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Abstract. If each member of a group assigns a certain probability to a hypothesis,
what probability should the collective as a whole assign? More generally, how should
individual probability functions be merged into a single collective one? I investigate
this question in case that the individual probability functions are based on different
information sets. Under suitable assumptions, I present a simple solution to this
aggregation problem, and a more complex solution that can cope with any over-
laps between different persons’ information sets. The solutions are derived from an
axiomatic system that models the individuals as well as the collective as Bayesian
rational agents. Two notable features are that the solutions may be parameter-free,
and that they incorporate each individual’s information although the individuals
need not communicate their (perhaps very complex) information, but rather reveal
only the resulting probabilities.
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1 Introduction

Suppose that a group is interested whether a given hypothesis H is true. If every
individual assigns H a probability of 70%, what probability should the group assign
to H? Is it exactly 70%, or perhaps more since different persons have independ-
ently confirmed H? The answer, I will show, crucially depends on the informational
states of the individuals. If they have identical information, the collective has good
reasons to adopt people’s unanimous 70% probability judgment. In the case of in-
formational asymmetry, a possibly much higher or lower collective probability may
be appropriate, depending on the nature of the personal and the shared information.
This problem is an instance of the well-established discipline of probability ag-

gregation or opinion pooling. In general, individual probabilities need of course not
coincide, and more than one hypothesis may be of interest. The aim is to merge a
profile Pr1, ...,Prn of individual probability measures into a single collective probabil-
ity measure Pr. Two approaches may be distinguished. The first approach (adopted
here) is axiomatic and inherently social-choice-theoretic: normative conditions are
imposed on the aggregation rule, and the class of rules satisfying these conditions
is derived. Already long ago, the two most prominent classes of rules, linear and
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logarithmic rules, have been characterised axiomatically. If Pr,Pr1, ...,Prn have as-
sociated probability density (or mass) functions f, f1, ..., fn (with respect to some
fixed measure µ), a linear rule defines f as a weighted arithmetic average

Pn
i=1wifi,

while a logarithmic rule defines f as (proportional to) a weighted geometric average
Πn
i=1f

wi
i , where w1, ..., wn ∈ [0, 1] are weights with sum 1. Linear rules have been

characterised (under additional technical assumptions) by the strong setwise func-
tion property (McConway (1981) and Wagner (1982)), the marginalisation property
(McConway (1981)), and, in a single-profile framework, by the probabilistic analogue
of the weak Pareto principle (Mongin, 1995, 1998); and logarithmic rules famously
satisfy external Bayesianity as defined in Section 5 (e.g. McConway (1978), Genest
(1984), Genest, McConway and Schervish (1986)). Still an excellent reference for
the fundamental issues in axiomatic probability aggregation is Genest and Zidek’s
(1986) literature review. The second approach (not adopted here) is the "supra
Bayesian" approach, formally laid down in Morris’ (1974) seminal paper and ex-
tended by a growing literature. Here, the collective probabilities are derived as the
posterior probabilities (held by a real or virtual "supra Bayesian") conditional on the
observed individual probability assignments. This approach is clearly very general
and elegant, but it faces the problem of having to specify prior probabilities and
likelihoods of the individual probability assignments.
In the axiomatic approach, a weakness of linear and logarithmic rules is the partial

arbitrariness of the choice of the weights w1, ..., wn. Intuitively, wi should reflect i’s
information (and ability to interpret information). As Genest and Zidek (1986) put
it, "expert weights do allow for some discrimination [...], but in vague, somewhat
ill defined ways" (p. 120), and "no definite indications can be given concerning the
choice or interpretation of the weights" (p. 118).
This paper proposes a new axiomatic framework that explicitly accounts for in-

formational asymmetry. I thereby avoid the problematic determination of information-
specific weights. The model differs from earlier axiomatic approaches in that it is
inherently Bayesian, a feature shared with the "supra Bayesian" approach. Given
that both individuals and the collective are modelled as Bayesian rational agents, the
findings are relevant to the theory of Bayesian aggregation, which aims to merge in-
dividual beliefs/values/preferences satisfying Bayesian rationality conditions (in the
sense of Savage 1954 or Jeffrey 1983) into equally rational collective ones; for the ex
ante approach, e.g. Seidenfeld et al. (1989), Broome (1990), Schervish et al. (1991)
and Mongin (1995, 1998); for the ex post approach, e.g. Hylland and Zeckhauser
(1979), Levi (1990), Hild (1998) and Risse (2001); for an excellent overview/critique,
see Risse (2003).
In Section 2, I present the model and derive the aggregation rule that follows

from it. Section 3 contains a numerical example. Sections 4 and 5 addresses the
choice of the "collective prior", the (only) open parameter in the aggregation rule.
In Section 6, I discuss a problematic independence assumption made up to this point,
and prove that (under certain conditions) it holds if and only if no proper subgroup
exclusively shares any information. In Section 7, I allow arbitrary information over-
lap; I generalise my approach into a technique of recursive probability aggregation
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by defining an algorithm that gradually builds up the collective probability function
so as to incorporate more and more and finally all information.

2 An axiomatic model

Consider a group of persons i = 1, ..., n (n ≥ 2), faced with a (non-empty) finite
or countably infinite set H of hypotheses H. I call shared information/knowledge
that knowledge held simultaneously by all group members. Each person i may
additionally hold personal information. If the group is a court jury and H consists
of hypotheses about the defendant’s extent of guilt, the shared information might
include the charge (read by all jurors), while juror 3’s information might additionally
include an observed smile on the face of the defendant.
Let Ω be a (non-empty) set of "possible worlds", i.e. possible under the shared

information. Formally, assume that H is a partition of Ω, i.e. that each hypothesis
H ∈ H is a (non-empty) subset of Ω (the set of worlds in which the hypothesis holds)
such that ∪H∈HH = Ω and H ∩H 0 = ∅ for any distinct H,H 0 ∈ H. A simple case is
a binary problem H = {H,Ω\H}.

Definition 1 Π is the set of all functions π : H→ (0, 1] such that
P

H∈H π(H) = 1,
called "(positive) probability functions (on H)" (whereas a "probability measure" is
defined on a σ-algebras in Ω).

Each person i is asked to submit both
• a probability function pi ∈ Π, representing the probabilities that i assigns based

on (i’s interpretation of) the shared knowledge,
• a probability function πi ∈ Π, representing the probabilities that i assigns based

on (i’s interpretation of) i’s full (i.e. shared or personal) knowledge.
The task is to derive, based on the submitted p1, π1, ..., pn, πn,
• a probability function π ∈ Π, representing the probabilities that the collective

assigns based on the group’s full (shared or any i’ personal) knowledge.
The submission of pi is new compared to the standard approach. While providing

πi has to be an isolated exercise, not so for pi: as the functions p1, ..., pn are all based
on the same (shared) information, the group may deliberate over how to interpret
this information and what probabilities rationally follow from it, possibly resulting
in an agreement p1 = ... = pn.
To interpret pi as a prior probability function and πi as a posterior probability

function, suppose that, to each person i, there are (without being revealed)
- an event Ei ⊆ Ω, i’s personal evidence, representing i’s personal information;
- a set of eventsAi, a σ-algebra in Ω, interpreted as the set of events to which i as-

signs probabilities, while i may be agnostic regarding events E /∈ Ai; by assumption,
Ei ∈ Ai and H ⊆ Ai;
- a ("prior") probability measure Pi : Ai → [0, 1] representing i’s probability

assignments based on (i’s interpretation of) the shared information (hence "prior");
by assumption, Pi(Ei) > 0 and Pi(H) > 0 for all H ∈ H.
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Recall that a conditional probability Pi(A|B) is defined as Pi(A ∩B)/Pi(B), for
all A,B ∈ Ai with Pi(B) 6= 0; and similarly for any other probability measure.
Individual Bayesian Rationality (IBR). For each person i and hypothesis H ∈
H,

pi(H) = Pi(H) and πi(H) = Pi(H|Ei).

pi and πi are therefore called i’s "prior" and "posterior" probably functions (where
"prior" and "posterior" need not have a temporal interpretations as the observation
of Ei may precede that of the shared information). By submitting πi, pi ∈ Π, i
reveals not i’s full Pi, but only the restrictions to H of Pi and of Pi(.|Ei). Other
characteristics of Pi (such as the likelihoods Pi(Ei|H), H ∈ H) not only remain
hidden, but also i need not be fully aware of them. This corresponds to the com-
mon "as if" interpretation of theories of rationality: a Bayesian rational agent is
assumed update beliefs/hold preferences in a way that is consistent with Bayesian
conditionalisation/expected utility maximisation whether or not the agent is con-
sciously calculating any posterior probabilities/expected utilities. (A purely "as if"
interpretation may of course be questioned.)
I treat the group or collective as a separate (virtual) agent with its own beliefs.

Specifically, I suppose that there are
- a set of events A, a σ-algebra in Ω, interpreted as the set of events to which the

collective assigns probabilities; by assumption, E1, ..., En ∈ A and H ⊆ A;
- a ("prior") probability measure P : A → [0, 1] representing the collective’s

probability assignments based on (the collective’s interpretation of) the shared in-
formation (hence "prior"); by assumption, P (E1 ∩ ... ∩ En) > 0 and P (H) > 0 for
all H ∈ H.
A and P are collective counterparts of Ai and Pi. The counterpart of (IBR) is:

Collective Bayesian Rationality (CBR). For each hypothesis H ∈ H,
π(H) = P (H|E1 ∩ ... ∩En).

So π incorporates both the shared information (contained in P ) and all personal
evidences E1, ..., En (conditionalised upon). At first, it may seem obscure how one
could calculate π(H) = P (H|E1 ∩ ... ∩ En), as P is held by a virtual agent (the
collective), and the evidences E1, ..., En are not revealed. The key is to connect P to
P1, ..., Pn via assumption (AL) below.
Let p := P |H be the restriction of P toH (the pair π, p is the collective counterpart

of the pair πi, pi). For any hypothesis H ∈ H, by (CBR) and Bayes’ rule

π(H) =
p(H)P (E1 ∩ ... ∩ En|H)P

H0∈H p(H 0)P (E1 ∩ ... ∩En|H 0)
. (1)

I now make an independence assumption to be discussed and relaxed later; the
assumption is closely related to Fitelson’s (2001) evidential independence.
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Independence (Ind). For each hypothesisH ∈ H, the personal evidencesE1, ..., En

are independent conditional on H, i.e. P (E1 ∩ ... ∩En|H) = P (E1|H) · · ·P (En|H).

Applying (Ind) to (1) yields

π(H) =
p(H)P (E1|H) · · ·P (En|H)P

H0∈H p(H 0)P (E1|H 0) · · ·P (En|H 0)
. (2)

Which values should be used for the collective likelihoods P (Ei|H)? I assume:

Acceptance of Likelihoods (AL). For all persons i and hypotheses H ∈ H,
P (Ei|H) = Pi(Ei|H).

This principle requires the collective to take over i’s own interpretation of i’s
evidence Ei as given by i’s likelihood assignments Pi(Ei|H), H ∈ H. (AL) plays an
implicit role, as individual likelihoods are not revealed. How can (AL) be justified?
Why not take other person’s interpretations of Ei also into account by defining
P (Ei|H) as some "compromise" of P1(Ei|H), ..., Pn(Ei|H)? First, person i may be
the only person to actually possess a likelihood of Ei; i.e., perhaps that for persons
j 6= i we have Ei /∈ Aj, so that Pj(Ei|H) is not even defined. Indeed, having not
observed Ei, j may not have spent any thoughts on Ei, nor on its likelihood. Second,
a "likelihood compromise" could only be formed after each person j reveals Pj(Ei|H)
(assuming that Ei ∈ Aj); which in turn supposes that first i communicates the exact
nature of Ei to the rest of the group. This is not only at odds with the present
approach, but may also be unfeasible in practice: given the possible complexity of
Ei and the limitations of language, of time, of i’s ability to describe Ei, of j’s (j 6= i)
ability to understand Ei etc., j could probably learn at most some approximation Ẽi

of Ei, and so j could at most provide j’s likelihood of Ẽi, which at most approximates
j’s likelihood of the true Ei (Pj(Ẽi) ≈ Pj(Ei)).
By (AL), I may replace each likelihood P (Ei|H) in (2) by Pi(Ei|H). As Pi(Ei|H)

is not submitted information, I express it in terms of πi(H) and pi(H): by (IBR)
and Bayes’ rule,

Pi(Ei|H) = Pi(H|Ei)Pi(Ei)

Pi(H)
=

πi(H)

pi(H)
Pi(Ei).

Substituting this into (2) and then simplifying,

π(H) =

π1(H)
p1(H)

P1(E1) · · · πn(H)pn(H)
Pn(En)p(H)P

H0∈H
π1(H0)
p1(H0)Pn(E1) · · · πn(H0)

pn(H0)Pn(En)p(H 0)
=

π1(H)
p1(H)

· · · πn(H)
pn(H)

p(H)P
H0∈H

π1(H0)
p1(H0) · · · πn(H

0)
pn(H0)p(H

0)
.

This formula simplifies if people have reached an agreement on how to interpret their
shared information:

Agreement on the Prior (AP). p1 = ... = pn = p.
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Under (AP), all persons i submit the same prior pi, and this prior is taken over as
the collective prior p (in accordance with the unanimity principle). As under (IBR)
pi = Pi|H and by definition p = P |H, (AP) means that P1, ..., Pn, P all agree on H
(but perhaps not outside H), i.e. P1|H = ... = Pn|H = P |H.
I now collect in a theorem. Functions f, g : H → R are "proportional", written

f ∝ g, if there exists a constant k 6= 0 such that f(H) = kg(H) for all H ∈ H.

Theorem 1 Assume (IBR), (CBR), (Ind) and (AL). Then the collective probability
of each hypothesis H ∈ H is given by

π(H) =

π1(H)
p1(H)

· · · πn(H)
pn(H)

p(H)P
H0∈H

π1(H0)
p1(H0) · · · πn(H

0)
pn(H0)p(H

0)
, in short π ∝ π1

p1
· · · πn

pn
p.

If in addition (AP) holds, then

π(H) =
π1(H) · · ·πn(H)/p1(H)n−1P

H0∈H π1(H 0) · · ·πn(H 0)/p1(H 0)n−1
, in short π ∝ π1 · · ·πn/pn−11 .

Three remarks:
1. As promised, π was calculated without people having to share their evidences

Ei or their likelihoods P (Ei|H), H ∈ H.
2. If (AP) fails the aggregation problem is not yet fully solved, because the

parameter p need still be chosen, a problem addressed in Section 4.
3. Assume a unanimous posterior agreement π1 = ... = πn. Then only in

special cases π equals π1 = ... = πn (suggesting that the unanimity principle, often
required in standard opinion pooling without p1, ..., pn, is unjustified in the case of
informational asymmetry). One such special case is that pi = πi for each person i,
i.e. the evidences E1, ..., En neither confirm nor disconfirm any hypothesis.

3 A numerical example for a simple case

Consider the simple case of a binary problem H = {H,Ω\H} with Agreement on
the Prior (AP), i.e. p1 = ... = pn = p. The collective posterior of H is then

π∗ =
π∗1 · · ·π∗n/(p∗)n−1

π∗1 · · ·π∗n/(p∗)n−1 + (1− π∗1) · · · (1− π∗n)/(1− p∗)n−1
, (3)

where p∗ := p(H), π∗ := π(H) and π∗i := πi(H).2 For the case of group size n = 2,
Table 1 contains the values of π∗ for all possible combinations of values of p∗, π∗1, π

∗
2

in the grid {.1, .25, .5, .75, .9}. Note how drastically π∗ depends on the shared prior
p∗. By shifting p∗ below (above) the π∗i s, π

∗ quickly approaches 1 (0); intuitively, if
E1, ..., En all point into the same direction, their conjunction points even more into
that direction. But if the prior p∗ is somewhere in the middle of the π∗i s, π

∗ may be

2The entries are rounded results if 3 decimal digits are reported, and exact results else.
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p∗ :
.1 .25 .5 .75 .9

.1, .1 .1 .036 .012 .004 .001
.25, .1 .25 .1 .036 .012 .004
.25, .25 .5 .25 .1 .036 .012
.5, .1 .5 .25 .1 .036 .012
.5, .25 .75 .5 .25 .1 .036
.5, .5 .9 .75 .5 .25 .1
.75, .1 .75 .5 .25 .1 .036

π∗1, π
∗
2 : .75, .25 .9 .75 .5 .25 .1

.75, .50 .964 .9 .75 .5 .25

.75, .75 .988 .964 .9 .75 .5
.9, .1 .9 .75 .5 .25 .1
.9, .25 .964 .9 .75 .5 .25
.9, .5 .988 .964 .9 .75 .5
.9, .75 .996 .988 .964 .9 .75
.9, .9 .999 .996 .988 .964 .9

Table 1: Collective probability π∗ = π(H) in dependence of shared prior p∗ = p(H)
and individual posteriors π∗i = πi(H) for group size n = 2 and H = {H,Hc}.

moderate; intuitively, if E1, ..., En point into different directions, their conjunction
need not strongly point into any direction. Rewriting (3) as

π∗ =
1

1 + (1/π∗1 − 1) · · · (1/π∗n − 1)/(1/p∗ − 1)n−1
, (4)

shows that π∗ is a strictly increasing function of π∗1, ..., π
∗
n for fixed prior p

∗, but
a strictly decreasing function of p∗ for fixed posteriors π∗1, ..., π

∗
n (where π

∗ → 1(0)
as p∗ → 0(1)). How can one make sense of π∗ depending negatively on the prior
p∗? Does more prior support for H reduces H’s posterior probability? No, since
more prior support for H increases not only the prior p∗ but also each posterior π∗i .
Very intuitively, in (4) the prior information "comes in" n times (through the terms
(1/π∗i − 1), which increase π∗) and is "taken out" n − 1 times (through the n − 1
terms (1/p∗ − 1), which reduce π∗), hence is overall accounted for exactly once, as
expected.

4 The choice of the collective prior p when there
is disagreement over the prior

If the interpretation of the shared information is controversial and hence (AP) fails,
the group needs to determine the collective prior p in Theorem 1’s formula. At least
two strategies are imaginable. First, some (possibly appointed) person, perhaps a
group member, may be asked to choose p, either by using his/her own prior, or by

7



taking some inspiration from the submitted priors p1, ..., pn, or by using statistical
estimation techniques if available. This solution has obvious limitations, including a
lack of democraticity. An alternative is to replace p by F (p1, ..., pn), i.e. to define

π ∝ π1
p1
· · · πn

pn
F (p1, ..., pn), (5)

where F : Πn → Π is a standard opinion pool. An opinion pool F maps each profile
of (individual) functions (p1, ..., pn) ∈ Πn to a (collective) function F (p1, ..., pn) ∈ Π,
the "compromise" between p1, ..., pn. At first sight, one may wonder what is gained
by (5) compared to the standard approach of defining π = F (π1, ..., πn) without
caring about p1, ..., pn. Does formula (5) not just shift the original aggregation prob-
lem — pooling π1, ..., πn into π — towards an equally complex aggregation problem
about priors — pooling p1, ..., pn into p? In an important respect, pooling p1, ..., pn
is simpler than pooling π1, ..., πn: pooling p1, ..., pn involves no informational asym-
metry since each of p1, ..., pn is based on the same (shared) information. Hence any
disagreement between p1, ..., pn is due solely to different interpretations of that same
body of information. This informational symmetry provides an argument for using
equal weights in pooling p1, ..., pn, whereas pooling π1, ..., πn may involve the difficult
exercise of assigning information-specific weights to people. Let me explain this more
precisely. The literature’s two most prominent types of opinion pools F : Πn → Π
(see the introduction) are

linear opinion pools F (p1, ..., pn) = w1p1 + ...+ wnpn,
logarithmic opinion pools F (p1, ..., pn) ∝ pw11 · · · pwnn ,

where w1, ..., wi ∈ [0, 1] are "weights" with
Pn

i=1wi = 1. The former is a (weighted)
arithmetic average of p1, ..., pn, the latter is (proportional to) a (weighted) geometric
average of p1, ..., pn with factor of proportionality given by

P
H∈H F (p1, ..., pn)(H) =

1, i.e.

F (p1, ..., pn) = pw11 · · · pwnn
,X

H∈H
[p1(H)]

w1 · · · [pn(H)]wn .

If F is a linear resp. logarithmic opinion pool, formula (5) becomes

π =
π1
p1
· · · πn

pn
(w1p1 + ...+ wnpn) (6)

resp. π ∝ π1
p1
· · · πn

pn
pw11 · · · pwnn =

π1

p1−w11

· · · πn
p1−wnn

. (7)

How should the weights w1, ..., wn be chosen? In general, unequal weights may be
justified either by different information states or by different competence, i.e. ability
to interpret information. The former reason does not apply here, since p1, ..., pn are
by definition based on the same (shared) information. If, in addition, differences of
competence are either inexistent, or unknown, or not to be taken into account for
reasons of procedural fairness, then equal weights w1 = ... = wn = 1/n are justified.
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Taking equal weights in (6) resp. (7) yields

π =
1

n

π1
p1
· · · πn

pn
(p1 + ...+ pn) (8)

resp. π ∝ π1

p
1−1/n
1

· · · πn

p
1−1/n
n

, (9)

which contains no unknown parameters, hence solves the aggregation problem.

5 External and interpersonal Bayesianity

Let me give two potential arguments in favour of a logarithmic (or, more generally,
externally Bayesian) opinion pool F in (5), rather than for instance a linear opinion
pool. Note first that in (5) π is a function of the vector (p1, π1..., pn, πn) ∈ (Π×Π)n =
Π2n, containing every person’s prior and posterior.

Definition 2 A "generalised opinion pool" ("GOP") or "generalised probability ag-
gregation rule" is a function G : Π2n → Π.

Unlike a standard opinion pool F : Πn → Π, a GOP G also takes as inputs the
pis, i.e. people’s interpretations of the shared information. I have shown that, under
certain conditions, a GOP G should take the form (5), i.e.

F (p1, π1, ..., pn, πn) ∝ π1
p1
· · · πn

pn
F (p1, ..., pn), (10)

where F : Πn → Π is a standard opinion pool that merges the priors p1, ..., pn.
From a Bayesian perspective, (at least) two natural conditions may be imposed

on a GOP, which I call external and interpersonal Bayesianity. The former is the
analogue of external Bayesianity for standard opinion pools F , whereby it should
not matter whether an information comes in before or after pooling, i.e. the pooling
operator F should commute with updating. Formally, for every probability function
p ∈ Π and every ("likelihood") function l : H → (0, 1] I denote by pl the (updated)
probability function pl ∈ Π defined by

pl(H) :=
l(H)p(H)P

H0∈H l(H 0)p(H 0)
, in short pl ∝ lp. (11)

Here, l is interpreted as the likelihood function P (E|.) for some evidence E, so that
pl is a posterior probability. A standard opinion pool F : Πn → Π is called externally
Bayesian if

F (pl1, ..., p
l
n) = F (p1, ..., pn)

l

for every profile (p1, ..., pn) ∈ Πn and ("likelihood") function l : H→ (0, 1] (Madansky
1964). In particular, logarithmic opinion pools F are externally Bayesian. To defend
the use of an externally Bayesian opinion pool F in (10), let me define an analogous
concept for GOPs:
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Definition 3 A GOP G is called "externally Bayesian" if

G(pl1, π
l
1, ..., p

l
n, π

l
n) = G(p1, π1, ..., pn, πn)

l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and ("likelihood") function l : H→ (0, 1].

On the left hand side of this equation not only all posteriors are updated (πli),
but also all priors (pli), because the incoming information is observed by everybody,
hence part of the shared information, hence contained in the priors.
While external Bayesianity requires that it be irrelevant whether pooling happens

before or after updating, a different question is whether it matters who in the group
has observed a given information. Interpersonal Bayesianity requires that it be
irrelevant whether every or just a single person obtains a given information:

Definition 4 A GOP G is called "interpersonally Bayesian" if, for each person i,

G(p1, π1, ..., pi−1, πi−1, pi, πli, pi+1, πi+1, ..., pn, πn) = G(pl1, π
l
1, ..., p

l
n, π

l
n)

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and ("likelihood") function l : H→ (0, 1].

On the left hand side of this equation, i’s prior is not updated (pi, not pli), because
the incoming information, being observed just by person i, is not part of the shared
knowledge, hence not reflected in any prior. Interpersonal Bayesianity is based on
the idea that the collective probabilities should incorporate all information available
somewhere in the group, whether it is held by a single or every person. External and
interpersonal Bayesianity together imply that, for each person i,

G(p1, π1, ..., pi−1, πi−1, pi, πli, pi+1, πi+1, ..., pn, πn) = G(p1, π1, ..., pn, πn)
l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and ("likelihood") function l : H→ (0, 1].
It turns out that, if a GOPG takes the form (10), then external and interpersonal

Bayesianity are in fact equivalent, and equivalent to external Bayesianity of F :

Theorem 2 If a generalised opinion pool G has the form (10), where F is some
opinion pool, the following conditions are equivalent:
(i) G is externally Bayesian;
(ii) G is interpersonally Bayesian;
(iii) F is externally Bayesian.

Proof. I show that (i) is equivalent with each of (ii) and (iii). By (10),

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

πl1
pl1
· · · π

l
n

pln
F (pl1, ..., p

l
n),

and hence by (11)

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

lπ1
lp1

· · · lπn
lpn

F (pl1, ..., p
l
n) =

π1
p1
· · · πn

pn
F (pl1, ..., p

l
n). (12)
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On the other hand, again by (10) and (11),

G(p1, π1, ..., pn, πn)
l ∝ l

π1
p1
· · · πn

pn
F (p1, ..., pn) ∝ π1

p1
· · · πn

pn
F (p1, ..., pn)

l. (13)

Relations (12) and (13) together immediately imply that G is externally Bayesian if
and only if F is externally Bayesian. Further, again by (10) and (11),

G(p1, π1, ..., pi−1, πi−1, pi, πli, pi+1, πi+1, ..., pn, πn) ∝ l
π1
p1
· · · πn

pn
F (p1, ..., pn)

∝ π1
p1
· · · πn

pn
F (p1, ..., pn)

l.

This together with (12) implies that G is interpersonally Bayesian if and only it F
is externally Bayesian. ¥

So, if one desires G to be externally or interpersonally Bayesian, one is bound
to use an externally Bayesian opinion pool F in (10). The simplest examples of
externally Bayesian opinion pools F are logarithmic opinion pools; they lead to a
GOP of the form (7), and to the GOP (9) in the case of equal weights. There exist
other, more complicated externally Bayesian opinion pools F, characterised in full
generality by Genest, McConway, and Schervish (1986, Theorem 2.5); yet logarithmic
opinion pools become the only solutions if additional properties are required from F
and |H| ≥ 3 (see Genest, McConway, and Schervish (1986), Corollary 4.5).

6 When is Independence (Ind) violated?

Let us go back to the foundations of the model. Beside Individual Bayesian Ration-
ality (IBR), the most problematic assumption is Independence (Ind). An important
source for failure of (Ind) is what I call "problematic information overlap", that
is, the existence of information held by more than one but less than every person.
I will prove that, under certain conditions, (Ind) holds if and only if there is no
problematic information overlap.
By a person i’s information set I mean, informally, the (possibly quite enormous)

collection of i’s relevant observations/items of information. (Formally, one may define
i’s information set Ii as a set of non-empty events E ⊆ Ω, where each E ∈ Ii
represents an item of information.3) In the case of a jury faced with hypotheses
about the defendant’s guilt, i’s information set might include the observations "an
insecure smile on the defendant’s face", "the defendant’s fingerprint near the crime
scene", "two contradictory statements by witness x", etc.
Figure 1 shows information sets, not sets of possible worlds A ⊆ Ω. These two

concepts are in fact opposed to each other: the larger the information set, the smaller

3This definition is in one respect odd (without this causing any problem here): any observation
made by every person is represented by the same (maximal) event E = Ω (i.e. E ∈ I1 ∩ ... ∩ In
implies E = Ω), as by assumption each ω ∈ Ω is a possible world under the shared information.
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information of
person 1 only

information of
person 2 only

shared
information

information of
person 1 only information of

person 2 only
shared

information

information of
person 3 only

!

!

!

Figure 1: Information sets in a group of n = 2 perons (no illigal information overlap),
and a group of n = 3 persons (problematic information overlap marked with "!")

the corresponding set of worlds (satisfying the information); the union of information
sets compares to the intersection of the sets of worlds. (Formally, to an information
set I corresponds the set of worlds ∩E∈IE ⊆ Ω, interpreted as Ω if I = ∅. Thus i’s
evidence Ei equals ∩E∈Ii\(I1∪...∪In)E, the intersection of all of i’s not-shared items of
information; by footnote 3, this actually equals ∩E∈IiE.)
Here is the potential problem. Consider any piece of information contained in the

information sets of more than one but less than all persons i — something impossible
in groups of size n = 2 but possible in larger groups, as illustrated by the "!" fields in
Figure 1. This information is not part of the shared information, but part of many
person i’s personal evidences Ei. Such "problematic information overlap" typically
creates positive correlations between the Eis in question. As a stylised example,
consider a jury of n = 3 jurors faced with the hypothesis of guilt of the defendant
(H). All jurors have read the charge (shared information), and moreover juror 1 has
listened to the first witness report and observed the defendant’s nervousness (E1),
juror 2 has listened to the second witness report and observed the defendant’s smiles
(E2), and juror 3 has listened both witness reports and had a private chat with the
defendant (E3). Note the problematic information overlap between jurors 1 and 3
and between jurors 2 and 3, which typically causes E3 to be positively correlated
with E1 and with E2.
Let me now prove a formal result.

Definition 5 A subgroup, M , is a non-empty subset of the group N := {1, ..., n}; it
is called a "proper" subgroup if 1 < |M | < n.

Now suppose that to each subgroupM there is a non-empty event EM ⊆ Ω, M ’s
"exclusively shared evidence", representing all information held by each of and only
the persons in M , where by assumption
• Ei = ∩{i}⊆M⊆NEM for all persons i (as i has observed those EM with i ∈M);4

• EN = Ω (as any world ω ∈ Ω is assumed possible under the shared information);

4Why not rather assume that Ei = ∩{i}⊆M(NE
M , as Ei should not contain information held

by everybody? In fact, both assumption are equivalent since by EN = Ω an additional intersection
with EN has no effect.
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• each EM belongs to A, the domain of the probability measure P (which holds
in particular if A contains all subsets of Ω).
For instance, the "!" fields in Figure 1 represent E{1,2}, E{1,3} and E{2,3}. (EM is

interpretable as the intersection ∩E∈(∩i∈MIi)\(∪i/∈MIi)E of all items of information E
contained in each of the information sets Ii, i ∈ M, but in none of the information
sets Ii, i /∈M, where this intersection is Ω if (∩i∈MIi)\(∪i/∈MIi) = ∅.)
For all subgroups M 6= N , "no information exclusively shared byM" means just

EM = Ω. This leads to a simple definition of "no problematic information overlap":

No Problematic Information Overlap (NoPIO). EM = Ω for all proper sub-
groups M .

In Figure 1, (NoPIO) requires each "!" field to be empty, more precisely E{1,2} =
E{1,3} = E{2,3} = Ω. Now, I assume:

(Ind∗) The events EM , ∅ 6= M ⊆ N, are (P -)independent conditional on each
H ∈ H.
This new independence assumption is less problematic than (Ind) in that the

EMs are, unlike the Eis, based on non-overlapping information sets. ((Ind∗) holds
in particular if the items of information in I1 ∪ ... ∪ In are mutually (conditionally)
independent.) For simplicity, suppose finally that

P (A) > 0 for every non-empty event A ∈ A. (14)

Theorem 3 Assume (Ind∗) and (14). Then
(a) (Ind) holds if and only if (NoPIO) holds;
(b) more precisely, if EM 6= Ω for proper subgroupM , then the personal evidences

Ei, i ∈M, are pairwise positively correlated conditional on at least one H ∈ H (i.e.
P (Ei ∩Ej|H) > P (Ei|H)P (Ej|H) for any two distinct i, j ∈M).

Proof. I prove part (a); the proof includes a proof of part (b).
(i) First, assume (NoPIO). Then we have, for all persons i,

Ei = ∩{i}⊆M⊆NEM = E{i} ∩ £∩{i}⊆M⊆N&|M |≥2EM
¤
= E{i} ∩ Ω = E{i}. (15)

Conditional on any H ∈ H, by (Ind∗) the events EM , ∅ 6=M ⊆ N, are independent,
hence so are E{1}, ..., E{n}, and hence so are E1, ..., En by (15).
(ii) Now assume (NoPIO) is violated, and let M∗ be a proper subgroup with

EM∗ 6= Ω. I show that the events Ei, i ∈ M∗, are pairwise positively correlated
conditional on at least one H ∈ H, which proves part (b) and also completes the
proof of part (a) since E1, ..., En are then not independent conditional on H. Let
i, j ∈ M∗ be distinct. By EM∗ 6= Ω and (14) I have P (EM∗

) < 1. So there exists
an H ∈ H with P (EM∗|H) < 1. Since Ei = ∩{i}⊆M⊆NEM , we have by (Ind∗)
P (Ei|H) = Π{i}⊆M⊆NP (EM |H). The analogous argument for j yields P (Ej|H) =
Π{j}⊆M⊆NP (EM |H). So

P (Ei|H)P (Ej|H) =
£
Π{i}⊆M⊆NP (EM |H)¤× £Π{j}⊆M⊆NP (EM |H)¤ . (16)
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Further, we have

Ei ∩Ej = [∩{i}⊆M⊆NEM ] ∩ [∩{j}⊆M⊆NEM ] = [∩{i}⊆M⊆NEM ] ∩ [∩{j}⊆M⊆N\{i}EM ].

So, by (Ind∗),

P (Ei ∩Ej) = [Π{i}⊆M⊆NP (EM)]× [Π{j}⊆M⊆N\{i}P (EM)]. (17)

The relations (16) and (17) together entail P (Ei ∩Ej) > P (Ei|H)P (Ej|H), because
expression (16) equals expression (17) multiplied with the factor Π{i,j}⊆M⊆NP (EM),
which is smaller than 1 since it contains the term P (EM∗|H) < 1. ¥

7 Recursive opinion pooling

I now turn to opinion pooling in the presence of problematic information overlap.
By Theorem 3, a violation of (NoPIO) implies a violation of (Ind) (under (Ind∗) and
(14)), so that we need a new method to calculate the collective probability function
π.
Instead of (NoPIO), assume now more generally that some subgroups do and

others do not exclusively share information. Specifically, let there be a (more or less
large) set of subgroups M with N ∈ M, interpreted as the set of subgroups that
(potentially) have exclusively shared information. Any subgroupM /∈M should not
have exclusively shared information:

(NoPIO∗). EM = Ω for all subgroups M /∈M.

The practical choice ofM depends on how information is distributed across the
group. In last section’s jury example, the information is distributed across the n = 3
jurors in such a way that M = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}, as {1, 2} is
the only subgroup with no exclusively shared information. Condition (NoPIO∗) is
equivalent to (NoPIO) if M = {{1}, ..., {n}, N}, but becomes weaker (and more
interesting) if M also contains some proper subgroups, and becomes empty if M
contains all subgroups.

Information sharing. Having originally only (NoPIO∗), one strategy is to "en-
force" (NoPIO) through active information sharing prior to aggregation: all proper
subgroups M ∈M communicate their exclusively shared information to the rest of
the group. In Figure 1, all information in "!" fields is communicated to the third per-
son, and in the above jury example the subgroups {1, 3} and {2, 3} communicate the
exact content of the first resp. second witness report to the third juror. Having thus
removed any problematic information overlap, (NoPIO) now holds and probability
aggregation along the above lines can start.

Recursive pooling. As an alternative, let me now develop a general technique of
recursive probability aggregation under (NoPIO∗). For simplicity, I assume that each
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subgroup M ∈M agrees on the interpretation of its shared information, i.e. on the
resulting probabilities. So, different probabilities result from different information,
never from different interpretations of information. But, rather than making this
assumption explicit by a condition analogous to the earlier Agreement on the Prior
(AP), the assumption is implicit by not indexing pM by i (see below), and by using
P instead of Pi throughout, thereby implicitly assuming that Pi(E) = P (E) for all
E ∈ Ai ∩A.
While earlier each person i submitted functions pi, πi ∈ Π, assume now that
• each subgroup M ∈ M submits a probability function pM ∈ Π, representing

M ’s probability assignments based on M ’s shared information (shared information
need not be "exclusively" shared, i.e. may be known to other persons).
The aim is still to derive, based now on the functions pM ∈ Π, M ∈M,
• a (collective) probability function π ∈ Π representing the group’s entire inform-

ation.
pM corresponds to the earlier function πi if M = {i}, and to a (unanimously

agreed) prior function p1 = ... = pn = p ifM = N.What is new are the functions pM
for proper subgroups M ∈M. In practice, every non-singleton subgroup M ∈M
will have to "sit together", find out about its shared information, and agree on the
resulting probability function pM .

Example of the technique. As noted above, in last section’s jury exampleM =
{{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}. So, functions p{1}, p{2}, p{3}, p{1,3}, p{2,3} and
p{1,2,3} are submitted. The recursion works as follows, where I use a slightly simplified
version of the later notation and skip all formal justifications:
• First, combine p{1,3} and p{2,3} into a function p{1,3},{2,3} representing the union

of {1, 3}’s shared information and {1, 3}’s shared information. One may apply The-
orem 1’s formula and put p{1,3},{2,3} ∝ p{1,3}p{2,3}/p{1,2,3}.
• Next, combine p{1} and p{2} into a function p{1},{2} representing the union of

{1}’s and {2}’s information. One may apply Theorem 1’s formula and put p{1},{2} ∝
p{1}p{2}/p{1,2}, where p{1,2} is defined as p{1,2,3} because the subgroup {1, 2} has no
exclusively shared information.
• Finally, combine p{1},{2} and p{3} into the function π = p{1},{2},{3} representing

the union of {1}’s, {2}’s and {3}’s information. Again, one may apply Theorem 1’s
formula and put π = p{1},{2},{3} ∝ p{1},{2}p{3}/p{1,3},{2,3}.

Recall that i’s evidence Ei equals ∩{i}⊆M⊆NEM . I now generalise this to sub-
groups:

Definition 6 A subgroupM ’s "shared evidence" is defined as EM := ∩M⊆M 0⊆NEM 0
.

Note that E{i} = Ei. EM represents all information held by at least all i ∈ M
— as opposed EM , M ’s exclusively shared evidence, which represents all information
held by only all persons in M . Information shared by M is precisely information
exclusively shared by some subgroup M ⊆M 0 ⊆ N . Also, note that

P (EM), P (EM) > 0, for each subgroup M,
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as P (EM), P (EM) ≥ P (∩∅6=M 0⊆NEM 0
) = P (E1 ∩ ... ∩En) > 0. The following condi-

tion translate Individual Bayesian Rationality (IBR) to subgroups inM:

(IBR∗) pM(H) = P (H|EM) for every subgroup M ∈M and hypothesis H ∈ H.

The aim is still that the collective probability function satisfies (CBR), i.e. that

π(H) = P (H|E1 ∩ ... ∩En) for each hypothesis H ∈ H,

a condition that may be rewritten in several equivalent ways since (by Definition 6)

E1 ∩ ... ∩En = E{1} ∩ ... ∩E{n} = ∩∅6=M⊆NEM = ∩∅6=M⊆NEM .

To calculate π satisfying (CBR), I now introduce "abstract individuals":

Definition 7 An "abstract individual", A, is a non-empty set of subgroups M.

I interpret an abstract individual A as a hypothetical agent whose informa-
tion contains the shared information of each subgroup M ∈ A. For instance,
A = {{1, 3}, {2, 3}} "knows" {1, 3}’s shared information and {2, 3}’s shared in-
formation. A’s evidence is thus given by ∩M∈AEM . I will calculate for each abstract
individual A a function pA ∈ Π reflecting precisely A’s information ∩M∈AEM , i.e.
such that

pA(H) = P (H| ∩M∈A EM) for each H ∈ H. (18)

Definition 8 The "order" of an abstract individual A is order(A) := min{|M | :
M ∈ A}, the size of a smallest subgroup in A.

I calculate pA by (backward) recursion over order(A): pA is calculated first for
order(A) = n, then for order(A) = n − 1, ..., then for order(A) = 1. This finally
yields π, since by (CBR) and (18) π = P (.|E{1} ∩ ... ∩ E{n}) = pA where A is the
abstract individual {{1}, {2}, ..., {n}} of order 1. The induction step will consist
essentially in calculating, from the functions pA and pA∗ of two abstract individuals
A and A∗ the function pA∪A∗ of the abstract individual A∪A∗ whose information is
the combined information of A and A∗. To derive pA∪A∗ from pA and pA∗, I generalise
the formula of Theorem 1 to (two) abstract individuals. In that formula, the notion
of shared information is crucial. What information do A and A∗ share? They share
precisely the information of the abstract individual

A ∧A∗ := {M ∪M∗ :M ∈ A and M∗ ∈ A∗}.

For A and A∗ share that information shared both by a subgroup M ∈ A and by a
subgroup M∗ ∈ A∗, i.e. shared by subgroup M ∪M∗. So, when combining pA and
pA∗, A ∧ A∗’s function pA∧A∗ plays the role of the "shared prior" p in Theorem 1.
Specifically:
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Lemma 1 Assume (Ind∗). For any two abstract individuals A and A∗, if each of
pA, pA∗ , pA∧A∗ ∈ Π satisfies (18) and pA∪A∗ ∈ Π is given by

pA∪A∗(H) =
pA(H)pA∗(H)/pA∧A∗(H)P

H0∈H pA(H 0)pA∗(H 0)/pA∧A∗(H 0)
, in short pA∪A∗ ∝ pApA∗/pA∧A∗,

then pA∪A∗ also satisfies (18).

Proof. Let pA, pA∗, pA∧A∗ ∈ Π each satisfy (18) and pA∪A∗ ∈ Π be given by
pA∪A∗ ∝ pApA∗/pA∧A∗. For all abstract individuals B,

B := {M ⊆ N :M 0 ⊆M for some M 0 ∈ B},
the set of supergroups of subgroups in B. By (18), pA∧A∗ = P (.|∩M∈A∧A∗EM), where
by Definition 6

∩M∈A∧A∗EM = ∩M∈A∧A∗ ∩M⊆M 0⊆N EM 0
= ∩M∈A∧A∗EM .

So,
pA∧A∗ = P (.| eE) with eE := ∩M∈A∧A∗EM . (19)

Analogously, by (18), pA = P (.| ∩M∈A EM), where by Definition 6

∩M∈AEM = ∩M∈A ∩M⊆M 0⊆N EM 0
= ∩M∈AEM = E ∩ eE

with E := ∩M∈A\A∧A∗EM . So pA = P (.|E ∩ eE), and hence by Bayes’ rule
pA ∝ P (.| eE)P (E|. ∩ Ẽ). (20)

By an analogous argument for A∗, we have

pA∗ ∝ P (.| eE)P (E∗|. ∩ Ẽ), (21)

where E∗ := ∩M∈A∗\A∧A∗EM . Since pA∪A∗ ∝ pApA∗/pA∧A∗, we have by (19), (20)
and (21)

pA∪A∗ ∝
h
P (.| eE)P (E|. ∩ Ẽ)i hP (.| eE)P (E∗|. ∩ Ẽ)i /P (.| eE)

= P (.| eE)P (E|. ∩ Ẽ)P (E∗|. ∩ Ẽ). (22)

(Ind∗) implies that, for each H ∈ H, the events E,E∗, eE are independent given H,
and hence E,E∗ are independent given H ∩ eE. So

P (E|. ∩ Ẽ)P (E∗|. ∩ Ẽ) = P (E ∩E∗|. ∩ Ẽ).
Substituting this into (22) and then applying Bayes’ rule, I obtain

pA∪A∗ ∝ P (.| eE)P (E ∩E∗|. ∩ Ẽ) ∝ P (.|E ∩E∗ ∩ eE).
But the latter equals P (.| ∩M∈A∪A∗ EM), as by Definition 6

∩M∈A∪A∗EM = ∩M∈A∪A∗ ∩M⊆M 0⊆N EM = ∩M∈A∪A∗EM = E ∩E∗ ∩ eE. ¥
Algorithm. Define pA ∈ Π for abstract individuals A by backward recursion on
order(A):
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• Let order(A) = n. Then A = {N}. Define pA := pN .

• Let order(A) = k < n and assume pA0 is already defined for order(A0) > k.

Case 1: |A| = 1. Then A = {M}. If M ∈ M, define pA = pM . If M /∈ M,
consider the abstract individual A0 := {M ∪ {i} : i /∈ M} containing all
subgroups with exactly one person added toM (interpretation: A and A0 have
the same information by M /∈ M); define pA := pA0 , where pA0 is already
defined by order(A0) = k + 1.

Case 2: |A| > 1. Define pA by recursion on |{M ∈ A : |M | = k}|, the number
of subgroups in A of size k:

◦ Let |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗, where |M | = k and
order(A∗) > k. Define

pA ∝ p{M}pA∗/p{M}∧A∗,

where p{M} is already defined in case 1, and pA∗ and p{M}∧A∗ are already
defined by order(A∗) > k and order({M} ∧A∗) > k.

◦ Let |{M ∈ A : |M | = k}| = l > 1 and assume pA∗ is already defined for
|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). Then A = {M} ∪ A∗

with |M | = k and |{M∗ ∈ A∗ : |M∗| = k}| = l − 1. Define

pA ∝ p{M}pA∗/p{M}∧A∗,

where p{M} is already defined in case 1, pA∗ is already defined by |{M∗ ∈
A∗ : |M∗| = k}| = l − 1, and p{M}∧A∗ is already defined by order({M} ∧
A∗) > k.

Now let me prove that this algorithm yields the desired result.

Theorem 4 Assume (IBR∗), (Ind∗) and (NoPIO∗), and define the functions pA ∈ Π
(for abstract individuals A) by the above algorithm. Then the functions pA satisfy
(18). So, assuming (CBR), the collective probability function π equals p{{1},...,{n}}.

Proof. Assume (IBR∗), (Ind∗) and (NoPIO∗). Denote by A the set of abstract
individuals A. Define pA, A ∈ A, by the above algorithm. I prove that (18) (i.e.
pA = P (.|∩M∈A EM)) holds for all A ∈ A, using (backward) induction on order(A).

• If order(A) = n, then A = {N}, and by definition pA = pN . So by (IBR∗)
pA = P (.|EN) = P (.| ∩M∈A EM).

• Now let order(A) = k < n, and assume (18) holds for all A0 ∈ A with
order(A0) > k. I have to show that pA = P (.| ∩M∈A EM).

Case 1: |A| = 1. Then A = {M} with |M | = k. If M ∈M, then by definition
pA = pM , so by (IBR∗) pA = P (.|EM) = P (.| ∩M 0∈A EM 0). Now assume
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M /∈M. Then by definition pA = pA0 with A0 := {M ∪ {i} : i /∈ M}. Since
order(A0) = k + 1, the induction hypothesis yields pA0 = P (.| ∩M 0∈A0 EM 0),
hence pA = P (.| ∩M 0∈A0 EM 0). So I have to show that ∩M 0∈A0EM 0 = EM . By
Definition 6,

EM = ∩M⊆M 0⊆NEM 0
= EM ∩

n
∩M 0∈A0

h
∩M 0⊆M 00⊆NEM 00

io
.

In this, EM = Ω by (NoPIO∗) and ∩M 0⊆M 00⊆NEM 00
= EM 0 by Definition 6. So

EM = ∩M 0∈A0EM 0 , as desired.

Case 2: |A| > 1. I show pA = P (.| ∩M∈A EM) by induction on the number
|{M ∈ A : |M | = k}| of subgroups in A of size k.

◦ Let |{M ∈ A : |M | = k}| = 1. Then by definition pA ∝ p{M}pA∗/p{M}∧A∗,
whereA = {M}∪A∗ with |M | = k and order(A∗) > k. Now, p{M} satisfies
(18) by "case 1", and pA∗ and p{M}∧A∗ satisfy (18) by order(A∗) > k and
order({M} ∧ A∗) > k (and the k-induction hypothesis). So, by Lemma
1, pA satisfies (18).

◦ Let |{M ∈ A : |M | = k}| = l > 1, and assume A∗ satisfies (18) whenever
|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). By definition, pA ∝
p{M}pA∗/p{M}∧A∗, where A = {M} ∪ A∗ with |M | = k and |{M∗ ∈ A∗ :
|M∗| = k}| = l − 1. In this, p{M} satisfies (18) by "case 1", pA∗ satisfies
(18) by |{M∗ ∈ A∗ : |M∗| = k}| = l− 1 (and the l-induction hypothesis),
and p{M}∧A∗ satisfies (18) by order({M} ∧A∗) > k (and the k-induction
hypothesis). So, by Lemma 1, pA satisfies (18). ¥

8 Conclusion

The above model addresses probability aggregation in the presence of informational
asymmetry. In an attempt to free opinion pooling from open parameters, the in-
formational asymmetry was accounted for not by using an aggregation rule that
assigns information-specific weights to persons, but by asking people to agree on a
shared ("prior") probability function p based on the shared information resp. to
submit individual functions pi if there is disagreement over how to interpret the
shared information. Specifically, while the standard approach defines the collective
probability function π as F (π1, ..., πn) for some opinion pool F, I proposed defining
π (in the absence of problematic information overlap) by π ∝ π1 · · ·πn/pn−1 (which
is parameter-free), resp. by π ∝ π1

p1
· · · πn

pn
F (p1, ..., pn) if there is disagreement over

the prior, where F is a standard opinion pool that involves no information-specific
parameters (weights); if F furthermore involves no competence-specific parameters
(say, because competence levels are unknown or should be ignored for reasons of pro-
cedural fairness), then F and hence π may again be parameter-free. In the case of
a problematic information overlap, information pooling was achieved by a somewhat
more complicated algorithmic approach (see Theorem 4).
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Overall, compared to earlier approaches, this approach is more demanding on
the side of the individuals (due to the additional agreement on p resp. submission
of p1, ..., pn) but typically less demanding on the side of choosing the aggregation
rule (as fewer or no parameters need be chosen). The reduced arbitrariness in the
procedure choice increases not only practical feasibility but also group autonomy.
Still, the practical use of the model rests on assumptions. It is a normative ques-

tion whether to accept Collective Bayesian Rationality (CBR) and Acceptance of
Likelihoods (AL); they may be accepted on epistemic grounds. By contrast, it is
a factual matter whether Individual Bayesian Rationality (IBR)/(IBR∗) and Inde-
pendence (Ind)/(Ind∗) hold. (Ind) is threatened by the possibility of a problematic
information overlap (see Theorem 3), while (Ind∗) is not. The technique of recursive
opinion pooling presented in Section 7 can cope with any type of information over-
lap, but it assumes that each subgroup inM agrees on how to interpret its shared
information. Dropping this assumption would have gone beyond the scope of this
paper — but it clearly is an interesting question for future research. The algorithm
can possibly be generalised in more than one way.
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