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Abstract

This paper gives a concrete example of a nondictatorial, coalition-
ally strategyproof social choice function for countably infinite societies.
The function is defined for those profiles such that for each alternative,
the coalition that prefers it the most is “describable.” The “describ-
able” coalitions are assumed to form a countable Boolean algebra. The
paper discusses oligarchical characteristics of the function, employing
a specific interpretation of an infinite society. The discussion clarifies
within a single framework a connection between the negative result
(the Gibbard-Satterthwaite theorem) for finite societies and the posi-
tive result for infinite ones.
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1 Introduction

A social choice function assigns an alternative to each profile of individ-
ual preferences. If the function is not coalitionally strategyproof, then at
some profile p, a coalition of individuals are better off misrepresenting their
preferences (that is, a deviation from p is profitable for the coalition). I
give a concrete example of a nondictatorial, coalitionally strategyproof so-
cial choice function for countably infinite societies. The existence of such a
function has been shown by Pazner and Wesley [16] in a non-constructive
manner for the unrestricted domain of profiles.

The existence of (individually or coalitionally) strategyproof social choice
functions has been studied both in the case of a finite set of individuals
(voters) and in the case of an infinite set of individuals.

When there are only finitely many individuals, there exists no nondicta-
torial, individually strategyproof social choice function on the unrestricted
domain of profiles (of individual preferences satisfying the usual ordering
properties). The Gibbard-Satterthwaite theorem [5, 18] states that.

In contrast, when there are infinitely many individuals, there exists a
nondictatorial, individually strategyproof social choice function on the un-
restricted domain of profiles. Pazner and Wesley [16, p. 254] show the exis-
tence by giving a concrete example.

In the case of an infinite society, considering coalitional strategyproof-
ness, not just individual strategyproofness is particularly important, in view
of interpretation. (I will comment on this point in Section 4.1.) Pazner and
Wesley indeed consider coalitional strategyproofness. They prove [16, Theo-
rem] that when there are infinitely many individuals, there exists a nondicta-
torial, coalitionally strategyproof social choice function on the unrestricted
domain. The proof, however, relies on a non-constructive mathematical
technique,1 failing to present any concrete example of a function satisfying
the conditions.

In their subsequent work, Pazner and Wesley [17] turn to the problem
of explicitly constructing a social choice function that is nondictatorial and
coalitionally strategyproof. Their approach is to modify the notion of strat-
egyproofness. They start by defining a nondictatorial social choice function
explicitly. Next, they fix an arbitrary countable collection of coalitions. In-
tuitively, the coalitions in the collection are the “describable” ones. Then,

1The proof relies on the axiom SPI, “each infinite set carries a free ultrafilter”—an
axiom that cannot be derived from the Zermelo-Fraenkel axioms of set theory without the
axiom of choice. Brunner and Mihara [3] give a further discussion.
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they conclude by showing [17, Theorem 2] that for almost every profile the
function is strategyproof for all coalitions in the collection: no coalition in
the collection can deviate from the profile profitably. A drawback of the
function is that it violates neutrality (equal treatment of alternatives). In
fact, it chooses the same alternative for almost all profiles.

I take a different approach in this paper. Instead of considering social
choice functions on the unrestricted domain of profiles, I restrict (Section 2)
profiles in a natural way. I admit only those profiles such that for each
alternative the set (coalition) of individuals that prefer it the most, is “de-
scribable” (or “observable”)—and I assume that there are only countably
many “describable” coalitions. I then (Section 3) construct a nondictatorial
social choice function on the restricted domain of those admissible profiles
and show the main result (Theorem 2) that it is coalitionally strategyproof
in the usual sense (i.e., strategyproof for all admissible profiles and for all
coalitions). Though the function satisfies the neutrality condition, it has
certain oligarchical characteristics. I observe (Section 4.1) this fact, employ-
ing a specific interpretation of an infinite society. The observation clarifies
a connection between the negative result (the Gibbard-Satterthwaite the-
orem) for finite societies and the positive result for infinite ones. I then
conclude the paper with a discussion (Section 4.2) that the function may
be regarded as a component of a more appealing superrule, suggesting a
problem for further investigation.

2 Framework

Let N = {1, 2, 3, . . .} be a countably infinite set of individuals (voters). Let
X be a finite set of alternatives, which has at least three elements. Let S be
the set of (strict) preferences, i.e., total, asymmetric, and transitive binary
relations on X. (For simplicity, indifference is not allowed.)

A Boolean algebra B consisting of subsets of N satisfies the following:
(i) ∅, N ∈ B; (ii) A ∪ B, A ∩ B, Ac ∈ B if A, B ∈ B (where Ac denotes
the complement of A). Intuitively, an element of a Boolean algebra is a
coalition describable (or observable) to the planner (an imaginary person
that executes a social choice function). The main theorem assumes a count-
able Boolean algebra that contains all finite coalitions. The countability
condition corresponds to the real-world observation that a language has to
be used to describe anything, but there are only countably many sentences
in a written language (provided that the alphabet of the language consists
of finitely many letters). The condition that the Boolean algebra contains
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all finite coalitions is equivalent to the condition that it contains all one-
individual coalitions. The intuition is that each individual is describable. (I
assume a countable set of individuals for this reason.) Each of the following
four examples of a Boolean algebra is (i) countable and (ii) contains all finite
coalitions.

Example 1. The collection of all finite sets and all cofinite sets (the com-
plements of a finite set) in N is the minimal Boolean algebra that satisfies
the two conditions above. Empirical scientists that take an extreme position
might reject observability of any infinite object. This is the only Boolean
algebra that is acceptable to them.

Example 2. Let REC consist of all recursive sets in N . (According
to Church’s thesis these are the sets whose membership is algorithmically
decidable [20, 4].) Then REC is a Boolean algebra. The notion of recur-
sive coalitions (which I used [12, 13] in social choice theory) is a stringent
formalization [4, pp. 225 and 197] of the intuitive notion of “describable”
coalitions.

Example 3. An arithmetical set in N is a set definable in the intended
structure for the language of number theory (as described in Enderton [4],
especially pp. 235–7, 174–5, and 88). The class of arithmetical sets is a
Boolean algebra containing all recursive sets. The notion of arithmetical
coalitions is a less stringent formalization of the intuitive notion of “describ-
able” coalitions than Example 2.

Example 4. A rational interval on [0, 1] is a set of rational numbers
that can be expressed in one of the following forms: {x : a < x < b },
{x : a < x ≤ b }, {x : a ≤ x < b }, {x : a ≤ x ≤ b }, where a and b
are some rational numbers such that 0 ≤ a ≤ b ≤ 1. The collection of all
finite unions of rational intervals on [0, 1] is a Boolean algebra. Since there
is a one-to-one correspondence between the set of rational numbers and the
set N , each element of this Boolean algebra can be regarded as a subset
of N . This Boolean algebra (as well as its higher-dimensional extensions)
has an obvious interpretation in areas (such as political theory and regional
science) where Hotelling locational (spatial) models are used.

The next example is different from the four examples just mentioned. It
is a finite Boolean algebra, which does not contain all finite coalitions. The
example enables one to treat (as in Section 4.1) the case of finitely many
people within the present framework.
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Example 5. Consider a finite partition of N . (It does not have to be
that all the partition elements are infinite.) The collection of all unions of
elements in the partition is a Boolean algebra. In fact, any finite Boolean
algebra is of this form, where the partition consists of its atoms (nonempty
sets containing no proper nonempty subset that belongs to the Boolean
algebra).

Let B be a Boolean algebra. A profile is a list p = (Âp
i )i∈N ∈ SN of

individual preferences Âp
i , where i ∈ N . A profile (Âp

i )i∈N is B-admissible
if

{ i ∈ N : x Âp
i y for all alternatives y 6= x } ∈ B

for all x ∈ X. Denote by SN (B) the set of all B-admissible profiles. A
(B)-social choice function is a function F from SN (B) onto X which maps
each profile p = (Âp

i )i∈N into an alternative. I assume that F is onto (i.e.,
the image is X) to avoid trivial cases.

Remark 1. The reader may object to the admissibility condition on
the grounds that it implies correlation between the preferences of different
individuals. To defend the condition, I give two interpretations. The first is
the uncertainty interpretation in Section 4.1, where there are only finitely
many people, who face infinitely many states. In this case, the admissibility
condition simply reflects the reasonable epistemological requirement that
each person can describe for each alternative, the set of states in which
he prefers it the most. The second interpretation is a society made up of
infinitely many people extending into the indefinite future. In this case, it
is natural to suppose that we are dealing with preferences reported by a
finite number of living voters (who “represent” some future generations),
rather than the actual preferences. The admissibility condition reflects the
reasonable requirement that what is reported should be describable. ‖

Remark 2. In related papers [11, 12, 13, 14], I used the domain of
measurable profiles, as in Armstrong [1, 2]. (I say that a profile (Âp

i )i∈N is
B-measurable (p ∈ SN

B ) if { i ∈ N : x Âp
i y } ∈ B for all x, y ∈ X. Note that

when X is finite, all B-measurable profiles are B-admissible: SN
B ⊂ SN (B).)

I argue below (Remark 5) that the main result (Theorem 2) holds for either
domain. ‖

Suppose that a Boolean algebra B contains all coalitions consisting of
only one individual (thus B contains all finite coalitions). A (B)-social
choice function F is dictatorial if there exists an individual i such that

5



for all B-admissible profiles p = (Âp
i )i∈N , we have F (p) Âp

i y for all alter-
natives y 6= F (p). A (B)-social choice function F is said to be coalitionally
manipulable if for some B-admissible profiles p = (Âp

i )i∈N , p′ = (Âp′
i )i∈N

and for some nonempty coalition E ⊆ N , it is the case that Âp′
i =Âp

i for all
i /∈ E and F (p′) Âp

i F (p) for all i ∈ E. (Note that E need not be a member
of B.) If in the definition of coalitional manipulability, “nonempty coalition”
is replaced by “one-individual coalition,” we have individual manipulability.
F is coalitionally (individually) strategyproof if it is not coalitionally (indi-
vidually) manipulable.

3 Construction of the social choice function

Since the purpose of this paper is to exhibit a nondictatorial, coalitionally
strategyproof (B)-social choice function in an explicit fashion, I start by
defining a candidate G for such a function. I assume that B is a countable
Boolean algebra that contains all finite coalitions.

To define the function G, I now construct a collection U of coalitions
in the Boolean algebra B. Each coalition in the collection is understood to
be a “majority” or “plurality” of the individuals. First, fix an enumeration
C0, C1, C2, . . . of all elements of B. (I allow repetitions.) Then, define the
sequence

U0 = ∅

Us+1 =

{
Us ∪ {Cs} if this family has an infinite intersection,
Us otherwise.

The condition for the first case in the definition of Us+1 means that (
⋂Us)∩

Cs is infinite, where
⋂Us =

⋂
C∈Us

C. Finally, let U =
⋃∞

s=0 Us. Note that
U does not contain any finite coalitions. (In the trivial case of Example 1,
U consists of all cofinite coalitions. What is significant about the above
construction is that it defines a collection U for nontrivial cases too.)

Having constructed the collection U of “majorities,” I can define the
social choice function G from SN (B) to X by

G(p) = x ⇐⇒ { i ∈ N : x Âp
i y for all alternatives y 6= x } ∈ U (1)

for each profile p = (Âp
i )i∈N . (I show below that G is well-defined.) Intu-

itively, G chooses an alternative x when the individuals that prefer x the
most, form a “majority.” U is called the set of decisive coalitions for G. It
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is obvious that G is nondictatorial since U does not contain any coalitions
consisting of a single individual.

The next proposition (which is proved in Appendix A) is the key to the
main theorem. To state the proposition, I now introduce the notion of an
“ultrafilter” (Koppelberg [9, p. 32] gives an exposition). A filter F on a
Boolean algebra B is a family of sets in B satisfying: (i) ∅ /∈ F ; (ii) if A ∈ F
and A ⊆ B, then B ∈ F ; (iii) if A, B ∈ F , then A ∩ B ∈ F . Intuitively, a
filter is a family of “large” sets. An ultrafilter is a filter F that satisfies: if
A /∈ F , then Ac ∈ F . Suppose B contains all finite sets in N . Then we say
that an ultrafilter F is fixed if it is of the form F = {A ∈ B : i ∈ A } for
some i ∈ N ; otherwise, it is called free and does not contain any finite sets.

Proposition 1 The set U of decisive coalitions is a free ultrafilter.

Remark 3. To see the simplicity of the function G informally, imagine
that the planner thinks of coalitions C0, C1, C2, . . . one by one, and for
each Cs, she determines whether it is decisive. To determine whether Cs is
decisive or not, the planner does not have to know much. First, she only
needs her “past” decisions about C0, C1, . . . , Cs−1. (In fact, she determines
Cs to be decisive as long as doing so does not result in the collection U failing
to be a free ultrafilter: If Cs is put into the collection Us+1 when Us ∪ {Cs}
does not have an infinite intersection, then resulting U has a finite element,
namely the intersection of all the decisive coalitions up to Cs. But free ultra-
filters cannot have finite elements.) Second, she only needs the “aggregate
data”

⋂Us, the intersection of all coalitions that she has determined to be
decisive up to that point. This simplifies information processing consider-
ably. More formal analysis can be given (as in Mihara [13]) in a framework of
computability analysis of social choice, which studies algorithmic properties
of social choice rules. ‖

The following is the main theorem. It is concerned with the particular G
described above. It thereby establishes not only that a social choice function
satisfying the properties mentioned exists, but also that such a function can
be constructed explicitly.

Theorem 2 Let B be a countable Boolean algebra that contains all finite
coalitions. Suppose that C0, C1, C2, . . . is an enumeration of all elements
of B. Then the nondictatorial (B)-social choice function G:SN (B) → X
described above is coalitionally strategyproof.
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With the help of Proposition 1, the proof of Theorem 2 goes as in the
proof of the Theorem in Pazner and Wesley [16, p.255]. Note that (1) well-
defines G since exactly one of the partition elements

{ i ∈ N : x Âp
i y for all alternatives y 6= x },

where x ranges over the finite X, belongs to the ultrafilter U (by a well-
known property [9, p. 32] of an ultrafilter).

Remark 4. The proof in Pazner and Wesley carries through for arbitrary
deviating coalitions E provided that U is defined on a Boolean algebra and
profiles are admissible. ‖

Remark 5. To show that the main result is unaffected when the do-
main SN (B) of admissible profiles is replaced by the domain SN

B of measur-
able profiles, I now construct a social choice function g on the latter domain.
Define g from SN

B to X by

g(p) = x ⇐⇒ { i ∈ N : x Âp
i y for all alternatives y 6= x } ∈ U

for each profile p = (Âp
i )i∈N in SN

B . (The function g is the restriction of
G to SN

B .) By the same argument as that in the proof, one can see that
g is well-defined, nondictatorial, and coalitionally strategyproof. (That g is
coalitionally strategyproof can be proved directly from the fact that G is
coalitionally strategyproof.)

Conversely, I can first construct a nondictatorial, coalitionally strate-
gyproof social choice function on the domain of measurable profiles and then
extend [14, Corollary 3] it to a nondictatorial, coalitionally strategyproof so-
cial choice function on the domain of admissible profiles. ‖

4 Discussion

The social choice function G constructed in Section 3 has the characteristics
of an oligarchy, as Pazner and Wesley [16] point out. This means that an
infinite but arbitrarily “small” coalition of individuals can decide the social
outcome, regardless of the preferences of those outside it. (Kirman and
Sondermann [8], Armstrong [1], Sen [19], and Lauwers and Van Liedekerke
[10] make a similar observation in the context of Arrow’s Theorem for infinite
societies.) Section 4.1 discusses this particular lack of anonymity under a
specific interpretation of an infinite society. The discussion will clarify a
connection between the negative result for finite societies and the positive
result for infinite ones. Section 4.2 concludes the paper by suggesting that
we view the function as a subrule of some game form.
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4.1 Connection with the result for finite societies

According to my interpretation [12], an infinite society of individuals con-
sists of finitely many persons, whose preferences are conditioned on infinitely
many states (expressing uncertainty). If a person j prefers an alternative
(action) x to an alternative (action) y in a state s, I say that the individ-
ual (j, s) prefers x to y. (The same person at two different states are thus
viewed as two different individuals.) In this way, I can obtain infinitely
many individuals, who are persons at different states. At the time the social
choice is made, the real state is not known to the persons.

Remark 6. It might appear as natural to model the situation as one with
finitely many people having preferences over an infinite set of (state-specific)
alternatives. In such a model, if a person j prefers an action x to another
action y in a state s, then the person j is said to prefer a (state-specific)
alternative (x, s) to another (y, s). In this case, the Gibbard-Satterthwaite
theorem for finite societies implies the nonexistence of nondictatorial, coali-
tionally strategyproof social choice function. The difference of the result
is due to the fact that in this model, each person (and the society) is re-
quired to compare every pair (x, s), (y, t) in the set of alternatives. Where
a state is chosen by Nature (chance) rather than by the society, this sort of
inter-state comparisons are often meaningless for the decision-making. My
interpretation above avoids inter-state comparisons. ‖

Note that this interpretation suggests the importance of considering
coalitional strategyproofness, not just individual strategyproofness, in the
case of an infinite society. Under the interpretation, a particular person j̄
can misrepresent the preferences of many individuals (j̄, s), for various s.
She can thus form profitably deviating coalitions by herself, without com-
municating with other persons.

Now, to see the oligarchical characteristics of the function G under the
interpretation above, consider the profiles where each person has the same
preference at all states. (Different persons may have different preferences,
but all the preferences that belong to a given person is the same across dif-
ferent states. Note that these are the measurable profiles with respect to the
Boolean algebra in Example 5, where each partition element corresponds to
a person.) This may happen when persons are unable to distinguish any
state from other states because their knowledge is severely limited. If G is
restricted to these profiles, it can be re-interpreted as a social choice func-
tion for a finite set of persons. It turns out (by a property [9, p. 32] of an
ultrafilter) in this case that only one person’s preferences count: the social
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outcome will always be the most preferred alternative of that (dictatorial)
person. In other words, an “oligarchy” consisting of just one person exists.
The restricted function is coalitionally strategyproof (the dictator obviously
has no gain misrepresenting the preference; the others have no gain misrep-
resenting their preferences since doing so simply does not count), but only
in the trivial sense. A dictatorial person exists, since the number of persons
is finite. Since the number can be arbitrarily large, this means that an ar-
bitrarily small “coalition” (i.e., a person in an arbitrary large society) can
dictate the outcome.

A similar argument applies even if each person’s preference is more re-
sponsive to states. Suppose for example that each person has a finite par-
tition of the set of states such that for each partition element, she has the
same preference at all states belonging to the element. Suppose further that
this is because she can only distinguish between states belonging to differ-
ent partition elements. (In the language of the formal model of knowledge
(see Osborne and Rubinstein [15, Section 5.1]), the information function
of a person is partitional here, and the partition consists of finitely many
events.) In this case, (by a property [9, p. 32] of an ultrafilter) there are
a person and a collection (one of her partition elements) of states that she
cannot distinguish between, that dictate the social outcome. This implies
(assuming a partitional information function) that in order to avoid this sort
of dictatorial person-collection pair, at least one person must have an infinite
cognitive power (in the sense that she must be able to distinguish between
infinitely many states; formally, her partitional information function must
be infinitely valued).

4.2 The oligarchical function as a subrule

The discussion in Section 4.1 suggests that the function G itself is not very
appealing as a rule for democratic decision making. (The discussion applies
to any nondictatorial, coalitionally strategyproof social choice functions, not
just to G. So, G is not exceptional.) This, however, does not mean that the
function is not interesting. Consider, for example, a dictatorial social choice
function for a finite society. The dictatorial function itself is not very ap-
pealing. But when dictatorial functions are used to form a superrule, that
superrule may satisfy certain nice properties. Indeed, Hylland [7] shows
that the random dictators (where dictatorial functions are combined, given
fixed weights) are the only strategyproof rules satisfying a certain condition.
There, a dictatorial function can be regarded as a subrule (component of
the superrule), which Nature (chance) chooses. Also, Hurwicz and Schmei-
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dler [6] show that a game form in which an individual (“kingmaker”) in effect
selects a dictatorial function satisfies certain nice properties. A dictatorial
function is a subrule there, which the kingmaker chooses when playing the
game form.

In a similar fashion, the “oligarchical” function G may be regarded as a
subrule of a superrule having nice properties. A plausible candidate for such
a superrule is a game form Γ consisting of two groups (Group 1 and Group 2)
of individuals, where the individuals in Group 1 first choose a social choice
function (such as G) for the society consisting of the individuals in Group 2.

To investigate the properties of such game forms formally is beyond
the scope of the present paper. To do that, one has to specify the game
form Γ, preferably in extensive form. Also, one has to be careful in choosing
a suitable concept of equilibrium: While the individuals in Group 2 may
reasonably be expected to have dominant strategies, those in Group 1 cannot
be expected to have dominant strategies (they are not likely to play best
responses either).

A Proof of Proposition 1

This appendix gives a proof of Proposition 1.
First, the following two lemmas are easily obtained by mathematical

induction.

Lemma 1 For all s and s′, (i) Us is a finite family consisting of infinite
coalitions in B, and (ii) if s ≤ s′, then Us ⊆ Us′.

Lemma 2 For all s and s′, (i)
⋂Us is infinite, and (ii) if s ≤ s′, then⋂Us ⊇

⋂Us′.

Lemma 3 For all s, if Cs ∈ U , then (
⋂Us) ∩Cs is infinite and Cs ∈ Us+1.

Proof. Suppose Cs ∈ U . If (
⋂Us) ∩ Cs is infinite, then by the definition

of Us+1, Cs ∈ Us+1, and we are done.
So, suppose (

⋂Us) ∩ Cs is finite. Since Cs ∈ U , it must be that Cs ∈ Ut

for some t. Without loss of generality, assume t > s. (If t ≤ s, then Cs ∈ Us.
So, (

⋂Us) ∩ Cs =
⋂Us, which is infinite by Lemma 2. This contradicts the

assumption that (
⋂Us)∩Cs is finite.) Then

⋂Ut ⊆
⋂Us by Lemma 2. Then

(
⋂
Ut) ∩ Cs ⊆ (

⋂
Us) ∩ Cs.
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But the expression on the right is finite, by assumption. Hence (
⋂Ut) ∩ Cs

is finite. Since Cs ∈ Ut, we have
⋂Ut = (

⋂Ut) ∩ Cs, which is finite. This
contradicts Lemma 2.

Lemma 4 U is a filter.

Proof. (i) Since only infinite coalitions belong to U by Lemma 1, ∅ /∈ U .
(ii) Suppose Cs′ ∈ U and Cs ⊇ Cs′ . We show that Cs ∈ U .
(Case: s′ < s). Since s′ + 1 ≤ s and Cs′ ∈ Us′+1, we have Cs′ ∈ Us.

Hence (
⋂Us) ∩ Cs′ is infinite, being equal to

⋂Us. But Cs′ ⊆ Cs implies
that

(
⋂
Us) ∩ Cs′ ⊆ (

⋂
Us) ∩ Cs.

It follows that the right hand side expression is infinite. So, Cs ∈ Us+1 ⊆ U .
(Case: s′ ≥ s). We have Us′ ⊇ Us and Cs ⊇ Cs′ . To show Cs ∈ U ,

suppose Cs /∈ U . Then (
⋂Us) ∩ Cs is finite. (Otherwise, Cs ∈ Us+1 ⊆ U ;

contradiction.) Then, since

(
⋂
Us′) ∩ Cs ⊆ (

⋂
Us) ∩ Cs,

(
⋂Us′)∩Cs is finite. But Cs′ ⊆ Cs implies that (

⋂Us′)∩Cs′ is finite, being
a subset of (

⋂Us′)∩Cs. Hence Cs′ /∈ Us′+1. By Lemma 3, Cs′ /∈ U , which is
a contradiction.

(iii) Suppose that Cs, Cs′ ∈ U . We show that Cs∩Cs′ ∈ U . Without loss
of generality, we may assume that s ≥ s′. Then Cs, Cs′ ∈ Us+1 by Lemma 3
and Lemma 1. Choose t such that Ct = Cs ∩ Cs′ .

(Case: t > s). In this case, Cs, Cs′ ∈ Ut. Since
⋂Ut is infinite and

Ct = Cs ∩ Cs′ ⊃
⋂Ut, it follows that (

⋂Ut) ∩ Ct =
⋂Ut is infinite. So,

Ct ∈ Ut+1 ⊆ U .
(Case: t ≤ s). In this case,

⋂Ut ⊇
⋂Us+1. It follows that

(
⋂
Ut) ∩ Ct ⊇ (

⋂
Us+1) ∩ (Cs ∩ Cs′).

Since the set on the right is equal to Us+1, which is infinite, the set on the
left is also infinite. Therefore, Ct ∈ Ut+1 ⊆ U .

Lemma 5 U is an ultrafilter.

Proof. Suppose that Cs, Ct ∈ B, Cc
s = Ct, where s < t without loss of

generality. To show that Cs ∈ U or Ct ∈ U , suppose Cs /∈ U and Ct /∈ U .
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Then, both (
⋂Us)∩Cs and (

⋂Ut)∩Ct are finite. (Otherwise, Cs ∈ Us+1 or
Ct ∈ Ut+1.) Since

⋂Us ⊇
⋂Ut, it follows that

(
⋂
Us) ∩ Cs ⊇ (

⋂
Ut) ∩ Cs.

Since the set on the left is finite, the set on the right is also finite. Now,
⋂
Ut = (

⋂
Ut) ∩N

= (
⋂
Ut) ∩ (Cs ∪ Ct)

= [(
⋂
Ut) ∩ Cs] ∪ [(

⋂
Ut) ∩ Ct].

Hence,
⋂Ut, being the union of finite sets, is finite. This contradicts Lemma 2.

We conclude that U is a free ultrafilter. This is immediate from Lemma 1
since any element of U has to be infinite.
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