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1. Introduction

Private contributions to public goods are important phenomena for many reasons. In
the U.S. annual reported donations to charity amount to approximately 2% of its GDP.
In Kenya, the voluntary cooperation of members of the community is essential for the
provision of social infrastructure (Wilson 1992). Bergstrom, Blume and Varian (1986)
developed a model to study the private provision of public goods which applies to the
examples given above as well as to many other less obvious instances. Campaign funds
for political parties or interest groups also fall under the scope of this model. In addition,
much of the activity that takes place within the family unit can be explained as the out-
come of voluntary contributions, see Becker (1981), and Konrad and Lommerud (1995).
Kemp (1984), and Boadway, Pestieau and Wildasin (1989) have used this model to study
multilateral foreign aid issues. The provision of national defense in alliances can also
be studied within this model —see.g, Bruce (1990). More recently, Hoel (1991) and
Chichilinsky and Heal (1994) have used variants of this model to tackle global environ-
mental issues. See Bergstrom, Blume and Varian (1986) —and references therein— for
further discussion on the relevance of this model.
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In this paper, we provide simple geometrical proofs to various results from the public-
goods literature using the Kolm triangle. The Kolm triangle is the analogue of the
Edgeworth box for an economy with two agents, one private good and one pure pub-
lic good. Malinvaud (1971) refers to unpublished ‘research papers’ by Serge-Christophe
Kolm, while the triangle managed to appear a bit earlier than Malinvaud’s paper in Ch. 9
(pp. 211-221) of Kolm’s text on public economics (Kolm 1970). Schlesinger (1989)
describes itin good detail and illustrates its use in analyzing Lindahl and Nash equilibria.
Despite its potential, the Kolm triangle hardly appears in the literdtugllivan and
Schlesinger (1986) analyze the relationship between various canons of ‘just’ taxation
with the help of this graphical device. Groves and Ledyard (1987) use the triangle to
illustrate incentive-compatibility problems in an economy with public goods. More re-
cently, Chander (1993) uses the triangle to discuss dynamic procedures and incentives in
public-good economies. William Thomson uses this tool in various papers dealing with
allocation mechanisms (Thomson 1987), lecture notes (Thomson 1990), and concepts
of equity (Thomson 1993). Leamer (1987) uses a similar device to prove factor price
equalization in international trade. More surprising, perhaps, is the fact that the Kolm
triangle has not found its way in public economics textbooks. An exception is Laffont
(1988) who displays a few diagrams of the Kolm triangle, although he just barely refers
to them in the text.

The focus of this paper is merely expositional. Our reference framework will be the
model of private contributions to public goods used by Bergstrom, Blume and Varian
(1986), which we describe in section 2. With the Kolm triangle (introduced in section
3), we can easily study the existence and uniqueness of Nash equilibria (section 5), the
effects of redistribution of the initial income (subsection 5.1), the level of provision in
Stackelberg equilibria (section 6), the effects of subsidizing private contributions (section
7) and the implementation of Lindahl equilibria (section 8).

2. The Model

We have two agents, = 1,2, each of whom consumes one private gaed,and one
shared public good. Agenti has a preference ordering over the pairs (¢) that can

be represented by a differentiable and strictly quasi-concave utility fundtign;, ).

Both goods are assumed to be strictly normal goods. We shall assume that the public
good can be produced at a constant marginal cost. Choosing units suitably, we can make
the (constant) marginal rate of transformation between the private good and public good
equal to one. Finally, letf,, w2) be the agents’ initial endowments of private goods.

The agents choose their private contributignsto the public good. The total amount
of public good provided is determined by the sum of the individual contributiGns,

L A search made on the March 19880nLitCD (covering theJournal of Economic Literatursince 1969)
for entries containing ‘Kolm’ and ‘triangle’ returned only Schlesinger (1989).
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g1 * go. Each agent solves
LU%X Ui(x;, g1 + g2)
S.t. T+ g = w;

We can use the budget constraint to eliminatend write the individual’s optimization
problem more compactly as

max  Ui(w; — gi,91 + g2)
gi (1)

A more general version of this model, with any number of agents, has been extensively

studied by Bergstrom, Blume and Varian (1986).

3. The Kolm Triangle

Figure 1 shows a Kolm triangle for our simple model economy. The height of the
(equilateral) triangle is given by the total amount of resources available w,. Since,

in anequilateraltriangle, the sum of the distances to the sides is constant and equals the
height of the trianglé,then, for any point inside the triangle, we have

I +x2+G:w1 + ws.

Therefore, any point inside the triangle is associated with a feasible allocation. In any
allocation,z, agenti’s private consumption is given by the distance freto O;0,. The
amount of public good;7, associated with is simply given by the distance fromto the

base of the triangle), O-.

Infigure 2 we represent the agents’ indifference maps. We start from a given allocation,
z. To the right of the dashed line which is parallel®O,, agent one has more of the
private good than at. Above the dashed line which is parallel@dq O, agent one has
more of the public good than at It follows that any other allocation in the sBtmust be
better tharx for agent one since iB she gets more of both goods tharxinin W, on the
other hand, agent one gets less from both goods so she must be worse off. The direction
of the preferences is shown in figure 2. Ageéstindifference curves are convex to his
origin, O;, whenever his preferences are quasiconéave.

Since along), O, we have thafz = 0, then any point alon@,Os is associated with an

2 A simple proof of this fact based on Thomson (1990) follows. £&k the area of the triangle in figure 1, let
b denote the common length of the three sides,/adénote the height of the triangle. Note ti$amust equal
the sum of the areas of the three trianglBz 02, 02200, andOpzO1, this implies thatS = b(z1 +z2 + G) /2
orz1 +xp + G = 25/b, where the quantity on the right does not depend on the position of thezpoBihce
S = bh/2 we must also have; + 2 + G = h = wy + wo.

3 As noted in Schlesinger (1989) and Thomson (1990), the transformation from the Euclidean coordinates to
the barycentric coordinates in the Kolm triangle is linear. In particula#;if §) are the Euclidean coordinates
associated with a consumption bundle for agent 1, then its coordinates inside the Kolm triangle;(witated

at the origin)with respect to the original Euclidean axage given by ((21 + g)/V/3, 9).
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0, 0,

Fig. 1. A feasible allocation in a Kolm triangle.

Qo

Fig. 2. The indifference maps in a Kolm triangle.

initial allocation,w. Noting that the length o, O is 2(w- +w2)/\/§, then the distance
of w from O, will be given by 2v, //5.

4. Other Geometrical Representations

Dolbear (1967) used an alternative geometrical device to study this type of economies.

The Dolbear triangle has been used, among others, by Shibata (1971) and Olsen (1979,
1981). Assuming a linear technology, the production possibilities set can be represented
by a triangle as depicted in figure 3.

The amount of public goody, is measured on the horizontal axis andtthtal amount
of private good on the vertical axis. Once a combinati6h, {’) is chosen, all that
remains is to divide the amount of private gostibetween the two agents. Measuring
upwards fromO; andz, downwards fromx’, any point in the segment betweét and
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Fig. 3. The Dolbear triangle.

Z represents a feasible allocationzdfbetween the two agents. In figurez3represents

one such allocation withy consumed by agent one amfl by agent two; feasibility is
satisfied since we havg + zf, = 2’ andz’ + G’ = w. Agent one’s indifference map on
this triangle will have the usual representation while agent two’s is harder to visualize.
In figure 3, given an allocatiory, agent two will have less of both goods in regidn

and more of both goods in regid®. The convexity assumption requires his indifference
curves to be convex t0s.

Cornes and Sandler (1985, 1986) choose yet another representation, now,cAghe
plane. We show it on figure 4. At G’ = g7 + ¢4 is provided. The dashed line through
with slope—1 represents the allocations wheget g, = G'. In the regionB, above the
g1+ 92 = G’ line and to the left ofj;, agent one gets more of both goods and is, therefore,
better than inz. Conversely, in regiofl’, below theg; + g = G’ line and to the right of
g1, she is worse off than in. Representative indifference curves are shown in figure 4.

As discussed in Schlesinger (1989), an advantage that the Dolbear triangle and the
Cornes-Sandler box share is that they use the familiar Euclidean coordinates unlike the
Kolm triangle which uses barycentric coordinates. The Dolbear and Cornes-Sandler
representations can be easily extended to more general technologies which cannot be
done with the Kolm triangle. The Dolbear triangle is somewhat more difficult to read
since the agents are not treated symmetrically. (The Cornes-Sandler boxGofrots
the graph although in the case of linear technology it can be easily recovezay] by
drawing the lineg; + g» through any allocation.) We shall only use the Kolm triangle
in the remaining of the paper. Nevertheless, all the geometrical proofs that follow can
be (although sometimes more difficulty) reproduced using Dolbear’s triangle and the
Cornes-Sandler bak.

4 See Danziger (1976) for another representation suitable for economies with many agents.
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Fig. 4. The Cornes-Sandler box.

5. Nash Equilibrium

A Nash equilibrium in this model is a vector of contributiong (g5) which solves the
two agents’ following optimization programs:

max Ul(wl — 01,01 +g;) and max Ug(wg — gg,gi< +gg)
S.t. 0< g1 < wq s.t. 0< g2 < wa.

Figure 5 shows a Nash equilibrium, denotedBy Let A = (w, ws) represent the
initial allocation. Whery, = 0, agent one’s opportunity locus is given by the segment
AC which is parallel toO,0, —i.e., along AC' we have thatrs = wy. When agent
two is contributinggs = A’J, agent one’s opportunity locus shifts t5C’. The Nash
equilibrium, E, is agent one’s optimal choice on Haxdget lineA’C’. She contributes
g7 = A”I and consumeB H = w; — g7 of the private good. When agent one contributes
g7, agent two’s opportunity locus shifts frohB (whereg; = 0) to A”B”. (Note that
AB andA” B" are parallel ta>;0y.) On A” B”, agent two’s most preferred pointi$
where he contributeg;. Since the agents’ indifference curves cross thrakigthe Nash
equilibrium is not Pareto optimal. (With differentiable preferences, a Pareto optimal Nash
equilibrium is a possibility only at the endowment poiAt)

Let us denote byj;(g2) and g2(g1) agent one’s and agent two’s optimal solutions
to (1) as functions of the other agent’s gift. Thus(g2) and g-(g1) are the agents’
reaction functions. Then, ifg(, g5) is a Nash equilibrium, we must havg = g:(g5),
andg; = g2(g7)-

We can represent agent one’s reaction function in a Kolm triangle, see figure 6. Again,
let A = (w1, ws) represent the initial allocation. When = 0, agent one’s opportunity
locus is given by the segmertC'. Given this constraint, agent one would choose to
contributeg; (0). Wheng, = ¢’, the opportunity locus will shift tod’C”, and agent one
will chooseg; (¢') for a total amount of7 given byg:(¢’) + ¢’. Wheng, > ¢”, we have
thatg: (g2) = 0.
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o)} I A J 02
Fig. 5. A Nash equilibrium.

O,

Fig. 6. Agent one’s reaction function.

If both goods are normal goods, the reaction funcgefy.) cannot be steeper than
010y (since that would imply a smaller demand:gfas income increases) and it cannot
be flatter thar®, O (since that would imply a smaller demand®fs income increases).
As a result, once agent one’s reaction function Hif3 it has to stay oA B since AB
is parallel toO;0, —of course, the reaction functiop (go) doesn’t need to ever hit
AB. Said another way, once agent one contributes nothing to the public good, bigger
contributions by agent two will only induce agent one to keep contributing nothing. The
curve DB in figure 6 represents agent one’s reaction function. (A similar derivation for
agent two will tell us thats(g1) has to be flatter tha@, 0O, and steeper thaf?;, O-.)

Given an initial distribution of income, we can plgt(g-) andgs(g1). The existence of
Nash equilibrium (theorem 2 in Bergstrom, Blume and Varian (1986)) will be established
if we can show that the graphs of the reaction functions cross inside the triangle. Refer
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to figure 7. We have thaf; (go) must start out somewhere of” and must reach the
segmentBO,. Agent two’s reaction functiongz(g;), must go fromAB to CO,. Both

reaction functions must always stay inside the rombtidO, B, and by the assumptions

made about the preferences, they both have unbroken graphs. Thus, the existence of Nash
equilibrium is established.

O

o A 0, 0O

Fig. 7. Existence and uniqueness of Nash equilibrium.

Theorem 3 in Bergstrom, Blume and Varian (1986) says that: “there is a unique
Nash equilibrium with a unique quantity of public good and a unique set of contributing
consumers.” Here the uniqueness follows from the bounds imposed by the strict normality
assumption (Bergstrom, Blume and Varian (1986), page 32) on the slope of the reaction
functions. The first panel in figure 7 shows a unique Nash equilibrium. The second panel
gives an example of multiple equilibria whéhis an inferior good.

5.1. Neutral Income Redistributions

Warr (1983) discovered an interesting neutrality theorem that was later extended by
Bergstrom, Blume and Varian (1986), and Gradstein, Nitzan and Slutsky (1994). Assume
that we have a Nash equilibriuny;( ¢5). If income is redistributed among contributing
consumers in such a way that none of them loses more income than his original contri-
bution, then there is a new Nash equilibriumg X, g5*), whereg;* + ¢5* = g7 + g5, and

x* =z =w; —g;. Thatis, the same amount of public good is provided and each agent

consumes the same amount of private goods that in the original equilibriue) every
consumer changes the amount of his gift by precisely the amount of the income transfer.

Figure 8 shows the effect of a redistribution of income from agent one to agent two that
shifts the initial point fromA to A’. The diagram shows the agents’ reaction functions
whose intersection determines the Nash equilibridmThe portion ofg;(g2) between
AC and A’C’ is no longer relevant after the redistribution. On the other hand, agent
two’s reaction functiongs(g1), gains an additional portion betweerB and A’ B’ after
the redistribution. However, the old Nash equilibrium is the Nash equilibrum of the new
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0, A A A 0,
Fig. 9. Bounds on the income redistribution.

game. The agents’ consumptions remain unchanged.

Figure 9 shows the bounds on income redistributiondnve have taken away from
agent two an amount of income equal to his gift in the initial Nash equilibrium. This is
the maximum amount that we can take away from him and still get the same equilibrium
level of public good and private consumptions. The maximum redistribution from agent
one to agent two —that will leave the equilibrium amouné&odnd (¢, x2) unchanged—
will move the endowment tal”.

5.2. Inequality and Social Welfare

While the Warr neutrality result establishes that a whole range of initial distributions of
income are mapped into the same final allocation, Itaya, Meza and Myles (1997, IMM
henceforth) establish the remarkable result that social welfare can be raised by creating
sufficient income inequality so that only the rich can afford to provide the public good.
IMM show that, starting from the limit of allowable Warr-type redistributions, increasing
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inequality can be welfare-enhancing —as private consumption by one agent is substituted
by a mix of private consumption by the other agent and public-good provision.

Take two individuals with identical preferencés, = U(-), and consider the tradeoff
between agents’ utilities along the different Nash equilibria obtained by redistributing
income. As in IMM, let us redistribute income from agent 2 to agent 1, so that agent 2
has just enough income to afford the same private consumptiprihat he had at any
of the interior Nash equilibriai.€., we makew, = x3). Now, at the associated Nash
equilibrium, agent 2 is contributing nothing to the public gogil,= 0. Let us denote
this initial allocation byA. Theorem 3 in IMM establishes that, starting4ta further
(small) redistribution from agent 2 (poorer) to agent 1 (richer) will always be welfare
enhancing.

Consider the slope of the graph relating the agents’ utilities associated with the different
equilibria that are obtained through redistribution of the initial incomes (Figure 10). We
shall denote the absolute value of the slope of this grap\byUsing the symmetry
assumption and the fact thdtleads to an interior Nash equilibrium (which implies that
U, = Ug), we can establish that, fat > 0,

J\/(t)z_dU2 :_% - _ U, + Ug 253" _q1_ 991
dU, o U, [1_ 8g$t(t)} +Ue 8galt(t) ot

The assumption that both goods are normal means tha®, (t)/0t < 1, which, inturn,
bounds the slope of the graph:<O N (0™) < 1 (where 0 indicates a right derivative,

ast | 0). What aboutit < 0 —i.e,, transfers from 2 to 1? The Warr neutrality result
implies that nothing happens until we place agent 2 in his corner solution. From there
on, given the symmetry assumption, everything works out as above only with subscripts
reversed, and we have that/(0~) > 1.

Let W (U1, Us) be a symmetric and differentiable social welfare function. The (abso-

lute value of the) slope of the welfare indifference curve is givenipyt) = —4%2 =

dU;
g—[‘j‘j + g—[V]‘;. Since at the Nash equilibrium the utility levels are equalized (Theorem 1
in IMM), and using the symmetry assumption &ii(-), we must have thaxy(0") =
Ww(O07)=1.

Starting atA4, a small movement to the righté., d¢t > 0) will result in an equilibrium
allocation that is associated with a higher social indifference curve begd(e) <
W(0™). Similarly, since we hava/(0~) > W(0~), small movements to the left (from
the corresponding initial allocation where agent 2 is just in his corner solution) will also

increase welfare.

Figure 10 shows the utility possibility frontier associated with the Nash equilibria that
result from different initial distributions of income, when the agents have Cobb-Douglas

® This result holds as long as the utility function at the individual level is not Leontieff and the social welfare
function is not Rawlasiani.e., W = min{Uy, U>}). In either of these two cases, this type of regressive
redistribution willalwayslower social welfare.
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u2 Cobb-Douglas (a= 0.25) u2 Cobb-Douglas (a=0.5)

Ul Ul

u2 Cobb-Douglas (a=0.75) U2\ eontieff: No possible welfare improvement.

Ul Ul

Fig. 10. Utility possibility frontier associated with the Nash equilibria
resulting from different initial distributions of income.

preferences given byl7; = 2¢G(1~%) .6 The scope of regressive redistribution to enhance
social welfare depends on (i) the individual preferences, and (ii) the shape of the social
indifference curves. Figure 10 illustrates the effect of (i): the larger the taste tre
smallera), the larger the scope for redistribution to enhance welfare. When there is
no substitution possible among goode.( preferences are of the Leontieff type at the
individual level), then any redistribution will lower social welfare.

We do not show any social indifference curves in Figure 10, but the reader can easily
imagine them to see the effects of (ii). At one extreme, a utilitarian welfare function,
W =U; + U,, would have social indifference curves that are lines witft) = 1, for all
t, offering the largest scope for regressive redistribution to increase welfare. At the other
extreme, a Rawlsian welfare functiod/ = min{U;,U,}, would have Leontieff-type
socialindifference curves and any redistribution would always lower social welfare.

6 Figure 10 plots the graph given by the pairsrafirectutilities (V1(t), V2(t)) at the corresponding equilibria.
Fordt > O, first place agent 1 at her corner solutidnby makingw; = a/(1 — a) = «. Then, sincey(t) =
(1—a)(1— a+t), we have that/i(t) = (o —t)*[(1 — a)(1— a+1)]}~ 2, andVa(t) = (1— a+t)a®(1—a)l—2.
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6. Stackelberg Equilibrium

Varian (1994) studies sequential contributions to public goods. The Kolm triangle is a
useful tool to gain further insights into his results. Let agent one be the leader and agent
two be the follower. Then, the Stackelberg equilibrium will be determined by agent one
choosing her most preferred point in agent two’s reaction function. That is, agent one

solves
rr;ax Ur(wr — g1, 91 + g2(91))
1

S.t. 0< g1 < wy

wheregs(g1) is agent two’s reaction function €., the solution to (1) for agent two.

Varian (1994)’'s main result (theorem 2) states that the leader’s contribution at the
Stackelberg equilibrium is bounded above by her contribution at the Nash equilibrium.
As a corollary, the total amount of the public good in the Stackelberg equilibrium is never
bigger than the total amount provided in the Nash equilibrium. Figure 11 shows these
results.

0; I HA 0,

Fig. 11. Stackelberg equilibrium: Agent one is leader.

Figure 11 shows Nash and Stackelberg equilibria. The Nash equilibdyrs de-
termined by the crossing of the reaction functions. The Stackelberg equilibFims,
given by agent one’s most preferred point in agent two’s reaction function. We have
drawn agent one’s indifference curves through those equilibria. Looking at the indiffer-
ence curve througli, we see that agent one will move to pointsge{g;) to the right
of E. Sincegs(g1) has a negative slope, this movement necessarily impliesiass
the Stackelberg equilibrium (Varian (1994), corollary to theorem 3). We can also easily
see why agent one’s contribution at the Stackelberg equilibrium can be no larger than her
contribution at the Nash equilibrium. Since the Stackelberg equilibrium cannot lie to the
left of the Nash equilibrium, it implies that agent one’s contribution will be smaller. In
figure 11, agent one contribute$ = DI at the Nash equilibrium angi = JH at the
Stackelberg equilibrium.
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From figure 11 it can also be concluded that the follower’s contribution at the Stack-
elberg equilibrium is bounded below by his contribution at the Nash equilibrium. This
result is not in Varian (1994). However, once it is noticed, it can be easily proved with
the analytical apparatus developed there.

7. Subsidizing Contributions

Back in a Nash model, Roberts (1987) discovered the puzzling result that rich people
might be made worse off when their contributions are subsidized at a higher rate than
poor people —e.g, when the contributions are tax-deductible in a system of progressive
income taxation. This issue has been examined by Bergstrom (1989) who shows that if
we have twadenticalindividuals contributing to a public good, each will prefer to face a
price higher than the price faced by the other individual. In Roberts (1987) and Bergstrom
(1989) the subsidy is paid by a lump-sum tax on both agents. Varian (1994) shows that
each agent will prefer to subsidize the other agent even if he must pay the entire amount
of the subsidy himself. In Varian’s model, agents hquasi-linear utilityfunctions.

Boadway, Pestieau and Wildasin (1989) show (theorem 2) that fonbmeidentical
individuals withgeneralguasi-concave utility functions, when both goods are normal, an
agent will always want to subsidize the other agent’s contributions even if he must pay
the entire amount of the subsidy himself. We only analyze here the case where we have
interior Nash equilibria before the subsidy.

In the subsidy game, agent one will subsidize agent two at the iat), 1). Agent

two solves
max Us(wa — (1 — 8)g2, 91 + g2)
2

2)
s.t. 0< (1—9)g2 < wo,
and agent one’s problem is
max  Ux(wi — 892 — 91,91 + g2)
g1 (3)

s.t. 0< g1 <wyp — sgs.

Given the subsidy rate,, a Nash equilibrium is a vector of contributiong (s), g;(s))
which solves both (2) and (3).

Theorem 2 in Boadway , Pestieau and Wildasin (1989) establishes that —provided that
both agents are contributing at the initial Nash equilibrium whereO— there always
exists a subsidy rate, such that agent one —who pays the subsidy— is better off at the
resulting Nash equilibrium,e.,

Ur(wr — 5g5(5) — 91(5), 91 (s) + g2(s)) > Ur(w1 — 91(0), 91(0) +92(0)).

Further, agent two —who is being subsidized— is worse off than before the suibsidy,

Uz(wz — (1 = 8)g3(5), 91(s) + g2(s)) < Uz(w1 — g5(0), 91(0) +92(0)).
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0, A D H 0,

Fig. 12. The Geometry of a Subsidy.

Figure 12 shows the geometry of a subsidy. The subsidy changes the slope of agent two’s
opportunity loci. In particular, it measures the angle, in radians A8’ with respect to

0104, thens = sin(@—7/3)/ sina. Whena = 7/3 so thatA B’ is parallel toO, Oy, then

s = 0. At the other extreme, when= 27 /3 so thatAB’ is parallel toO>O, thens = 1.

Since agent one has to pay for the subsidy, her opportunity loci will be also affected. In
figure 12, whery, = A’D, agent one has to pdy = sgo = A’D — F H. This shifts her
opportunity locus tod’C"’.

o A 0,

Fig. 13. Agent one subsidizes agent two.

Figure 13 shows the effects of a subsidy from agent one to agent two. We display the
initial Nash equilibrium,E, where the agents’ reaction functions cross. We have also
represented the agents’ indifference curves thratigiVvhen agent one subsidizes agent
two, agent two’s new reaction function has to be above his old reaction function. At the
new equilibrium,F', agent one is clearly better off than &t What about agent two?
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Since the slope of agent two'’s indifference curve throdgis parallel toO; O which is
the upper bound for the slope of agent one’s reaction functigigs), it follows that F’
must lie below agent two’s indifference curve through

To better understand the importance of this result, let us consider a movement from
the original Nash equilibriunk’. At F/, agent one’s marginal rate of substitution between
the private and public goods equals the marginal rate of transformation, 1. Suppose
that by offering to match any further contributions that agent two might do, agent one
gets agent two to increase his contributiondgy Agent one would then be effectively
‘purchasing’gs at half price! Moreover, provided that tlyg is not too big, both agents
would improve their situations after this d€aBoadway, Pestieau and Wildasin (1989)’s
theorem discussed above tells us something a bit different since we are not moving from a
no-subsidy Nash equilibrium but from the initial endowment point. The surprising result
is that agent one is going to be willing to subsidize agent two’s contribution from his very
first unit, and that agent two is going to be made worse off by this scheme.

A word on corner solutions. If agent two was not contributing towards the public good
at the initial Nash equilibrium, the same results hold provided that there is a subsidy that
induces him to contribute a positive amount. The other corner solution, where agent one
was not contributing initially, can lead to anything. It may or may not be possible to
improve agent one’s welfare with the subsidy; and, in either case, agent two might end
up better or worse off.

8. Lindahl Equilibria

Suppose that we allow for personalized prices for the public good, aégihgp;, with
p2 = 1—p; andp; € [0,1]. Given a pair of prices, we can have the agents choosing
their private demands far; andG. Thus, each agetfitsolves:

max Ui(w; — piG, G)

(4)
s.t. (5 —piG >0

Whenever, for somgj, the desired demands f6f by each agent are equal then we have
a Lindahl equilibrium. Since the Lindahl prices split the Kolm triangle into two separate
budget sets which are disjoint except for their common boundary, it follows that Lindahl
equilibria are Pareto optimal. The assumptions made on the preferences do not guarantee
the existence of Lindahl equilibria. However, these assumptions guarantee that they will
be unique if they exist +e., there will be at most one Lindahl equilibrium associated
with any initial endowment. See figure 14 for an illustration of a Lindahl equilibrium.

More formally, @7, p5; w1 — piG*, we — p5G*; G*) is aLindahl equilibriumif G*
solves problem (4) fof = 1,2, when we replace; by p?. In a Lindahl equilibrium,
the agents face personalized prices for the public good while they all consume the same

Tf agent two increases his contribution by too much, it is possible that agent one might end up worse off. Of
course, agent one’s offer could always specify a limit to the matching gift.
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0, A 0,

Fig. 14. Lindahl Equilibrium.

amount —in contrast with a private-goods economy Walrasian equilibrium where the
agents have individual demands facing all the agents same prices. We shall define an
allocation 1, x4, G) to be aLindahl allocationif there exist prices,(;, p2) such that

(p1, p2; w1 — p1G,we — p2G; G) is a Lindahl equilibrium.

Personalized prices can be obtained by allowing each agent to subsidize the other
agents’ contributions as in section 7. What is the outcome of the two-stage game where
each agent announces first a subsidy rate for the other agent and then, in a second stage,
chooses his own contribution? This game is studied in Danziger and Schnytzer’(1991)
and they find thaall the subgame-perfect equilibria of this game are Lindahl allocations.

The two-stage game consists of:
Stage 1.Agent: chooses; for j 7 1.

Stage 2.Each agent chooses > 0. If (1 — s;)g; + s;9; > w;; any rule that allocates
the entire agents endowment to the public good will suffide.

A subgame-perfect equilibrium is given by ( s5; g5 (s1, s2), g5(s1, s2)) such that:
() (97(51, 82), 95(51, 52)) is a Nash equilibrium of the second-stage game givenst);
l.e, g7 (51, 52)) solves
¢i(3:, 85) = ”;?X Ui(w; — (1 — 8:)gi — 8595, 9 + 9;)

8 Varian (1994) studied a related game where the rate at which each agent subsidizes the other agents is set
by the other agents.

9 Here, ifs; > 0, agent’s choice set foly; depends on the other agent choiceypf We can, for example,
makeg; = (w; — s;9:)/(1 — s;) wheneverw; > s;g;; otherwise make; = w;/g; andg; = 0. See Danziger
and Schnytzer (1991).
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and:
(“) (bi(sf;? 8;) > ¢i(3i7 5;)1 for all Sis Za.] = 17 231 ?/j
Every subgame-perfect equilibrium (SPE) of this game is a Lindahl allocHtion.

Ol A 02

Fig. 15. Pareto Efficient Equilibria witls; + so 7 1.
Left: s;1 +so > 1;G =0. Right: s; +s9 < 1; Agent 1 contributes 0.

The only possible equilibrium whey + s, > 1 is at the initial allocation where both
agents are contributing nothing towards the public good. This equilibrium is always a
Pareto efficient allocation, provided that it exists —and there is a whole range of Lindahl
prices that will support it as a Lindahl equilibrium. We illustrate one such case in the left
panel of figure 15. Of course, it is possible that no equilibrium exists at@alhifso > 1.

If s1+s5 < 1we can possibly have a Pareto efficient SPE, which will also be a Lindahl
allocation, only wheny; = 0 for one of the agents. Note that in the simple contributions
game of section 5 we could not possibly have a Pareto efficient NE with one of the agents
contributing a positive amount. We illustrate such a possibility in the right panel of figure
15. What allows for this possibility now is thatB’ is steeper thamd B which itself
bounds the slope of agent one’s indifference curves (see figure 2).

By the results in section 7 we cannot have an interior SPE whereves < 1. Every
equilibrium in the second-stage game which is not a Pareto efficient allocation cannot
be a subgame-perfect equilibrium of the two-stage game. Figure 16 shows a general
interior equilibrium of the second-stage game. Any agent can improve her welfare by
incrementing the subsidy to the other agent.

Finally, let us examine a SPEs;( s5; g7 (s1, s2), g5(s1, s2)), as the one depicted in
figure 14, withs] + s5 = 1. What would be the effect of agent two reducing agent one’s
subsidy tos] < s7? We show this in figure 17. At the SPE, with s7 +s5 = 1,

10 Note that our definition of a Lindahl allocation differs from Danziger and Schnytzer (1991) since they do
not allowG = 0 at Lindahl allocations.
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0,

Fig. 16. Inefficient Second-Stage Game Equilibrium.

both agents are facing the common budget li8’. Now, whens; falls to §; < sf,

agent one’s budget line becomég” when agent two contributes nothing. When agent
two contributes positive amounts towards the public good, agent one’s budget line slides
paralell toAC’ from AB’ to O10y. The strict normality of both goods will guarantee
that agent one’s reaction function hitsB’ below E; also, as before, once it hit$B’ it

stays inAB’. Therefore, the second-stage game equilibrium stays abw with agent

two contributingg; (51, s5) = ¢57(s7,s5) + g5(s7, s3) and agent one contributing zero,
97(51,s3) = 0. This illustrates that a given Lindahl allocation can be supported by a
multitude of SPE of this game.

0, A 0,

Fig. 17. Changings; from the SPEFE.
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9. Concluding Remarks

The simple model of private contributions to public goods developed in Bergstrom, Blume
and Varian (1986) has proved most fruitful to gain insights into a wide variety of problems.
In this paper we provide simple geometrical proofs to a number of established results
using the Kolm triangle. The Kolm triangle shows to be a powerful tool to understand
the intricacies of the model and it is especially useful as a pedagogic device. The results
shown in this paper were originally established using algebraic proofs, and hold in more
general scenarios than the linear 2-agent 2-good world used here.

All the results discussed in this paper (except those in section 6 dealing with sequential
provision) generalize ta agents. The other simplifying assumption, common linear
technology, is harder to relax in some cases —specially the ‘common’ part. All the
results hold when the public good is obtained by a single well-behaved production process,
G = f(g1 + g2), with f/(-) > 0 andf”(-) < 0. However, endowing each participant with
an agent-specific technology (even linegt)= f;(w; — x;), with G = >_ g;, suffices to
eliminate Warr-type neutrality results (seeg, Konrad and Lommerud (1995) for a model
of the household where income transfers from the domestic partner who has comparative
advantage outside the home to the other turn out to be not only efficiency-enhancing but
also Pareto improving). Finally, the Warr neutrality result can also be extended to the
case of many public goods (Bergstrom, Blume and Varian (1986), section 6).
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