new equilibrium,F , agent one is clearly better off than atE. What about agent two?
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Since the slope of agent two’s indifference curve throughE is parallel toO1O0 which is
the upper bound for the slope of agent one’s reaction function,g1(g2), it follows thatF
must lie below agent two’s indifference curve throughE.

To better understand the importance of this result, let us consider a movement from
the original Nash equilibriumE. At E, agent one’s marginal rate of substitution between
the private and public goods equals the marginal rate of transformation, 1. Suppose
that by offering to match any further contributions that agent two might do, agent one
gets agent two to increase his contribution byg2. Agent one would then be effectively
‘purchasing’g2 at half price! Moreover, provided that theg2 is not too big, both agents
would improve their situations after this deal.7 Boadway, Pestieau and Wildasin (1989)’s
theorem discussed above tells us something a bit different since we are not moving from a
no-subsidy Nash equilibrium but from the initial endowment point. The surprising result
is that agent one is going to be willing to subsidize agent two’s contribution from his very
first unit, and that agent two is going to be made worse off by this scheme.

A word on corner solutions. If agent two was not contributing towards the public good
at the initial Nash equilibrium, the same results hold provided that there is a subsidy that
induces him to contribute a positive amount. The other corner solution, where agent one
was not contributing initially, can lead to anything. It may or may not be possible to
improve agent one’s welfare with the subsidy; and, in either case, agent two might end
up better or worse off.

8. Lindahl Equilibria

Suppose that we allow for personalized prices for the public good, agenti facingpi, with
p2 ≡ 1− p1 andp1 ∈ [0,1]. Given a pair of prices, we can have the agents choosing
their private demands forxi andG. Thus, each agenti solves:

max
G

Ui(wi − piG,G)

s.t. wi − piG ≥ 0
(4)

Whenever, for somep∗1, the desired demands forG by each agent are equal then we have
a Lindahl equilibrium. Since the Lindahl prices split the Kolm triangle into two separate
budget sets which are disjoint except for their common boundary, it follows that Lindahl
equilibria are Pareto optimal. The assumptions made on the preferences do not guarantee
the existence of Lindahl equilibria. However, these assumptions guarantee that they will
be unique if they exist —i.e., there will be at most one Lindahl equilibrium associated
with any initial endowment. See figure 14 for an illustration of a Lindahl equilibrium.

More formally, (p∗1, p
∗
2;w1 − p∗1G∗, w2 − p∗2G∗;G∗) is a Lindahl equilibriumif G∗

solves problem (4) fori = 1,2, when we replacepi by p∗i . In a Lindahl equilibrium,
the agents face personalized prices for the public good while they all consume the same

7 If agent two increases his contribution by too much, it is possible that agent one might end up worse off. Of
course, agent one’s offer could always specify a limit to the matching gift.
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Fig. 14. Lindahl Equilibrium.

amount —in contrast with a private-goods economy Walrasian equilibrium where the
agents have individual demands facing all the agents same prices. We shall define an
allocation (x̄1, x̄2, Ḡ) to be aLindahl allocationif there exist prices, ( ¯p1, p̄2) such that
(p̄1, p̄2;w1 − p̄1Ḡ, w2 − p̄2Ḡ; Ḡ) is a Lindahl equilibrium.

Personalized prices can be obtained by allowing each agent to subsidize the other
agents’ contributions as in section 7. What is the outcome of the two-stage game where
each agent announces first a subsidy rate for the other agent and then, in a second stage,
chooses his own contribution? This game is studied in Danziger and Schnytzer (1991)8

and they find thatall the subgame-perfect equilibria of this game are Lindahl allocations.

The two-stage game consists of:

Stage 1.Agenti choosessj for j 6= 1.

Stage 2.Each agent choosesgi ≥ 0. If (1− si)gi + sjgj > wi; any rule that allocates
the entire agenti’s endowment to the public good will suffice.9

A subgame-perfect equilibrium is given by (s∗1, s
∗
2; g∗1(s1, s2), g∗2(s1, s2)) such that:

(i) (g∗1(ŝ1, ŝ2), g∗2(ŝ1, ŝ2)) is a Nash equilibrium of the second-stage game given ( ˆs1, ŝ2);
i.e., g∗i (ŝ1, ŝ2)) solves

φi(ŝi, ŝj) ≡ max
gi

Ui(wi − (1− ŝi)gi − ŝjg∗j , gi + g∗j )

s.t. 0≤ (1− ŝi)gi ≤ wi − ŝjg∗j for j 6= i;

8 Varian (1994) studied a related game where the rate at which each agent subsidizes the other agents is set
by the other agents.

9 Here, ifsj > 0, agenti’s choice set forgi depends on the other agent choice ofgj . We can, for example,
makegi = (wi − sigi)/(1− si) wheneverwi > sigi; otherwise makesj = wi/gj andgi = 0. See Danziger
and Schnytzer (1991).
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and:

(ii) φi(s∗i , s
∗
j ) ≥ φi(si, s∗j ), for all si, i, j = 1,2; i 6= j.

Every subgame-perfect equilibrium (SPE) of this game is a Lindahl allocation.10
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Fig. 15. Pareto Efficient Equilibria withs1 + s2 6= 1.
Left: s1 + s2 > 1;G = 0. Right: s1 + s2 < 1; Agent 1 contributes 0.

The only possible equilibrium whens1 + s2 > 1 is at the initial allocation where both
agents are contributing nothing towards the public good. This equilibrium is always a
Pareto efficient allocation, provided that it exists —and there is a whole range of Lindahl
prices that will support it as a Lindahl equilibrium. We illustrate one such case in the left
panel of figure 15. Of course, it is possible that no equilibrium exists at all ifs1 + s2 > 1.

If s1 +s2 < 1 we can possibly have a Pareto efficient SPE, which will also be a Lindahl
allocation, only whengi = 0 for one of the agents. Note that in the simple contributions
game of section 5 we could not possibly have a Pareto efficient NE with one of the agents
contributing a positive amount. We illustrate such a possibility in the right panel of figure
15. What allows for this possibility now is thatAB′ is steeper thanAB which itself
bounds the slope of agent one’s indifference curves (see figure 2).

By the results in section 7 we cannot have an interior SPE whenevers1 +s2 < 1. Every
equilibrium in the second-stage game which is not a Pareto efficient allocation cannot
be a subgame-perfect equilibrium of the two-stage game. Figure 16 shows a general
interior equilibrium of the second-stage game. Any agent can improve her welfare by
incrementing the subsidy to the other agent.

Finally, let us examine a SPE, (s∗1, s
∗
2; g∗1(s1, s2), g∗2(s1, s2)), as the one depicted in

figure 14, withs∗1 + s∗2 = 1. What would be the effect of agent two reducing agent one’s
subsidy to ˜s1 < s∗1? We show this in figure 17. At the SPEE, with s∗1 + s∗2 = 1,

10 Note that our definition of a Lindahl allocation differs from Danziger and Schnytzer (1991) since they do
not allowG = 0 at Lindahl allocations.
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Fig. 16. Inefficient Second-Stage Game Equilibrium.

both agents are facing the common budget lineAB′. Now, whens1 falls to s̃1 < s∗1,
agent one’s budget line becomesAC ′ when agent two contributes nothing. When agent
two contributes positive amounts towards the public good, agent one’s budget line slides
paralell toAC ′ from AB′ to O1O0. The strict normality of both goods will guarantee
that agent one’s reaction function hitsAB′ belowE; also, as before, once it hitsAB′ it
stays inAB′. Therefore, the second-stage game equilibrium stays atE, now with agent
two contributingg∗2(s̃1, s

∗
2) = g∗1(s∗1, s

∗
2) + g∗2(s∗1, s

∗
2) and agent one contributing zero,

g∗1(s̃1, s
∗
2) = 0. This illustrates that a given Lindahl allocation can be supported by a

multitude of SPE of this game.
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Fig. 17. Changings1 from the SPEE.
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9. Concluding Remarks

The simple model of private contributions to public goods developed in Bergstrom, Blume
and Varian (1986) has proved most fruitful to gain insights into a wide variety of problems.
In this paper we provide simple geometrical proofs to a number of established results
using the Kolm triangle. The Kolm triangle shows to be a powerful tool to understand
the intricacies of the model and it is especially useful as a pedagogic device. The results
shown in this paper were originally established using algebraic proofs, and hold in more
general scenarios than the linear 2-agent 2-good world used here.

All the results discussed in this paper (except those in section 6 dealing with sequential
provision) generalize ton agents. The other simplifying assumption, common linear
technology, is harder to relax in some cases —specially the ‘common’ part. All the
results hold when the public good is obtained by a single well-behaved production process,
G = f (g1 + g2), with f ′(·) > 0 andf ′′(·) ≤ 0. However, endowing each participant with
an agent-specific technology (even linear),gi = fi(wi − xi), with G =

∑
gi, suffices to

eliminate Warr-type neutrality results (see,e.g., Konrad and Lommerud (1995) for a model
of the household where income transfers from the domestic partner who has comparative
advantage outside the home to the other turn out to be not only efficiency-enhancing but
also Pareto improving). Finally, the Warr neutrality result can also be extended to the
case of many public goods (Bergstrom, Blume and Varian (1986), section 6).
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