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1. Introduction

Preserving intergenerational equity has become a worldwide political
concern and achieving sustainability is increasingly considered a rele-
vant social goal. Environmental policy is a central issue in the debate,
since resources depletion and environmental degradation are major
sources of intergenerational conflicts. In particular, prospects for over-
exploitation of productive natural resources represent a threat for the
ability of future generations to meet their own needs. Since Hotelling
(1931) seminal work, economic analysis has pointed out several poten-
tial sources of the problem: over-exploitation may result from market
incompleteness, excessive competition, myopic behavior, lacking mo-
tives for investment in natural preservation. Accordingly, public inter-
vention may be called for either restoring efficiency (Toman, 1987) or
settling conflicts between intertemporal efficiency and social optimality
(Howarth and Norgaard, 1990).1

In recent times, the attribution of property rights over natural re-
sources - as well as similar mechanisms allowing for market valuation
of environmental assets - gained much attention in the policy debate.
However, neither sustainability nor resource preservation are guaran-
teed when natural capital is private property. This result holds in
general equilibrium models with infinitely-lived agents (Pezzey, 1992),
and is furthermore valid when assuming selfish agents with finite life-
times (Mourmouras, 1993): market valuation of resource assets can
only limit the depletion rate to the extent that preserving natural
capital is profitable to agents currently alive. Consequently, achieving
intergenerational fairness requires a system of transfers that redis-
tributes income among generations: examples in the recent literature
on environmental economics include Mourmouras (1993), Marini and
Scaramozzino (1995), Bovenberg and Heijdra (1998), Krautkraemer
and Batina (1999), Gerlagh and Keyzer (2001).

The logic underlying most the above contributions is that of pursu-
ing intergenerational fairness while preserving intertemporal efficiency,
and this typically implies to consider lump-sum transfers. However,
real-world policymaking is often constrained by institutional feasibility:
lump-sum taxes have limited application, and policies involving inter-
generational transfers likely need support of the constituency. Building
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on this point, we focus on the intergenerational effects of resource-
saving policies enacted through distortionary measures. Specifically, we
pose the following question. Consider an economy with overlapping gen-
erations where agents live for two periods and privately-owned natural
capital is essential for production. Suppose that under laissez-faire the
economy is placed along a path implying individual welfare be declining
over time. Would selfish agents agree on a system of intergenerational
transfers implying a higher degree of natural preservation?

This paper shows that, under credible pre-commitment, every new-
born generation supports distortionary taxation of natural capital in-
come for purely selfish reasons, provided a critical condition on techno-
logical parameters is satisfied. More precisely, all agents strictly prefer
positive transfers in both periods of life, with respect to persistent
laissez-faire conditions, if the resource-share in production is sufficiently
high relative to the labor-share. The reason for this result is that higher
productivity of natural capital raises the after-tax yield from resource
assets: if the resource share is sufficiently high, the negative effect of
second-period taxation is more than offset by the positive effect of
first-period subsidies. Hence, if newborn agents are asked at birth to
sign a lifetime contract requiring them to choose either positive or zero
transfers in both periods of life, positive transfers are chosen - that is, a
higher degree of natural preservation is preferred to laissez-faire - when
the critical condition is satisfied.

After describing the welfare properties of lifetime contracts, we an-
alyze the intergenerational consequences of enforcing resource-saving
policies by discretionary intervention over an infinite time-horizon. The
welfare time-path obtained under laissez-faire is not Pareto-comparable
with that implied by permanent transfers: under resource-saving poli-
cies, resource owners at ’time zero’ suffer a deadweight loss due to
initial taxation of natural capital. Similarly to Gale (1973), if the first
resource owner partially renounces to its claim over initial endowments,
the transmission of this credit forward in time yields welfare gains for
all successive generations.

Other interesting results concern with sustainability conditions: we
derive explicit conditions for non-declining lifetime utility with a pos-
itive rate of technological progress, also describing interrelations and
possible conflicts among alternative social goals.
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2. The model

Our formal analysis draws on the Mourmouras (1993)-Krautkraemer
and Batina (1999) model. Mourmouras (1993) uses the overlapping-
generations setup to demonstrate that competition may lead to over-
exploitation of privately-owned renewable resources, and describes a
set of conservationist policies that implement the Rawlsian path, i.e.
policies that keep private welfare constant, at the highest feasible level,
across generations. A first major difference with respect to Mourmouras
(1993) is the aim of our analysis: we study the welfare properties of
distortionary transfers in order to ascertain whether, and under what
institutional circumstances, selfish agents would agree on a higher rate
of natural preservation with respect to laissez-faire. Second, we focus
on the existence of situations where a distorted rate of resource use is
preferred to the laissez-faire rate, without assuming a predetermined
social objective: whether the distorted rate satisfies sustainability cri-
teria - i.e. non-declining utility, conditions for zero-depletion, both or
none of the two - it depends on parameters, and is an ex-post problem.
Third, we study individual payoffs in a regime-contingent formulation,
in order to describe the potential support for transfers in each point in
time. Fourth, we include technological progress of the resource-saving
type in the model, which modifies the link between sustainability and
natural preservation, determining possible conflicts between alternative
social objectives.2

In line with recent literature, we define sustainable development as a
path implying non-decreasing welfare for future generations. The econ-
omy has an overlapping-generations structure, with each agent living
for two periods and enjoying utility from consumption when young (c)
and consumption when old (e). Population in period t consists of Nt

young and Nt−1 old individuals, with a constant rate n of population
growth: Nt+1 = Nt (1 + n). Denoting by Ut the lifetime utility of an
agent born in period t, sustainability requires

Ut+1 (ct+1, et+2) ≥ Ut (ct, et+1) , ∀t ∈ [0,∞) . (1)

Denoting by Rt the stock of natural resources available in the economy,
we also define no-depletion paths as those paths satisfying

Rt+1 ≥ Rt, ∀t ∈ [0,∞) . (2)

4



Prospects for sustainability and natural preservation depend on the in-
tergenerational distribution of entitlements, which affects the time-path
of resource use, and in turn, the production frontier and consumption
possibilities of yet to born generations. In this regard, we assume a
grandfathering process à la Krautkraemer and Batina (1999): at the
beginning of period t, the whole stock of natural resources in the econ-
omy Rt is held by old agents. Part of R is used as natural capital in
production (X), while the remaining stock constitutes resource assets
(A):

Rt = At + Xt. (3)

Old agents sell resource assets At to young agents at unit price qt,
and receive a gross marginal rent pt for each unit of natural capital
Xt supplied to the firm producing the consumption good. Prices and
marginal rents are expressed in terms of the consumption good, and
per-young quantities of resource assets and natural capital are denoted
by at = At/Nt and xt = Xt/Nt, respectively. While natural capital goes
destroyed in the production process, resource assets sold to newborn
generations are brought forward in time: qtat can thus be interpreted as
the investment of each young agent in natural preservation. Assuming
that between t and t + 1 the natural resource grows at constant regen-
eration rate ε, the natural stock available at the beginning of period
t + 1 equals

Rt+1 = (1 + ε) (Rt −Xt) = (1 + ε) At. (4)

Only young agents work, supplying inelastically one unit of labor ser-
vices. The consumption good is produced by means of natural capital
and labor, and we allow for a positive rate δ of resource-augmenting
technological progress:

Yt = (mtXt)
α (Nt)

1−α , (5)

mt = mt−1 (1 + δ) , (6)

where Yt is aggregate output, Nt equals total labor units provided by
currently young, and mt is a process enhancing the productivity of
natural capital Xt at rate δ > 0.3 Denoting by w the wage rate, profit
maximization implies

pt = αytx
−1
t = αmα

t xα−1
t , (7)

wt = (1− α) yt = (1− α)mα
t xα

t , (8)
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where y = Y/N is output per worker.
Intergenerational transfers take the following form: the investment

in preservation of young agents is subsidized by taxing the income
from natural capital of old agents, and fiscal authorities keep balanced
budget in each period. Formally,

ct = wt − qt (1− dt) at, (9)

et+1 = [pt+1 (1− τ t+1)xt+1 + qt+1at+1] (1 + n) , (10)

ptτ tXt = qtAtdt, (11)

yt = ct + et (1 + n)−1 . (12)

Equations (9) and (10) represent budget constraints faced by each
individual born in period t, where d is the subsidy rate on invest-
ments in preservation, and τ is the tax rate on natural capital income.4

Equation (11) is the government budget constraint, and equation (12)
is the aggregate resource constraint of the economy. Agents are ho-
mogeneous and have logarithmic preferences: lifetime utility is Ut =
log ct + β log et+1, where β ∈ (0, 1) is the individual discount factor.
Equilibrium in the resource market requires

qt = pt (1− τ t) (13)

in each period.5 The consumer problem consists of choosing ct and
et+1 in order to maximize lifetime utility subject to (9)-(10): first order
conditions read

et+1

βct
=

qt+1 (1 + ε)
qt (1− dt)

. (14)

The temporary equilibrium of the economy is characterized by the
following relations (see Appendix): the natural capital-resource asset
ratio (z) equals

zt =
xt

at
=

α (1 + β)
β (1− α)

(1− τ t) (1− dt) , (15)

and the dynamics of the economy are described by

θR
t+1 =

1 + ε

1 + zt
, (16)

θx
t+1 =

zt+1 (1 + ε)
zt (1 + zt+1) (1 + n)

, (17)

θy
t+1 =

[
zt+1 (1 + ρ)
zt (1 + zt+1)

]α

, (18)
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where θv
t+1 = (vt+1/vt) for the generic variable vt. Note that in equation

(18) we have defined the augmentation rate ρ as

1 + ρ =
(1 + ε) (1 + δ)

(1 + n)
. (19)

Our analysis proceeds as follows: first, we derive conditions for sus-
tainability and no-depletion in a laissez-faire economy ; second, we de-
scribe how resource-saving policies - i.e. fiscal measures implying a
higher degree of resource preservation with respect to laissez-faire -
can be implemented through intergenerational transfers.

2.1. The laissez-faire economy

Setting tax-subsidy rates equal to zero, it follows from (15) that the
natural capital-resource asset ratio is constant over time:

zt =
α (1 + β)
β (1− α)

= z̃ for all t. (20)

The laissez-faire economy exhibits the knife-edge property: setting zt+1 =
zt = z̃ in equation (18), the growth rate of output per worker is constant
over time, and it can be positive, negative, or equal to zero, depending
on parameters. With respect to Mourmouras (1993) and Krautkrae-
mer and Batina (1999), the presence of technological progress crucially
modifies the link between resources depletion and sustainability (all
proofs are in Appendix):

PROPOSITION 1. A necessary and sufficient condition for no-depletion
in the laissez-faire economy is

z̃ ≤ ε. (21)

PROPOSITION 2. A necessary and sufficient condition for sustain-
ability in the laissez-faire economy is

z̃ ≤ ρ, (22)

or equivalently

1 + γ ≤
(

1− α

α

) [
(1 + δ) (1 + ε)

(1 + n)
− 1

]
− 1, (23)

where γ = β−1 − 1 is the individual pure rate of time preference.
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Expression (23) is conceptually analogous to the long-run sustain-
ability condition holding in economies with infinitely-lived agents: in
the standard capital-resource model, optimal consumption per capita
is asymptotically non-decreasing if the social discount rate does not
exceed the sum of the rates of technical progress and natural regener-
ation (Valente, 2005). Similarly, (23) shows that sustainability obtains
provided the joint effect of δ and ε is not offset by the impatience to
consume out (γ).

Whether sustainability conditions are more restrictive than condi-
tions for no-depletion depends on the rates of technological progress
and population growth: assuming ε and n strictly positive,

LEMMA 3. If δ < n, the laissez-faire economy may exhibit no-depletion
together with unsustainability; if δ > n, the economy may exhibit re-
source depletion together with sustainability; if δ = n, the economy
displays either (i) unsustainability with positive depletion, or (ii) sus-
tainability with no-depletion.

Lemma 3 can be verified by means of Figure 1, which describes
the interrelations, and possible conflicts, between resource preservation
and sustainability: in particular, it shows that no-depletion per se does
not guarantee sustained utility. By (21) and (22), the sustainability
threshold zsus = ρ increases with δ, while the no-depletion locus zndp =
ε is horizontal in the (δ, z) plane: consequently, different combinations
of parameters may determine sustainability, no-depletion, both, or none
of the two. Moreover, it follows from (21) and (22) that

COROLLARY 4. If z̃ = ε and δ = n, then

Ut+1 = Ut and Rt+1 = Rt, ∀t ∈ [0,∞) . (24)

The situation described by (24) satisfies most used notions of sus-
tainable development: future generations do not experience declining
utility (standard definition), each generation enjoys the same welfare
level (Rawlsian intergenerational equity), and natural capital as such
is preserved over time (strong sustainability). This very special case is
represented by point S in Figure 1.
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Figure 1. The knife-edge model: sustainability and no-depletion conditions for

given values of n, ε, and α. By (21) and (22), in the laissez-faire economy no-depletion

obtains for a couple of values (z̃, δ) below the locus zndp, while sustainability obtains

for a couple of values (z̃, δ) below the locus zsus.

2.2. The economy with transfers

Propositions 1 and 2 suggest that if the economy is unsustainable under
laissez-faire, a ceteris paribus reduction in zt due to intergenerational
transfers will bring the economy towards the sustainability threshold.
Balanced budget policies with positive taxes affect the gap (zt − z̃)
unambiguously: from (15) and (20), the natural capital-resource asset
ratio at time t equals

zt = z̃ (1− τ t) (1− dt) . (25)

Assume that the policymaker aims at achieving a pre-determined level
z′: substituting (25) in the government budget constraint (11), the
target level zt = z′ is obtained by setting dt = d′ and τ t = τ ′, where

d′ =
z̃ − z′

1 + z̃
and τ ′ =

z̃ − z′

z̃ (1 + z′)
. (26)
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Expressions (26) allow to derive the critical levels of τ t and dt needed
to obtain the desired depletion rate. For example, by Proposition 1 the
resource stock is constant over time if zt = ε for each t: setting z′ = ε in
(26) we obtain the critical rates to obtain zero depletion of the natural
stock. By the same reasoning,

LEMMA 5. Setting dt = z̃−ρ
1+z̃ and τ t = z̃−ρ

z̃(1+ρ) for each t ∈ [0,∞)
implies zt = ρ and Ut+1 = Ut for each t ∈ [0,∞).

More generally, any fiscal intervention that keeps zt below the laissez-
faire level z̃ constitutes a resource-saving policy : lowering the natural
capital-resource assets ratio is associated to lower rates of resource use
in production (or equivalently, to a higher degree of preservation). By
(26), positive tax-subsidy rates (τ ′ > 0, d′ > 0) are always associated
to resource-saving policies (z′ < z̃).

3. Resource-saving transfers and lifetime welfare

We now compare the effects of laissez-faire and transfers on individual
payoffs in each period: in this regime-contingent formulation, individ-
ual payoffs represent the potential political support for resource-saving
measures, as if agents were asked to choose between laissez-faire and
positive transfers in each period. Assuming that each newborn agent
takes the history of previous regimes as given, we show that positive
transfers in both periods of life may yield higher private payoffs with
respect to life-persistent laissez-faire (zero taxes and subsidies in both
periods) if a precise condition on technological parameters is fulfilled.
The payoff associated to persistent transfers is however dominated by a
third option: as intuitive, agents would be made better-off by experienc-
ing positive transfers in the first period of life, and laissez-faire in the
second, because such regime shift allows to avoid taxation. This implies
that resource-saving policies would be supported if the government had
access to a commitment device which we call lifetime contract.
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3.1. Regime-contingent payoffs

Denote by ηt the outcome of an unspecified political process: ηt is
a flag indicating whether laissez-faire or resource-saving transfers are
implemented in period t:

ηt =

{
0 ⇔ zt = z̃ (laissez-faire)
1 ⇔ zt = z′ < z̃ (res-saving transfers)

(27)

The individual payoff Vt of each agent born in t ≥ 0 depends on the
two outcomes realized during her lifetime (ηt and ηt+1) as well as on
the whole history of previous outcomes Ht =

{
η0, η1, ..., ηt−1

}
:

Vt
(
ηt, ηt+1, Ht

)
= Ut

[
ct (ηt, Ht) , et+1

(
ηt, ηt+1, Ht

)]
. (28)

Assuming that agents cannot modify previous outcomes, Ht is taken
as given and the individual payoff of every agent born in T ≥ 0 can be
written as (see Appendix)

VT

(
ηT , ηT+1, HT

)
= ΩT (HT )+log

(
zT

1 + zT

)α [
(1 + ρ) zT+1

(1 + zT ) (1 + zT+1)

]αβ

,

(29)
where ΩT is taken as given at T . Suppressing argument H for sim-
plicity, we set VT

(
ηT , ηT+1, HT

)
= VT

(
ηT , ηT+1

)
and compute payoffs

VT (0, 0), VT (0, 1), VT (1, 0), VT (1, 1) on the basis of (29). We will refer
to VT (0, 0) and VT (1, 1) as to payoffs yielded by life-persistent regimes
(ηt = ηt+1). In the Appendix, we show that for any value of z′ < z̃,

VT (0, 0) > VT (0, 1) (30)

VT (1, 0) > VT (1, 1) (31)

in each period T ≥ 0. On the one hand, this result is intuitive: in-
equalities (30) and (31) imply that if agents could modify ηT+1 while
taking ηT as given, they would have an incentive to avoid taxation in
the second period of life. On the other hand, (30) and (31) do not rule
out situations where selfish agents would prefer persistent transfers to
persistent laissez-faire: VT (1, 1) and VT (0, 0) cannot be ranked a priori,
so it is possible to have the interesting case

VT (1, 0) > VT (1, 1) > VT (0, 0) > VT (0, 1) . (32)

The explicit condition to obtain (32) is derived below:
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PROPOSITION 6. Individual payoffs are ranked as in (32) if and only
if (

α
1 + β

β + α

)1+β (
β

1− α

β + α

)β

<

(
z′

1 + z′

)1+β (
1 + z′

)−β
. (33)

Condition (33) is necessary and sufficient to have VT (1, 1) > VT (0, 0),
that is, private agents strictly prefer life-persistent transfers to persis-
tent laissez-faire. For a given discount factor β, inequality (33) defines
the set of all possible combinations of α and z′ implying VT (1, 1) >

VT (0, 0). This set can be characterized by defining the policy index

µ = (1− τ) (1− d) ≡ z′/z̃. (34)

Index µ is fixed by fiscal authorities, as it results from the level of tax-
subsidy rates, and µ < 1 means that fiscal authorities enact resource-
saving policies (this is equivalent to assume that fiscal authorities set
z′ = µz̃, where the natural capital-resource asset ratio equals the de-
sired fraction µ of the laissez-faire level z̃). As shown in the Appendix,
the welfare gap Φ = V (0, 0)− V (1, 1) can be rewritten as

Φ = log
(

1
µ

)α+αβ [
β (1− α) + µα (1 + β)
β (1− α) + α (1 + β)

]α+2αβ

, (35)

where µ is a choice variable independent of α. From (35), the sign
of ∂Φ/∂α is ambiguous because the derivative of the term in square
brackets is negative for µ < 1. Fixing µ and β, it can be easily verified
with numerical substitutions that the gap function Φ

(
α; µ̄, β̄

)
has an

inverted-U shape with respect to α: imposing Φ = 0 determines two
values of the resource share, α1 and α2, with Φ > 0 when α ∈ (α1, α2).
Consequently, we have V (1, 1) > V (0, 0) for relatively high and rel-
atively low values of α: as shown in Figure 2.a, if the resource-share
is either below α1, or above α2, the gap function Φ assumes negative
values.

Numerical examples suggest that α1 is very close to zero: it is diffi-
cult that the resource share lies within the interval (0, α1), whereas
having α2 < α < 1 appears plausible; condition (33) can thus be
restated, with good approximation, by saying that V (1, 1) > V (0, 0)
provided the resource share is sufficiently high (α > α2). The economic
interpretation of this result is that if natural capital is highly produc-
tive, the positive effect of first-period subsidies more than compensates
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the loss due to second-period taxation: the higher is α, the higher is
the after-tax yield received by the old when selling resource assets to
the newborn.

Critical levels α1 and α2 are affected by the policy target µ: Figure
2.b shows that the lower is µ, the lower is α1 and the higher is α2.
This result can be interpreted as follows. As explained in section 2.2,
the lower is z′, the higher is the degree of natural preservation implied
by resource-saving transfers. However, from the agents point of view,
the lower is z′ the higher is the private cost of transfers: hence, if fiscal
authorities set z′ relatively close to the laissez-faire value z̃ (i.e. µ → 1)
the private cost of transfers is relatively small, and condition (33) is
likely to be met; conversely, if the policymaker is more inclined towards
natural preservation (µ → 0), persistent transfers are more demanding
and condition (33) is more restrictive. Being α1 close to zero, this result
can be reasserted as follows: the higher is the degree of preservation
associated to positive transfers, the higher is the lower bound (α2) for
the resource share to have V (1, 1) > V (0, 0).

Figure 2. Graph (a): fixing β and µ, the gap Φ = V (0, 0)−V (1, 1) is drawn as

a function of α. Condition (33) defines two intervals, (0, α1) and (α2, 1), over which

the value of α is compatible with V (1, 1) > V (0, 0). Graph (b): fixing β, the gap

function Φ = V (0, 0)−V (1, 1) is drawn as a parametric function for different values

of µ = µ1, ..., µ4, with µ1 > µ2 > µ3 > µ4.
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3.2. Lifetime contracts and discretionary policies

It follows from Proposition 6 that if agents are asked at birth to sign a
lifetime contract requiring them to choose between persistent transfers
and persistent laissez-faire, every agent born at t ≥ 0 chooses resource-
saving transfers. With respect to this result, three main points should
be emphasized. First, lifetime contracts embody a notion of credible
pre-commitment: if the technological condition is fulfilled, agents prefer
positive transfers provided that no regime switch is allowed during the
life-cycle. Second, private agents would not enforce such contracts by
themselves as no compensation is received by resource owners at t = 0:
this is the ’first father problem’ discussed below. Third, whether a
sustainable path would be supported by means of lifetime contracts it
depends on the whole set of parameters. Suppose that the laissez-faire
economy is unsustainable, and that a lifetime contract asks newborn
agents to choose between z̃ > ρ and z′ = ρ. If the technological condi-
tion is satisfied in this case, then lifetime contracts support a constant
utility path. However, as shown in Figure 2.b, the lower is µ = z′/z̃

the more restrictive is the technological condition: hence, the range of
values of α compatible with V (1, 1) > V (0, 0) is limited if z̃ is very high
relative to ρ, whereas conditions for an ’agreement on sustainability’
are less restrictive if z̃ is relatively close to ρ.6

Our results have interesting implications when considering discre-
tionary policies over an infinite time-horizon. Assume that fiscal au-
thorities may choose the sequence of intertemporal allocations from
period zero onward. The individual first-best payoff V (1, 0) cannot
be assigned to every generation, because implementing it in each t

is not possible: if Vt = Vt (1, 0) then Vt+1 = Vt+1 (1, 0) is unfeasible.
Hence, from a social-planning perspective, the relevant inequality in
ranking (32) is the central one, V (1, 1) > V (0, 0), which refers to
life-persistent regimes. This in turn suggests to investigate the welfare
effects of implementing the two sequences of lifetime contracts

{τ t = 0, dt = 0}∞t=0 or
{
τ t = τ ′, dt = d′

}∞
t=0

through discretionary measures; we refer to these sequences as to per-
manent laissez-faire and permanent transfers, respectively.

Having assumed grandfathering, the resource stock at time zero is
entirely held by those old at time zero. In this scenario, a typical first
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father problem arises with respect to resource-saving policies: suppose
that inequality (33) is fulfilled, and assume that fiscal authorities im-
plement permanent transfers, that is, zt = z′ < z̃ for t = 0, ...,∞.
While every agent born at, or after time zero gains from this policy,
initial subsidies must be financed by those old at t = 0. Hence, welfare
improvements due to permanent transfers pertain to all agents, with
the exception of the first generation of ’fathers’.

On the one hand, the first father problem implies that, considering
the time-path of private welfare over all generations, permanent laissez-
faire and permanent transfers cannot be Pareto-ranked. On the other
hand, resource-saving policies recall the logic of Gale-type intergenera-
tional transfers: considering a two-generations pure exchange economy,
Gale (1973) showed that the first generation can raise future welfare
by renouncing part of its claim over the endowment to the benefit of
the second generation, which in turn transmits a claim to its successor,
and so on. In our setting, with fundamental differences duly taken into
account,7 permanent resource-saving transfers work in a similar way:
the initial tax τ0p0X0 amounts at the share of claims over natural
capital not received by the first owner, and subsidies to the newborn
bring the associated credit forward in time. Clearly, enacting permanent
transfers involves a paternalistic action at time zero, as no generation
would selfishly make the initial gift: readapting Gale’s (1973) argument
to our model, resource-saving transfers begin after the economy

”has been running along for some time in the [no-transfers] equi-
librium but at time t = 0 some of the old people realize that if
they are willing to give up ever so little of their second-period con-
sumption the economy in the future will move up toward [higher
welfare for future generations]. (...) If this altruistic scenario sounds
too unrealistic, one can instead imagine a central authority which
levies an income tax on the old people in period zero and then sells
this income back to the young.” (ibid., p.29).

Alternatively, one can imagine the same process in a privatization
scenario, where natural resources previously owned by the State are
sold at lower-than-efficiency price to young generations in period zero,
and permanent transfers are then implemented. In this case, the ini-
tial selling price (determined by the government) is equivalent to a
proportional subsidy at time zero, implying a deadweight loss for the
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public owner.8 Even here, taxing natural capital incomes of all suc-
cessive generations would find justification in the argument of lifetime
contracts.

It should be emphasized that the potential support for distortionary
transfers in our model is driven by purely selfish motives. In this regard,
our analysis is close to the view that intergenerational exchange need
not be linked to parental altruism, as recently argued by Boldrin and
Rustichini (2000) and Rangel (2003). The general questions asked by
these authors is: why should present generations invest in assets that
are valuable only to future ones? Boldrin and Rustichini (2000) and
Rangel (2003) use game-theoretical arguments to show that positive
transfers may arise as voting equilibria when intergenerational altruism
is absent.9 In particular, Boldrin and Rustichini (2000) show that pay-
as-you-go social security can be voted into existence by the majority,
because the reduction in current saving implied by taxation raises fu-
ture returns on capital, thus compensating the negative effect of pension
financing. Recalling Proposition 6, our main result hinges on a similar
interest-rate effect, which is however reversed due to the father-to-son
scheme we have assumed.

4. Conclusions

This paper analyzed the welfare properties of distortionary transfers in
a growth model with overlapping generations and privately-owned nat-
ural capital. In this framework, Mourmouras (1993) and Krautkraemer
and Batina (1999) have shown that unsustainability and resources de-
pletion are likely an outcome of excessive competition. We have shown
that implementing father-to-son transfers through proportional taxes
and subsidies brings a higher degree of resource preservation with re-
spect to laissez-faire. The main result is that if individuals are credibly
pre-committed, all newborn agents prefer positive transfer to laissez-
faire conditions provided the resource-share in production is sufficiently
high relative to the labor-share. This result hinges on the assumption
that private agents earn income from selling resource assets in the
second period of life: when natural capital productivity is sufficiently
high, private gains from first-period subsidies more than compensate
the loss due to second-period taxation. Hence, if the critical condi-
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tion on parameters is satisfied, resource-saving transfers are suitable to
protect the welfare of future generations, and are supported by new-
born agents for purely selfish reasons. Implementing resource-saving
policies through discretionary intervention implies a welfare time-path
not Pareto-comparable with that obtained under laissez-faire, because
resource owners at time zero suffer a deadweight loss due to taxation
of the initial stock. Similarly to Gale (1973), if the first resource owner
partially renounces to its claim over initial endowments, the transmis-
sion of this credit forward in time yields welfare gains for all successive
generations.

Appendix

The consumer problem. By (3), (13) and (4), the second-period in-
dividual constraint (10) can be rewritten as et+1 = qt+1 (1 + ε) at,which
can be substituted in (9) to obtain

ct = wt − qt (1− dt) et+1

qt+1 (1 + ε)
. (A1)

The individual problem consists of choosing ct and et+1 in order to
maximize lifetime utility subject to (A1): first order conditions for
an interior solution imply (14). Substituting equilibrium prices (8)-
(7) and condition (14) in individual budget constraints (9) and (10),
equilibrium consumption levels are

ct =
wt

1 + β
=

1
1 + β

(1− α) yt, (A2)

et+1 =
1 + n

1 + β
(α + β) yt+1. (A3)

Deriving equation (15). Substituting et+1 = qt+1 (1 + ε) at in
(A3) gives

at =
(1 + n) (α + β)

qt+1 (1 + β) (1 + ε)
yt+1. (A4)

From (7) and (13), qt+1 = αmα
t+1x

α−1
t+1 (1− τ t+1) can be substituted in

(A4) to obtain

at =
(1 + n) (α + β)

α (1 + β) (1 + ε) (1− τ t+1)
xt+1. (A5)
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Now consider the system

qt+1

qt
=

et+1 (1− dy
t )

βct
(
1 + do

t+1

)
(1 + ε)

, (A6)

qt+1

qt
=

pt+1

pt

(
1− τ t+1

1− τ t

)
, (A7)

where (A6) is the optimality condition (14), and (A7) is implied by
no-arbitrage condition (13). Substituting (A2)-(A3) in (A6), and (7) in
(A7) respectively gives

qt+1

qt
=

(1 + n) (α + β) (1− dt)
β (1− α) (1 + ε)

(
yt+1

yt

)
, (A8)

qt+1

qt
=

xt

xt+1

(
1− τ t+1

1− τ t

)
yt+1

yt
, (A9)

implying
xt+1

xt
=

β (1− α) (1 + ε) (1− τ t+1)
(1 + n) (α + β) (1− dt) (1− τ t)

. (A10)

Substituting (A10) in (A5) gives eq.(15) in the text.

Deriving equations (16)-(18). Equations (16) and (17) are ob-
tained by substituting (15) in equations (3) and (4). By (5) and (6),
y = mαxα so that θy = [(1 + δ) θx]α, which implies (18) by virtue of
(17).

Proof of Proposition 1. It follows immediately from (16) that no-
depletion, i.e. θR ≥ 1, obtains if and only if inequality (21) is satisfied.

Proof of Proposition 2. Under laissez-faire zt+1 = zt = z̃, which
implies that Ut is proportional to yt (see equation (36) derived below).
Hence, satisfying the sustainability condition (1) in the laissez-faire
economy requires θy ≥ 1. Setting zt+1 = zt = z̃ in (18) it follows that
θy ≥ 1 if and only if (22) is satisfied. Substituting (15) and γ = β−1−1
in (22) yields (23).

Proof of Lemma 3. Looking at Figure 1, Lemma 3 is proved as
follows: if n > 0, the vertical intercept of the locus zsus is strictly below
the horizontal locus zndp. Therefore, it is possible to have a couple of
values δ = δ′ and z̃ = z′ such that 0 < δ′ < n and zsus < z′ <

zndp (no-depletion and unsustainability). Viceversa, for high enough
δ′′′ it is possible to have δ = δ′′′ and z̃ = z′′′ such that n < δ′′′ and
zndp < z′′′ < zsus (depletion and sustainability). Finally, critical values
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of z for sustainability and no-depletion coincide (zndp = zsus) along
the vertical line δ = δ′′ = n, so that we have either depletion and
unsustainability (z̃ > zndp = zsus ), or no-depletion and sustainability
(z̃ ≤ zndp = zsus). Corollary 4 is also verified by means of Figure 1,
and it follows immediately from Propositions 1 and 2.

Deriving tax-subsidy rates in (26). Setting zt = z′, τ t = τ ′ and
dt = d′ in equations (25) and (11) gives

z′ = z̃
(
1− τ ′

) (
1− d′

)
, (A11)

τ ′z′ =
(
1− τ ′

)
d′, (A12)

respectively. Substituting (A12) in (A11) gives τ ′ = d′
z̃(1−d′) , which can

be substituted back in (A11) to obtain d′ = z̃−z′
1+z̃ , which is the subsidy

rate level in (26). The tax rate level in (26) then follows from τ ′ =
d′

z̃(1−d′) as obtained above.

Proof of Lemma 5. It follows from (A2)-(A3) that

Ut = log
(

1− α

1 + β

)
+ β log (1 + n)

α + β

1 + β
+ log yt + β log yt+1. (A13)

By (18), β log yt+1 = β log yt + αβ log zt+1(1+ρ)
zt(1+zt+1)

, and (A13) can be
rewritten as

Ut = log
(

1− α

1 + β

)
+β log

(1 + n) (α + β)
1 + β

+αβ log
zt+1 (1 + ρ)
zt (1 + zt+1)

+(1 + β) log yt.

(A14)

Hence, Ut+1−Ut = log
[

zt+2(1+ρ)
zt+1(1+zt+2)

]αβ [
zt+1(1+ρ)
zt(1+zt+1)

]α
, implying that any

path with constant lifetime utility requires

zt+2

1 + zt+2
=

zt+1

(1 + ρ)

[
zt (1 + zt+1)
zt+1 (1 + ρ)

] 1
β

for each t ∈ [0,∞) . (A15)

The dynamic rule (A15) can be satisfied by different sequences of zt.
If the policymaker keeps zt constant over time, rule (A15) is however
satisfied if and only if zt = ρ for each t ∈ [0,∞), which proves Lemma
5.

Deriving expression (29). Given the initial endowment R0 ≡
r0N0, solving (16) and (17) backward yields

xt = r0

(
1 + ε

1 + n

)t

· zt

1 + zt

t−1∏
j=0

1
1 + zj

. (A16)
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Substituting (A16) in yt = mα
t xα

t gives

yt =
(

zt

1 + zt
φt

)α

, (A17)

where

φt =
r0m0 (1 + ρ)t∏t−1

j=0 (1 + zj)
(A18)

is a function of Ht and is therefore taken as given by the agent born
in period t. Expression (A18) implies that φt+1 = φt (1 + ρ) (1 + zt)

−1,
thus

yt+1 =
[

(1 + ρ) zt+1

(1 + zt) (1 + zt+1)
φt

]α

. (A19)

Substituting (A17) and (A19) in (A13) yields

Ut = log
(

1− α

1 + β

) (
zt

1 + zt
φt

)α

+β log
(1 + n) (α + β)

1 + β

[
(1 + ρ) zt+1

(1 + zt) (1 + zt+1)
φt

]α

.

Setting Ωt = log
(

1−α
1+β

)
φα

t

[
(1+n)(α+β)

1+β φα
t

]β
yields expression (29) in the

text.

Deriving expressions (30) and (31). It follows from (29) that

V (0, 0) = Ω + log
(

z̃

1 + z̃

)α (
1

1 + z̃

)αβ [
(1 + ρ) z̃

1 + z̃

]αβ

, (A20)

V (0, 1) = Ω + log
(

z̃

1 + z̃

)α (
1

1 + z̃

)αβ [
(1 + ρ) z′

1 + z′

]αβ

, (A21)

V (1, 0) = Ω + log
(

z′

1 + z′

)α (
1

1 + z′

)αβ [
(1 + ρ) z̃

1 + z̃

]αβ

, (A22)

V (1, 1) = Ω + log
(

z′

1 + z′

)α (
1

1 + z′

)αβ [
(1 + ρ) z′

1 + z′

]αβ

. (A23)

Expressions (30) and (31) in the text are proved as follows: z̃ > z′

implies
z′

z̃

(
1 + z̃

1 + z′

)
< 1. (A24)

Hence, from (A20)-(A21) we have V (0, 0) > V (0, 1), because
[

z̃(1+z′)
z′(1+z̃)

]α
>

1; from (A22)-(A23) we have V (1, 0) > V (1, 1), because
[

z̃(1+z′)
z′(1+z̃)

]αβ
>

1.

Proof of Proposition 6. By (A20) and (A23), V (0, 0) < V (1, 1)
if and only if(

z̃

1 + z̃

)α(1+β) (
1

1 + z̃

)αβ

<

(
z′

1 + z′

)α(1+β) (
1

1 + z′

)αβ

.
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Substituting 1 + z̃ = β+α
β(1−α) , this inequality reduces to (33). It follows

from (30) and (31) that if (33) is satisfied the only possible payoff
ranking is (32).

Deriving expression (35). From (A20) and (A23), the gap Φ =
V (0, 0)− V (1, 1) equals

Φ = log
(

z̃

z′

)α+αβ (
1 + z′

1 + z̃

)α+2αβ

.

Substituting z′ = µz̃ and eq.(15) in the above expression yields equation
(35) in the text.

Notes

1 Bromley (1990) forcefully argues that environmental policy should not be re-

stricted to efficiency targets. In line with this view is the idea that sustainable

development is a matter of intergenerational equity and, once the social objective

incorporates fairness concerns, efficiency per se does not guarantee socially optimal

outcomes (Howarth, 1991; Howarth and Norgaard, 1990).
2 All the above differences also apply with respect to Kraukraemer and Batina

(1999), who consider a non-constant rate of natural regeneration in a Mourmouras

(1993) setting.
3 A positive rate of resource-augmenting technical progress may thought of as

resulting from the development of new resource-saving techniques that become

available over time.
4 The population growth rate appears in (10) because e is individual consumption

of the old, whereas x and a represent per young quantities: aggregate consumption

at time t + 1 equals et+1Nt = pt+1 (1− τ t+1) Xt+1 + qt+1At+1.
5 Equation (13) is a standard no-arbitrage condition requiring that resource own-

ers are indifferent at the margin between alternative uses of the natural stock R: net

marginal rents from natural capital must equal net marginal returns from resource

asset sales.
6 This point can be clarified by means of Figure 2.b: assume that ρ = µ2z̃, the

laissez-faire rate is z̃ > µ1z̃ > µ2z̃, and the resource share equals α = ᾱ. In this

case, newborn agents would agree on ’light’ resource-saving policies z′ = µ1z̃, but

would not agree on the ’more demanding’ sustainable policy z′ = µ2z̃ = ρ, because

the resource share ᾱ is too low. Assume instead ρ = µ1z̃ and α = ᾱ: in this case,

newborn agents would agree on the sustainable program z′ = µ1z̃ = ρ.
7 In Gale (1973), the government leans back after taxing the first generation, and

intergenerational exchange (equivalent to lump-sum transfers) arises on voluntary

basis given the absence of capital. In our model, welfare gains hinge on the productive
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role of natural capital, so that improvements (i) occur only if the technological

condition is satisfied, and (ii) derive from transfers that distort the rate of resource

use in production.
8 Unless sterilized by means of alternative fiscal instruments, the public welfare

loss would again fall on the currently old in some form, depending on the regime ex-

perienced before period zero. In this regard, relaxing the balanced-budget hypothesis

suggests a role for public debt: bond issuance at time zero allows to finance initial

subsidies, and the government may smooth service repayments over time according

to a calibrated fiscal rule. Whether similar rules for intergenerational fiscal fairness

are compatible with natural preservation and political support is an interesting topic

that might deserve further research.
9 Rangel (2003) shows that positive expenditures in goods that only benefit the

elderly (such as social security) are necessary to achieve an equilibrium with efficient

investment in goods that benefit future generations (such as clean environment and

education).
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