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A Conditional Defense of Plurality Rule:
Generalizing May�s Theorem in a Restricted

Informational Environment1

Abstract: May�s theorem famously shows that, in social decisions between two options, simple

majority rule uniquely satis�es four appealing conditions. Although this result is often cited

as a general argument for majority rule, it has never been extended beyond pairwise decisions.

Here we generalize May�s theorem to decisions between many options where voters each cast

one vote. We show that, surprisingly, plurality rule uniquely satis�es May�s conditions. Our

result suggests a conditional defense of plurality rule: If a society�s balloting procedure collects

only a single vote from each voter, then plurality rule is the uniquely compelling procedure

for electoral decisions.

Social choice theorists in Condorcet�s and Borda�s tradition are idealistic electoral

reformers in at least two respects. First, they propose certain ideals with respect to

the information we should collect from voters in a balloting procedure. Second, they

propose certain ideals with respect to how we should aggregate that information in

an aggregation procedure, so as to make a decision on its basis. A fully �edged voting

procedure consists of both a balloting procedure and an aggregation procedure.2

In this article, we want to be only half as idealistic. Here we take balloting proce-

dures as they are, and consider aggregation procedures as they might be. We o¤er a

conditional defense of �plurality rule.�If a society�s balloting procedure collects only

a single vote from each voter, then plurality rule, which always chooses the option

1We are grateful to Dennis Mueller, Franz Dietrich and two anonymous referees for helpful com-

ments on an earlier version of this paper.
2The same balloting procedure may go along with di¤erent aggregation procedures (e.g., full-

preference balloting with pairwise majority voting, STV, AV, the Borda count etc.) and the same

aggregation procedure with di¤erent balloting procedures (e.g., plurality rule with secret single-vote

balloting, open single-vote balloting, and even full-preference balloting).
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with the most votes, is the uniquely compelling aggregation procedure; we show that

it is so, in the sense that it uniquely satis�es May�s well-known minimal conditions

on a democratic procedure generalized to decisions over any number of options.3 Our

result thus constitutes a many-option generalization of May�s classical theorem on

majority rule in the distinctive, but politically common, informational environment

of single-vote balloting. May�s conditions are widely regarded as normatively com-

pelling in the two-option case, for which they were originally formulated, and we

suggest that they remain compelling in the many-option case considered here.4

Our result should be of interest in at least two respects. First, to the best of

our knowledge, plurality rule has never been associated with May�s theorem or a

many-option version of May�s conditions. Second, and perhaps more importantly,

plurality rule has traditionally been held in low esteem, among both formal social

choice theorists and philosophical theorists of democracy. Thus any positive argument

for plurality rule appears to go against the grain.

So what about plurality rule�s well-known defects? For example, plurality rule

violates several desiderata that social choice theorists often expect aggregation pro-

cedures for many-option decisions to meet, including Condorcet consistency (�the

Condorcet winner should be selected if it exists�) and consistency of the winning

option under a contraction or expansion of the set of available options. But for-

mulating these desiderata requires referring to voters�full preference orderings, and

implementing them in an aggregation procedure requires a balloting procedure that

3Speci�cally, we generalize May�s conditions from the case where voters each submit one vote over

two options to the case where they each submit one vote over any number of options.
4To be precise, we focus on regular electoral decisions, where there is no normatively admissi-

ble asymmetry between voters or options, and claim that May�s conditions are defensible in such

decisions. In decisions with a normatively admissible asymmetry between voters (e.g. some expert

panels) or options (e.g. some jury decisions or referenda with a status-quo bias), some of May�s

conditions may need to be relaxed.
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collects (enough of) this information. Given only a single vote from each voter, we

simply have insu¢ cient information to implement them. For example, we can only

guess as to how expanding or shrinking the set of available options a¤ects voters�

single votes, their revealed ��rst choices�. Likewise, voters may have incentives to

vote strategically under plurality rule. But without further information about vot-

ers�preferences, we have no choice but to take voters�revealed �rst choices at face

value.5 To emphasize, we do not unconditionally defend plurality rule. In particular,

we do not defend single-vote balloting procedures; we only make a conditional claim:

If single-vote balloting procedures are used �as they often are, in practice � then

plurality rule is the way to go.

Of course, collecting only a single vote from each voter is not ideal. For example,

�the number of voters who think each candidate the worst ... is no less important

... than the number of voters who think each candidate the best�(Dummett, 1997,

51-52). A balloting procedure that collects voters�revealed ��rst choices�alone takes

no account of that. It would undeniably be ideal in many cases to collect voters�

full preferences, top to bottom, over all the available options. It would at least

be an improvement to collect more (even short of �full�) information about these

preferences, through a two-ballot runo¤ procedure, such as in France, for example.

Such richer informational environments would allow us to use more sophisticated

aggregation procedures than plurality rule.

Realistically, however, that is simply not the way ballots are conducted in many

5Vulnerability to strategic voting is not unique to plurality rule, but shared by all reasonable

aggregation procedures over more than two options, which are typically not strategy-proof (by the

Gibbard-Satterthwaite theorem). But under plurality rule, strategic voting is limited as follows:

voters have an incentive to vote for their preferred option among those two options that they think

are most likely to win. In particular, plurality rule has the property of being �immune to insincere

manipulation�(van Hees and Dowding, 2005).
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places in the world. Many real-world balloting procedures collect only information

about voters�(revealed) ��rst choices�. Instead of ranking alternatives best-to-worst,

people are only asked to vote for a single option. The US, UK and Canada are

the most famous examples of countries employing such balloting procedures in their

legislative elections. But such procedures are also used in many other (sometimes

surprising) countries and international organizations.6

Moreover, as a practical political fact, it is often far easier to change the rules

of how votes are aggregated, in aggregation procedures, than it is to change how

votes are collected, in balloting procedures. The latter involves changing the formal

rules governing the behavior of millions of voters.7 The former involves changing the

formal rules governing the behavior of perhaps only a few hundred election o¢ cials.

Suppose then that, as a practical real-world constraint, the single-vote balloting

procedure is given. The other half of the social choice theorists�ideal nonetheless re-

mains in play. We still need to ask what the best way is to aggregate the information

collected by this balloting procedure into a social decision. This question has not

been addressed in the social-choice-theoretic literature. We seek to give an answer.

After introducing May�s theorem in Section 1, we prove our new theorem in Section

2, which generalizes May�s result to decisions over more than two options in the given

restricted informational environment. In Section 3, we discuss the informational basis

6Other countries include Bangladesh, Belize, Bhutan, Botswana, Cameroon, Central African Re-

public, Ivory Coast, Cuba, North Korea, India, Gambia, Grenada, Jordan, Kenya, Kuwait, Lebanon,

Latvia, Malawi, Maldives, Malaysia, Mongolia, Morocco, Myanmar, Nepal, Nigeria, Pakistan, Papua

New Guinea, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa

(Western), Sao Tome and Principe, Seychelles, Solomon Islands, South Africa (for directly elected

seats), Thailand (mixed system), Trinidad and Tobago, Tonga, Tuvalu, Uganda, Tanzania (the di-

rectly elected members), Zambia, Zimbabwe.
7Of course, a change in the aggregation procedure may also induce a change in electoral behavior;

but at least the formal rules on the collection of votes remain the same.
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of voting. Finally, to illustrate the conditional nature of our argument for plurality

rule, we show in Section 4 that, if we use the richer informational environment of ap-

proval balloting instead of single-vote balloting, our May-style argument for plurality

rule becomes a novel May-style argument for approval voting (Brams and Fishburn,

1978). Our �ndings highlight that the question about the most compelling aggrega-

tion procedure depends on the informational environment in which this procedure is

meant to operate. In Section 5, we make some concluding remarks.

1 May�s theorem

May�s (1952) classical theorem states that, in social decisions between two options,

simple majority rule, uniquely among all aggregation procedures, satis�es the four

normatively appealing conditions of being: open to all inputs (�universal domain�);

not biased in favor of any particular voter (�anonymity�); not biased in favor of any

particular outcome (�neutrality�); and �positively responsive� to people�s votes (if

one or more voters change their votes in favor of one option and no others change

theirs, then the social decision does not change in the opposite direction; and if the

outcome was a tie before the change, then the tie is broken in the direction of the

change). In both formal social choice theory and democratic theory more generally,

this result occupies a prominent place as an argument for democratic rule, in the form

of simple majority rule.

In the formal social choice literature, May�s theorem �is deservedly considered

a minor classic� (Barry and Hardin, 1982, 298). It is one of the �rst things said

on the subject of �normative properties of social decision rules�, in all the classic

overviews, beginning with Luce and Rai¤a�s Games and Decisions (1957, 357-358)

and running through Mueller�s Public Choice III (2003, 133-136). Arrow comments

on it in the notes appended to the second edition of Social Choice and Individual
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Values (1951/1963, 100-102). Sen discusses it in Collective Choice and Social Welfare

(1970, 68, 70-1) and extends it in a paper with Pattanaik (Sen and Pattanaik, 1969).

Several other social choice theorists o¤er derivations and extensions (e.g., Murakami,

1966, 1968; Pattanaik, 1971, 50-52; Fishburn, 1973, 50, 57 ¤.; Shepsle and Bonchek,

1997, 160-162; Cantillon and Rangel, 2002).

Because its proof is relatively straightforward, May�s theorem may count only as

a �minor�classic in the formal social choice literature, but it has been received as a

major �nding within democratic theory more generally. In a �eld replete with negative

�ndings (impossibility, instability and manipulability results),8 May�s theorem stands

out as a powerful positive result supporting democratic rule.

Consider these examples, to get a sense of how deeply May�s theorem has pen-

etrated non-formal democratic theory. In Democracy and Its Critics, the capstone

of Robert Dahl�s lifelong work on democratic theory, May�s theorem is invoked as

the second of his �four justi�cations for majority rule�(Dahl, 1989, 139-141). May�s

theorem is one of the �rst considerations that William Riker (1982, 59 ¤.) feels the

need to neutralize, in his argument against populist democracy in Liberalism Against

Populism. May�s theorem is also one of the �rst considerations o¤ered in defense of

liberal democracy in Ackerman�s Social Justice and the Liberal State (1980, 277-285).

It is a key element in �political equality�as conceptualized by both Beitz (1989, 59)

and Christiano (1990, 154-157; 1993, 183; 1996), and continual reference is made to it

across democratic theory (Coleman and Ferejohn, 1986, 18-19; Martin, 1993, 367-368

n. 5; Saward, 1998, 69; Waldron, 1999, 148, 189 n. 38; Risse, 2004, 51-5).

However, May�s theorem, as proven by May and used in the subsequent literature,

8The most prominent negative results are Arrow�s theorem (1951/1963) and results about cyclical

social preferences and electoral disequilibrium (Sen, 1970, 1977; Scho�eld, 1976; McKelvey, 1979; cf.

Mackie, 2003) and the Gibbard-Satterthwaite theorem on strategic manipulability (Gibbard, 1973;

Satterthwaite, 1975). For an overview, see Austen-Smith and Banks (1999).
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applies only to decisions between two options or a sequence of two-option decisions.

But in the real world our choices are rarely between only two options (or if they are,

that is often the result of an undemocratic agenda setting process; e.g. Riker, 1982,

59-60). Curiously, in the formal social choice literature, May�s theorem has never

been extended beyond pairwise decisions.9 In more informal discussions, the problem

is occasionally noted but never pursued. Thus, for example, Coleman and Ferejohn

(1996, 18) remark upon the need to extend May�s theorem to �admissible choice

on larger sets of alternatives [than just two] by voting rules that are extensions of

binary majority rule�; but they �leave aside�the question of �what would constitute

an extension of simple majority rule� in the case of more-than-two options. Risse

(2004, 51-52 n. 25) observes that �May�s Theorem only applies when groups decide

on two options�, adding in a note that, �There surely could be some mathematical

generalization of May�s Theorem, but no such generalization is likely to preserve the

elementary character of the assumptions of May�s Theorem�.

The proof below puts paid to that speculation. We show that May�s theorem can

be extended to the many-option case, where voters each cast a single vote for one

option. Our conditions are straightforward generalizations of May�s original ones. We

prove that �perhaps surprisingly, given its bad reputation �plurality rule uniquely

satis�es those conditions.

While there are other axiomatic characterizations of plurality rule in the literature

9Pattanaik (1971, pp 50-51) generalizes May�s conditions to the many-option case, but applies

those conditions to other problems rather than May�s theorem itself. Also, much work has been

done formally extending May�s theorem � just not in the present way, to imply plurality rule over

more than two options. For example, pairwise majority voting can be characterized by imposing

May�s original conditions on each pairwise ranking (under independence of irrelevant alternatives),

e.g. Cantillon and Rangel (2002). Such an extension preserves the original pairwise format of May�s

theorem, but also involves a richer informational environment than we are often in politically, namely

full-preference balloting.
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(e.g., Roberts, 1991; Ching, 1996), we are not aware of any contribution �formal or

informal �that associates May�s theorem, or a many-option version of May�s precise

conditions, with plurality rule.

2 Generalizing May�s theorem to more than two options

2.1 An informal statement

There are n individuals and k options. May�s original theorem addresses the special

case k = 2. Our result holds for any positive k � 2. Each individual submits a

vote for one option or abstains. A combination of votes across individuals is called

a pro�le. This captures the informational environment of single-vote balloting. An

aggregation procedure is a function that assigns to each such pro�le a corresponding

outcome. The outcome is either a single winning option or a tie between two or more

options. May�s conditions can be generalized to the k-option case as follows:

Universal domain. The aggregation procedure accepts all logically possible

pro�les of votes as admissible input.

Anonymity. The outcome of the aggregation procedure is invariant under a

permutation of the votes across individuals.

Neutrality. If the votes are permuted across options, then the outcome is per-

muted accordingly.

Positive responsiveness. If one or more voters change their votes in favor of

an option that is winning or tied and no other voters change theirs, then that option

is uniquely winning after the change.

We de�ne plurality rule as follows. For any pro�le, the option, if unique, that

receives the largest number of votes, is chosen as the winner; if there is no unique
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such option, then all the options that receive an equal largest number of votes are

tied.

Theorem. An aggregation procedure satis�es universal domain, anonymity, neu-

trality and positive responsiveness if and only if it is plurality rule.

2.2 A formal statement

There are n individuals, labeled 1; : : : ; n, and k options, labeled 1; : : : ; k. Each indi-

vidual votes for precisely one option or abstains. Individual i�s vote is denoted vi and

represented by one of the following column vectors:

a vote for option 1 a vote for option 2 ... a vote for option k an abstention0BBBBBBBBB@

1

0

:::

0

1CCCCCCCCCA

0BBBBBBBBB@

0

1

:::

0

1CCCCCCCCCA
...

0BBBBBBBBB@

0

0

:::

1

1CCCCCCCCCA

0BBBBBBBBB@

0

0

:::

0

1CCCCCCCCCA
A pro�le (of votes) is a matrix v = (v1; : : : ; vn), i.e. a row vector of column

vectors. We write vij to denote the entry in column i and row j in v. So vij = 1

means that individual i votes for option j. (In particular, if vij = 1 then vih = 0 for

all h 6= j.)

An aggregation procedure is a function f that maps each pro�le v to an outcome

of the form f(v) =

0BBBBBBBBB@

x1

x2

:::

xk

1CCCCCCCCCA
, where each xj is either 0 or 1 and at least one xj is 1. For

each j, we write f(v)j = xj . Informally, f(v)j = 1 means that option j is winning or

tied, and f(v)j = 0 means that option j is non-winning. By de�nition, for any pro�le,

there is at least one option j with f(v)j = 1. If there is exactly one such option, this
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option is the unique winner; if there is more than one such option, all the options j

with f(v)j = 1 are tied.

Now May�s conditions generalized to k-option choices can be formally stated as

follows:

Universal Domain. The domain of f is the set of all logically possible pro�les.

Anonymity. Let � be any permutation of the n individuals, represented by a

permutation of columns. For any pro�le v, f(v) = f(�(v)).

Neutrality. Let � be any permutation of the k options, represented by a permu-

tation of rows. For any pro�le v, f(�(v)) = �(f(v)).

For any two pro�les v and w and any option j, we write v �j w if and only if

there exists some option h such that

for some individuals i, vij > wij and vih < wih,10

and for all other individuals i, vi = wi.

Informally, if a pro�le changes from w to v, then v �j w means that at least one

individual�s vote changes towards option j from some other option h, while all other

votes remain the same.

Positive responsiveness. For any two pro�les v and w and any j, if f(w)j = 1

and v �j w, then f(w)j = 1 and, for all h 6= j, f(w)h = 0.

If k = 2, these conditions reduce to the standard conditions of May�s theorem.

10And vil = wil for all options l 6= j; h. Under single-vote balloting, this clause is already implied

by vij > wij and vih < wih. However, in the alternative environment of approval balloting discussed

below, we need to add this clause explicitly.
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De�ne plurality rule as the aggregation procedure f , where, for any pro�le v and

any option j,

f(v)j =

8>><>>:
1 if

nP
i=1
vij �

nP
i=1
vih for all h 6= j;

0 otherwise.

We can now state our result.

Theorem. An aggregation procedure satis�es universal domain, anonymity, neu-

trality and positive responsiveness if and only if it is plurality rule.

2.3 The proof

It is easy to see that plurality rule satis�es all the conditions. Universal domain is

satis�ed because plurality rule is de�ned for all logically possible pro�les. Anonymity

is satis�ed because the plurality winner (or tied set of options) depends only on the

number of votes for each option, not on the voters�identities. Neutrality is satis�ed

because the question of whether an option is winning, tied or losing depends only

on the number of votes for this option and its contenders, not on these options�

labels. Finally, positive responsiveness is satis�ed because, under plurality rule, any

additional votes for a winning option do not hurt that option, and any additional

votes for a tied option break the tie in favor of that option.

Suppose, conversely, that an aggregation procedure f satis�es all the conditions.

For any pro�le v, we call the column vector a =
nP
i=1
vi a votes vector. Every such

votes vector is of the form a =

0BBBBBBBBB@

a1

a2

:::

ak

1CCCCCCCCCA
where each aj � 0 and a1 + : : :+ ak � n. Here

a1 is the number of votes for option 1, a2 the number of votes for option 2, and so

on.
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Claim 1. The aggregation procedure f can be represented by a function g whose

domain is the set of all possible votes vectors and whose co-domain is the same as

that of f . For each v, we have f(v) = g(
nP
i=1
vi).

Proof of claim 1. Claim 1 follows from the anonymity of f , which implies that,

for any two pro�les v and w, if
nP
i=1
vi =

nP
i=1
wi then f(v) = f(w).

Claim 2. For any votes vector a and any permutation of rows � , g(�(a)) =

�(g(a)).

Proof of claim 2. Given claim 1, claim 2 follows from the neutrality of f .

For any two votes vectors a and b and any option j, we write a �j b if and only

if there exists some option h such that

aj = bj + e and ah = bh � e where e > 0,

and for all options l 6= j; h, al = bl.

Informally, if a votes vector changes from b to a, then a �j b means that option

j gains e votes at the expense of some other option h, while all other options receive

an equal number of votes.

Claim 3. For any two votes vectors a and b and any j, if g(b)j = 1 and a �j b,

then g(a)j = 1 and, for all h 6= j, g(a)h = 0.

Proof of claim 3. Given claim 1, claim 3 follows from the positive responsiveness

of f .

Claim 4. For each votes vector a, g(a)j = 1 if and only if aj � ah for all h 6= j.

Proof of claim 4. First, consider a votes vector a such that g(a)j = 1. Assume,

for a contradiction, that aj < ah for some h 6= j. Write ah = aj + e (with e > 0). Let
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� be the row permutation which swaps rows j and h and leaves all other rows �xed.

By claim 2, g(�(a)) = �(g(a)). Hence g(�(a))h = �(g(a))h = g(a)j = 1. Note that

�(a)j = ah = aj + e and �(a)h = aj = ah� e; also, for all l 6= j; h, we have �(a)l = al.

Therefore �(a) �j a. By claim 3, g(�(a))j = 1 and, for all l 6= j, g(�(a))l = 0. In

particular, this implies g(�(a))h = 0, a contradiction.

Next, consider a votes vector a such that aj � ah for all h 6= j. Assume, for a

contradiction, that g(a)j = 0. As g has the same co-domain as f , there must exist

some h such that g(a)h = 1 (and h 6= j as g(a)j = 0). Again let � be the row

permutation which swaps rows j and h and leaves all other rows �xed. By claim 2,

g(�(a)) = �(g(a)) and hence g(�(a))h = �(g(a))h = g(a)j = 0. Now either aj = ah

or aj > ah. If aj = ah, then �(a) = a, in which case g(a)h = g(�(a))h = 0, a

contradiction. If ah < aj , write aj = ah + e (with e > 0) and note that �(a)h = aj =

ah + e and �(a)j = ah = aj � e; also, for all l 6= j; h, we have �(a)l = al. Therefore

�(a) �h a. By claim 3, g(�(a))h = 1, a contradiction.

Claims 1 and 4 now imply that f is plurality rule.

3 The informational environment of voting

We have generalized May�s classical theorem to many-option decisions in the informa-

tional environment in which voters each submit a single vote for one of the options.

As noted, this informational environment is very di¤erent from one in which voters

reveal their full preference orderings over all options, top to bottom.

Following Sen�s pioneering work (1970, 1982), questions about the appropriate

informational basis of social choice have received considerable attention. But much

of this debate has focused on welfare-economic applications of social choice theory

rather than voting-theoretic ones. For example, a much discussed question is how
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to measure the e¤ects of alternative policies or social states on individual welfare,

in order to arrive at a social preference ordering over these policies or states. In

particular, it is debated whether only ordinal and interpersonally non-comparable

measures of individual welfare are feasible, as Arrow originally suggested, or whether

we can construct cardinal and/or interpersonally comparable measures of welfare.

By contrast, questions about the appropriate informational basis of voting have

received less attention in the social-choice-theoretic literature. Many formal models

in mainstream voting theory, following Arrow�s own model (1951/1963), are based on

an informational environment in which voters�full preference orderings are available.

There has been little work on the question of what aggregation procedures to use

for electoral decisions in restricted informational environments. By showing that

plurality rule uniquely satis�es some compelling normative conditions in the restricted

but empirically important informational environment of single-vote balloting, we have

thus contributed towards �lling this gap in the literature.

A side e¤ect of this restricted informational environment is that the notorious

problem of cyclical majority preferences remains hidden here. Given a set of revealed

��rst-choice�votes, plurality rule always produces a determinate winning option (or

a tied set of options); no cycle can be observed. Nonetheless, in terms of voters�

underlying full preferences, there may well be majority cycles. Single-vote balloting

does not solve � it merely hides � the problems raised by standard social choice

paradoxes.11

11But, arguably, many prominent responses to these paradoxes, such as Shepsle and Weingast�s

(1981) structure-induced equilibrium, also only hide these problems. Although we de�ne plurality

rule in a restricted informational environment, where a vector of single votes is aggregated into a

winning option or tied set, it can also be de�ned in a richer environment, where a vector of preference

orderings is aggregated into one of the following outputs: (i) a social preference ordering (Arrow�s

framework), (ii) a choice function that assigns to each set of available options a winning option or tied

set (the �collective choice rule�framework), (iii) a single winning option (the Gibbard-Satterthwaite
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Notice that many standard critiques of plurality rule do not actually undermine

our conditional claim �that plurality rule should be used as an aggregation procedure

if a single-vote balloting procedure is used � but they are rather directed against

the antecedent of this conditional, i.e. they criticize the use of single-vote balloting

procedures. (And, as we have noted, we do not defend single-vote balloting here.)

Recall Dummett�s above quoted point that �the number of voters who think each

candidate the worst ... is no less important ... than the number of voters who think

each candidate the best� (see further Dummett, 1984, ch. 6; 1997, 51-57). Borda

(1784/1995, 83) begins his critique of plurality rule as follows:

There is a widespread feeling, which I have never heard disputed, that

in a ballot vote, the plurality of votes always shows the will of the voters.

That is, that the candidate who obtains this plurality is necessarily pre-

ferred by the voters to his opponents. But I shall demonstrate that this

feeling, while correct when the election is between just two candidates,

can lead to error in all other cases.

In elaboration, Borda focuses on the balloting procedure underlying plurality rule:

�If a form of election is to be just, the voters must be able to rank each candidate

according to his merits, compared successively to the merits of each of the others...�

Plurality rule �is highly unsatisfactory�in those terms, precisely �because in this type

framework). Then Arrow�s theorem applies in cases (i) and (ii) (suitably reformulated in (ii)), and the

Gibbard-Satterthwaite theorem applies in case (iii). Hence plurality rule, suitably de�ned, violates

some of Arrow�s conditions (i.e. IIA and Pareto) and some of Gibbard�s and Satterthwaite�s (i.e.

strategy-proofness). But Arrow�s and Gibbard�s and Satterthwaite�s theorems cannot be formulated

in the present restricted informational environment, as conditions such as contraction or expansion

consistency, IIA, strategy-proofness etc. are not expressible here. Thus the problems raised by these

theorems remain �hidden� in that environment, although they occur in a richer environment into

which the restricted one can be embedded.
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of election, the voters cannot give a su¢ ciently complete account of their opinions of

the candidates...�.

Fishburn illustrates how single-vote balloting can fail to record important informa-

tion. Consider a 100-person electorate with preferences (best to worst) over options

x, y and z as follows: 34 voters have x � y � z; 33 have y � z � x; 33 have z � y � x.

As Fishburn (1973, 162) observes, �Plurality selects x. ... [But] x has 34 �rst-place

votes and 66 third-place votes, whereas y has 33 �rst-place votes, 57 second-place

votes and no third-place votes. Also, options y and z are each preferred to option x

by a majority of 66 out of 100 voters. Plurality rule decides outcomes on the basis

of �rst-preferences alone. If second- and third-preferences are to count for anything

much at all, then surely there should be a strong case for option y being socially

chosen rather than x.�

In short, standard critiques of plurality rule are in fact critiques of single-vote

balloting; they do not undermine the conditional claim we defend here.

4 From single-vote balloting to approval balloting

To further emphasize the conditional nature of our argument for plurality rule, we

�nally show that, if we enrich the informational environment and use, for example,

approval balloting instead of single-vote balloting, our May-style argument for plural-

ity rule becomes a May-style argument for approval voting as de�ned by Brams and

Fishburn (1978). Although we state this result primarily to show that our main theo-

rem depends on the given informational environment, our May-style characterization

of approval voting can also be seen as a novel result in its own right.

In the formal framework introduced above, we now assume that each individual

votes not only for a single option or abstains, but votes for all those options he or

she approves of (which may be any number of options between 0 and k). Individual
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i�s approval vote is denoted vi and represented by a column vector

0BBBBBBBBB@

vi1

vi2

:::

vik

1CCCCCCCCCA
where

vij = 1 if and only if individual i votes (i.e. indicates approval) for option j. All

other de�nitions, including that of an aggregation procedure, remain as stated above,

except that the concept of a pro�le now refers to a pro�le of approval votes, de�ned

as a matrix v = (v1; : : : ; vn), where v1; : : : ; vn are the approval votes of individuals

1; :::; n. This captures the informational environment of approval balloting.

Under this modi�cation, universal domain becomes the condition that the aggre-

gation procedure accepts all logically possible pro�les of approval votes as admissible

input; the other three conditions retain their original interpretation.

The formal analogue of plurality rule under approval balloting is approval voting :

for any pro�le of approval votes, the option, if unique, that receives the largest number

of votes (i.e. individual approvals), is chosen as the winner; if there is no unique such

option, then all the options that receive an equal largest number of votes (individual

approvals) are tied. The functional form which de�nes approval voting is the same

as that which de�nes plurality rule above � except that it is now applied to the

informational environment of approval balloting. Formally, approval voting is the

aggregation procedure f , where, for any pro�le of approval votes v and any option j,

f(v)j =

8>><>>:
1 if

nP
i=1
vij �

nP
i=1
vih for all h 6= j;

0 otherwise.

It is immediately obvious in this framework that approval voting satis�es all of uni-

versal domain, anonymity, neutrality and positive responsiveness as formally stated

above. Does it satisfy these conditions uniquely? Not quite. The conditions are

also satis�ed by a variant of approval voting in which the votes (i.e. indications of
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approval) cast by each individual are discounted by the total number of options for

which that individual votes. For example, under such a variant, if an individual votes

for only one option, then this vote might be given a weight of 1, but if he or she votes

for two options, then these votes might each be given a weight of only 1/2, and so

on (other methods of weighting or discounting might also be compatible with May�s

conditions).

However, if anonymity is strengthened subtly, then we obtain a May-style theorem

on approval voting.

Optionwise anonymity. Let � be any permutation of the votes cast for some

option j (holding �xed the votes cast for other options), represented by a permutation

of the entries in row j in a pro�le (holding �xed all other rows). For any pro�le v,

f(v) = f(�(v)).

Optionwise anonymity is the separate application of May�s original anonymity

condition to each option; it prevents di¤erential treatment of an individual�s votes

on some option depending on his or her votes on other options. Informally, we

can describe the di¤erence between anonymity and optionwise anonymity as follows.

Anonymity is compatible with a procedure whereby each individual submits a single

anonymous ballot paper on which he or she indicates which options he or she approves

of and which not. These ballot papers are then put into a ballot box and shu ed. Yet,

although all information about the voters�identity is eliminated, it is still possible to

associate anonymous voters with combinations of approved options; it is possible to

see, for example, that one voter has voted for options 1, 3 and 5, a second for options

2 and 3, a third for option 4 alone, and so on. Optionwise anonymity, by contrast,

requires a procedure whereby each individual submits a separate ballot paper for each

option, indicating approval or disapproval of that option. These ballot papers are then

put into separate ballot boxes, one ballot box for each option, and shu ed inside these
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separate boxes. This eliminates not only all information about the voters�identity,

but also all information about combinations of approved options. Under single-vote

balloting, where each voter can only vote for one option, anonymity and optionwise

anonymity are equivalent, but, under approval balloting, the two conditions come

apart, and optionwise anonymity is stronger than anonymity simpliciter.

Now a straightforward adjustment of our proof above leads to the following result.

Theorem. Under approval balloting, an aggregation procedure satis�es universal

domain, optionwise anonymity, neutrality and positive responsiveness if and only if

it is approval voting.

This result not only shows that, in the richer informational environment of ap-

proval balloting, a May-style argument can be given in support of approval voting

� a result not yet known in the literature � but it also illustrates the conditional

nature of our argument for plurality rule above. It should now be clear that the

question of what aggregation procedure to use depends crucially on the informational

environment in which this procedure is meant to operate.

5 Concluding remarks

Democratic theorists defend the use of �majority rule,�often without saying precisely

which of a large range of broadly majoritarian voting procedures they mean (Spitz,

1984). Moreover, when giving May�s theorem pride of place in their arguments for

majority rule, they often gloss over the theorem�s restriction to decisions between two

options.

In the real world, �our standard voting system ... is ... the plurality vote, where

a voter votes for his favorite candidate and the candidate with the most votes wins�

(Saari, 2006). Yet, of all the broadly majoritarian voting procedures that have been
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proposed in theory or are used in practice, plurality rule is perhaps the one that is

held in lowest esteem by theorists of democracy. As we have noted, plurality rule is

criticized in particular for focusing solely on voters�revealed ��rst choices�and not

taking into account their full preferences.

However, just as the most commonly used aggregation procedure in the real world

is plurality rule, so the most commonly used balloting procedure is single-vote ballot-

ing. Surprisingly, it is has never been noticed before that, under single-vote balloting,

plurality rule is what May�s theorem, in a simple generalization to decisions over

many options, supports.

Our result �lls an important gap in the literature; it not only constitutes the

�rst generalization of May�s theorem beyond pairwise decisions, but also provides

a conditional defence of plurality rule in the restricted, but empirically prominent

informational environment of single-vote balloting. If single-vote balloting is used, as

it often is in practice, then plurality rule is indeed the way to go.
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