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Abstract

In this paper | examine single member, simple plurality elections with 3 probabilistic
voters and show that the maximization of expected vote share and maximization of probability
of victory are “generically different” in a specific sense. More specifically, | first destintie
shynesgAnderson and Zame (2000)), a notion of genericity for infinite dimensional spaces.
Using this notion, | show that, for any policy* in the interior of the policy space and any
candidatey, the set of.-dimensional profiles of twice continuously differentiable probabilistic
voting functions for whiche* simultaneously satisfies the first and second order conditions for
maximization of;’s probability of victory andj’sexpected vote share at is finitely shy with
respect to the set of-dimensional profiles of twice continuously differentiable probabilistic
voting functions for whiche* satisfies the first and second order conditions for maximization
of j’s expected vote share.



1 Introduction

In this paper, | examine the question of equivalence of two different objective (or payoff)
functions that political candidates may seek to maximize in an election: expected vote share or
the probability of victory. | restrict attention to single winner, simple plurality elections with
probabilistic voters and inquire as to whether optimal candidate strategies and equilibrium
policy positions are different under these two objective functions. The main finding of this
paper is that expected vote share and probability of victory are “generically” different in the
sense that satisfaction of the first and second order conditions for maximization of expected
vote share by an electoral platform generally does not imply satisfaction of the first and second
order conditions for maximization of probability of victory.

The question of equivalence between different candidate objectives, first seriously studied
in the 1970s (Aranson, Hinich, and Ordeshook, (1974), Hinich (1977), and Ledyard (1984)),
has been the subject of renewed interest recently (Duggan (2000) and Patty (2000), (2001)).
At issue is whether candidates who seek to maximize their vote share should adopt the same
strategies as candidates who seek to maximize the probability of winning the election. In this
paper | prove that the answer to this question for single member, simple plurality elections with
probabilistic voters is, in a precise sense, “almost always” no.

There are two types of equivalence that have interested scholars of electoral shastgy,
responseandequilibriumequivalence. If the optimal strategies of the candidates are identical
under the two objective functions, regardless of their opponents’ policy choices, then the ob-
jective functions are said to exhibit best response equivalence. Equilibrium equivalence of two
objectives holds if the two objectives yield identical sets of Nash equilibria. This paper speaks
to both types of equivalence. More to the point, the paper illustrates that either type of equiv-
alence between vote-maximization and probability of victory maximization is nongeneric. In
other words, one can confidently expect candidate behavior to differ under vote-maximization
and probability of victory maximization, regardless of whether the object of interest is individ-
ual incentives or equilibrium behavior.

The main point of this paper’s results is that the optimal strategies for expected-vote-
maximizing and probability-of-victory-maximizing candidates usually differ. This result is
of theoretical and substantive importance for a number of reasons: first, there is no reason to
assumex priori that the predictions of models of electoral competition are invariant to which
of these two objectives motivate candidates’ choices of platforms. Secondly, a probability of
victory-maximizing candidate will not generally choose a platform in a manner such that the
expected behaviors of all voters are treated “equally”: the responsiveness of a voter’s behavior
is weighted by the probability of his or her vote being pivotal in the election when the candi-
date calculates the marginal benefit of a deviation in platforms. Finally, a pre-election poll of
expected vote choices is a sufficient statistic for expected vote share (so long as voters respond
to the poll truthfully) — these results indicate that there is no reason to assume without further
restrictions that such a poll also provides a sufficient statistic for the candidates’ probabilities
of winning the election.

A review of the relevant literature is provided in Section 2. The model is defined in Section



3. In Section 4 we present a notion of genericity for infinite dimensional spalbgsessdue

to Hunt, Sauer, and Yorke (1992), and recently generalized by Anderson and Zame (2000). In
Section 5 | present several lemmas and the main result of the paper: generically, a policy that
satisfies the first and second order necessary conditions for maximization expected vote share
does not satisfy the first and second order necessary conditions for maximization of probability
of victory. The final section concludes.

2 Related Work

Aranson, Hinich, and Ordeshook (1974) offer an equivalence result which rests on assump-
tions regarding perturbations of the candidate’s objective functions, perhaps representing fore-
cast errors. Their result, however, requires that these forecast errors are unbiased and, more
importantly, that the errors are uncorrelated with the strategies chosen by the candidates. As
the authors point out, this assumption is untenable, since the value of the objective functions
(even after the errors are taken into account) must fall between zero and one. A second equiv-
alence result obtained by Aransaat,al. requires that the votes received in a two candidate
election be distributed according to a multivariate normal distribution. This obviously requires
that negative vote totals be a positive probability event. Ararestoad, were unable to offer any
equivalence results between expected plurality and probability of victory based on assumptions
regarding the primitives of the model.

Hinich (1977) provides justification for examining expected vote share in place of prob-
ability of victory which depends only on the Central Limit Theorem. Hinich’s equivalence
result states that the two objective functions converged in 2 candidate elections without absten-
tion. This finding was extended by Ledyard (1984) to include 2 candidate elections in which
abstention is allowed.

Patty (2001) examines expected vote share maximization, expected plurality maximization,
and maximization of probability of victory and provides counterexamples to Hinich’s and Led-
yard’s results as well as providing sufficient conditions for best response equivalence in two
candidate elections without abstention. Duggan (2000) examines the question of local equi-
librium equivalence in two candidate elections without abstention. Restricting attention to a
voter behavior rationalizable by an additive utility bias model of random utility maximization,
Duggan proves that a strengthened version of local concavity of voter preferences at a policy
profile is a sufficient condition for local equilibrium equivalence between maximization of ex-
pected vote share and maximization of probability of victory. Patty (2000) provides a related
notion of local equilibrium equivalence and essentially extends Duggan’s findings to general
models of probabilistic voting as well as elections with more than two candidates.

To date, research on the question of equivalence has successfully provided several sufficient
conditions for both best response and local equilibrium equivalence. The literature has been
relatively silent, however, on the question of necessary conditions. Indeed, it is the author’s
impression that most scholars consider the occurrence of best response equivalence to be a rare
event. This intuition has not yet been formalized in the literature. This paper attempts to offer



a rigorous examination of this issue within models of probabilistic voting and single member,
simple plurality elections.

3 The Model

Let V denote a finite set of voters, witlV| = n > 3, and.J denote the set of candidates,
with the cardinality ofJ being denoted as usual bby|. Each candidat¢ € J simultaneously
chooses a point; in some compact policy spac¢é c R¥, with K < oo, possessing nonempty
interior. | denote a/-dimensional vector of policy proposals kyand the space of all such
vectors of policy proposals by = X!”/I. The vector of all announced policies, other than the
policy announced by candidajeis denoted by:_;, and the space of all such vectorsYiy;.

Each voteri chooses one candidate, denoteddgyc J.!' The vector of all choices,
(aq,...,ayn), is denoted by:. The space of all such vectors is denoted/y Each candi-
datej possesses abjective function;; : A — R. Foranya € A andj € J, | denote thevote
total of candidatej by v;(a) = S_~ | 1[a; = j] and letw(a) € {j € J|v;(a) > maxjc; vi(a)}
denote the winning candidate atin the case of a tie, the winner is assumed to be determined
by a fair lottery between all candidatggor which v;(a) = max;c; v;(a). | denote the set of
such candidates by (a). Thus, | am restricting attention to single winner, simple plurality
rule systems with a fair tie-breaking rule.

This paper considers elections with probabilistic voters (see Coughlin (1992) for an ex-
plication and survey of the theory of probabilistic voting). Accordingly, each vioter\N is
characterized by a twice continuously differential@eponse functiarp; : Y — A(J), where
A(J) denotes thé¢J| — 1 dimensional simplex: the set of|-dimensional vectors for which
E].GJ 7/ = landn? > 0 forall j € J. | denote the probability an alternatiyec J receives

voter i's vote, conditional on policy proposal vector by pﬁ(:p). | denote the vector of all
voters’ response functions by

| assume that eagh(x) characterizes an independent multinomial random variaioie,
meaning that, given a policy profile € Y, all voters’ votes are independent. This is stated
formally below.

Assumption 1 (Independence)Conditional on a vector of policy proposals.c Y, the set of
a;(x) are independent random variables, each distributed according(to, respectively, for
alli e N.

| now use the set of response functiops,to define two candidate objective functions,
expected vote share and probability of victory. Given any profile of policy propasals’,
any vector of response functiopsand for any vector of vote choiceswe write Pr{a|p(z)] =
[Licn pi (z) to denote the probability that the vote vectos realized.

Given opponents’ pure strategies;, anexpected vote share maximizing candidate .J

1| do not examine abstention in this paper.



seeks to maximize N
1 .
_ J
Vi) =y 30l

and aprobability of victory maximizing candidatec J seeks to maximize

1560 = X (il € W@l Prlp(o)]).

a€cA

| define an electoral game &s= (J, N, X, p, u), whereu is a.J-dimensional vector of candi-
date objective functions such that € {V;, R;} for each candidatg € .J.2

In words, best response equivalence holds whenever two objective functions prescribe an
identical optimal (pure) strategy regardless of the strategieschosen by the oppoSernts.
equivalence is essentially a decision-theoretic concern, as the strategic effects of other players’
motivations are inconsequential to the player in question. A second, weaker, form of equiv-
alence is equilibrium equivalence. Equilibrium equivalence holds whenever the set of Nash
equilibria under two different objective functions are identical. It is straight-forward to show
that best response equivalence implies equilibrium equivalence, so that equilibrium equiva-
lence is anecessarycondition for best response equivalefic&his paper offers insight into
both of these questions in the case where each voter’s behavior is a twice continuously differ-
entiable function of the policy choices of the candidates by examining the satisfaction of the
necessary first and second order conditions for maximization of the two objectives.

4 Shyness and Finite Shyness

Finite shyness, as defined by Anderson and Zame (2000), provides a rigorous notion of generic-
ity in infinite-dimensional spaceésit is intended to behave in ways similar to measure-theoretic
notions of genericityi(e., a notion of “almost everywhere”) in finite dimensional spaces. The
space of interest in this paper is the space of twice continuously differentiable functions from
a compact set” to the n-fold Cartesian product of/| — 1 dimensional simplices(J)".
This space is infinite-dimensional, leading to our interest in the notion of finite shyness. | now
proceed to define this notion.

For any finite dimensional subspateC X, let A\, denote Lebesgue measure \drand,
analogously, write\g» for Lebesgue measure @&¥'.6

2The candidates are not required to share the same objective: some may maximize expected vote while others
maximize probability of victory.

3Throughout this paper, attention is restricted to pure strategies by the candidates. A discussion of best re-
sponse equivalence in the space of mixed strategies is contained in Chapter 2 of Patty (2000).

4For a more detailed discussion of this, see Aranson, Hinich, and Ordeshook (1974), p. 144-145.

SFinite shyness is an extensions of the notion of shyness, as defined by Hunt, Sauer, and Yorke (1992). Finite
shyness is a stronger version of shyness.

6As noted by Anderson and Zame (2000) (p.13, footnote 11), for any finite dimensionali$fheee exists
a continuous linear isomorphisii : V' — R* for some positive integet. GivenT’, one can definey (A4) =

4



Definition 1 Let () be a topological vector space and Iet be a convex subset @} that
is completely metrizable in the relative topology inducedchby A Borel subsetr C U is
finitely shy in (or relative to)U if there is a finite-dimensional subspate C @ such that
Av(U + a) > 0 for somea € Q and Ay (E + q) = 0 for everyg € Q. An arbitrary subset
F C Qisfinitely shy inU if it is contained in a finitely shy Borel set. K is finitely shy inU,
thenU \ E is referred to adinitely prevalent

A useful fact is that the finite union of finitely shy sets is itself finitely shy.

Before presenting the analysis and results | note that, throughout the paper, the ambient
topological vector space (i.e., the topological vector sgaae the above definitions) is taken
to be the space of twice continuously differentiable functions fiornto (R!/!)", endowed
with the topology ofC? uniform convergencé.This space, which is complete, separable, and
metrizable (Mas-Colell, (1985), p.50), is denoted@ythroughout the paper. The space of
n-dimensional vectors of twice continuously differentiable response functions is denoted by
P(Y), a closed subset @F.

5 Analysis and Results

In this section it is first shown that, for any policy profité in the interior ofY” and any
candidate, the set ofi-dimensional vectors of twice differentiable response functions that lead

to simultaneous satisfaction of the first and second order necessary conditions for maximization
of V; and R; atz* is shy in the set ofi-dimensional vectors of twice differentiable response
functions that satisfy the first and second order necessary conditions for maximizaiipn of

at x*. This then immediately implies (the much weaker result) that the setdifnensional
vectors of twice differentiable response functions that exhibit best response equivalence is shy
in the set of all.-dimensional vectors of twice differentiable response functfons.

The results are stated in what may appear to be a strange fashion. In particular, a profile of
platforms is fixed and the sets of response functions which exhibit equivadétita pointare
examined. This method is motivated by application; typically, the question of equivalence is
dealt with when a modeler seeks to verify that, for example, the equilibrium derived under one
objective function is also an equilibrium under the other objective. Thus, the results provided
here state that, supposing thédte Y satisfies the necessary conditions to be a best response

Ar+(T(A)) for each Borel sed C V. While this derived measure depends on the choice of isomorphism
all measures derived in this way are mutually absolutely continuous, so that for two isomorfhianasI”,
Ars(T(A)) = 0 = Agx(T'(A)) = 0 for any Borel setd C V. We are concerned only with sets of Lebesgue
measure zero, so any choice of isomorphiBis without loss of generality for the purposes of this paper.

"Denoting thei” derivative of a functionf by f¢, the topology ofC™ uniform convergence is the topology
generated by the semimetric

@' (f.9) = gax |sup I*(y) ='Wl

where||z|| = (32, 22)!/? denotes the usual Euclidean metric.
8 thank a referee for clarifying my thinking regarding, and the exposition of, this point.



underV/, itis “generally not the case” that also satisfies the necessary conditions to be a best
response undek.

5.1 Generic Failure of Equivalence

For any electoral game with differentiable response functigrsy candidatg € J, and any
policy profile z € Y, the first derivative of candidatgs expected vote with respect s
policy choice is
Dy, Vi) =Y Daypi(a).
1EN
Define the pivot probability of voter with respect to candidate given a policy profile
x € Y and other voters’ response functigns, as

Sip-i() = Y [H/V—l(a)] Hpjj(x)], (1)

a€D(4;l) J#

whereD(i;j) C A denotes the set of vote vectors in which voiés decisive (or pivotal)

for candidatej. That is,D(i; j) is the set of outcomes in which votés vote for candidate

either created a tie betwegrand some other candidate(s) or broke a tie betwesmd some
other candidate(s). The following result (proved in the appendix) uses the pivot probability to
express the first derivative of a candidate’s probability of victory with respect to her own policy
choice.

Lemma 1 For any electoral game with differentiable response functigreny candidateg €
J, and any policy profile: € Y,

1€EN

For any pointz* € Int(Y), definePy (z*) C P(Y) as the set ofi-dimensional vectors of
twice continuously differentiable response functions such that, fgrall/,

DVj(z*) =Y Dpl(z*) =0
=1

and

D*Vj(z*) = D’pl(x") is negative semidefinite (n.s.d),
=1
wherer{ (z*) denotes the evaluation at of the first derivative of votei's probability of
voting for candidatg with respect to candidatgs policy announcement and whet&p! (z*)
denotes the evaluation at of the matrix of second partial derivatives of voté&r probability
of voting for candidatej with respect to candidatgs policy announcement. Similarly, let

6



Pr(z*) denote the set af-dimensional vectors of twice continuously differentiable response
functions such that, for all € J,

DR;(x") =} _ 8 (p-i(2")) Dp}(a") = 0.

and
D?R;(z*) is negative semidefinite.

Finally, let P, p(z*) denote the intersection &t (z*) and Pr(z*).

Before continuing, it should be noted that, while the definition of the set takes an
argument, this is appropriate for the purposes of this paper in two respects: first, the main
result of the paper is that any pure strategy that satisfies the first and second order conditions
for maximization of expected vote share maximization is extremely unlikely to also satisfy the
first and second order conditions for maximization of probability of victory and, second, the
results do not use any special characteristics‘ajther than the fact that it is in the interior of
y.®

The main result in this section is th#&, z(z*) is finitely shy in P, (z*) for any 2* €
Int(Y). First, several lemmas are proved. The first two lemmas jointly demonstrate that the
set of function profiles irPy, z(z*) such that there exists at least one vatand one candidate
j for which

6] (p—i(x*)) Dp] (x*) # 0
is finitely prevalent in thePy, (z*). This is demonstrated by showing (1) that the set of function
profiles in Py (z*) in which p;(z*) ¢ Int(A(J)) for some: € N is finitely shy in Py (z*),
which implies that the set of function profiles i (z*) such that there exists a voteand a
candidate for which

6 (p-s(27)) = 0
is finitely shy in P,,(z*), and (2) that the set of function profiles iy (z*) such that, for all
voters; and candidates, it is the case that

Dpj(a") =0,
is finitely shy in Py (z*).
Lemma 2 Choose any point* € Int(Y) and define
B(z*) = {p € Py(z*) : 3j € J,i € N such thap(z*) = 0}.

The setB(x*) is finitely shy inPy (z*).

9The analysis would be much more complicated if boundary policy profiles were considered. | conjecture that
the results stated here would still hold, however, so long as the policy space is convex, since any policy on the
boundary that maximizes an objective function must satisfy the first and second order conditions relative to the
interior of the policy space.



Proof: Note that all closed sets are completely metrizable in the relative topology induced

from the topology ofC? uniform convergence o (Y) (Aliprantis and Border (1994), p.73).

It can be shown thaPy (z*) is a closed and convex subset®fY’) and, hence, completely

metrizable in the topology af? uniform convergence oR(Y"). Similarly, it may be verified

that B(z*) is closed and therefore a Borel subset in the topology~ofiniform convergence.
Consider the following function, which is constant with respect’to

p(la) = (o, (1 =) /([J[ = 1),..., (1 = )/ (|J] = 1)),

and leth(-|a) = (p(-|a), ..., p(-|a)) denote ax-dimensional profile of identical response func-
tions. DefineH as the following one dimensional subspace®t’): H = {h(-|a)|a € R}.
Since0 < a < 1implies thath(-|a)) € Py (x*), it follows that Ay (Py (z*)) > 0. We now show
that\g (B(z*) + g) = 0 for anyg € C2. Consider any:, b € R ands, t € B(z*) such that

s+g = h(a)
t+g = h(b).

It must be the case thebh(-|a) = Ds + Dg and Dh(-|b) = Dt + Dg. SinceDh(z|a) =
Dh(x|b) = 0forall z € Y and any real numbetsandb, it follows thatDs(z) = —Dg(z) and

Dt(z) = —Dg(x) forall z € Y, so thatDs = Dt. Therefore, ifs! (z*) = 0 andt (z*) = 0 for

somei € N andj € J, then it must be the case that|a) = g(z*) = h(:|b), which implies

thata = b.1°

Fixing g € C?, it follows that for each paifi, k), withi € N andk € J, there is at most

one real numbes and one functios € B(z*) such that?(z*) = 0 ands + g = h(-|a). There

are at most./|n such pairs for any given € C2. In other words, for any € C?, (B +g) N H
contains at most/|n elements. Since the Lebesgue measure of any finite set is zero, we have
that\y (B + g) = 0, so thatB is finitely shy relative taP, (z*), as was to be shown. |

Lemma 3 Choose any point* € Int(Y) and define
Z(z*) = {p € Py(z*) :Vj € J,Vi € N, Dpl(z*) = 0}.
The setZ (z*) is finitely shy inPy (z*).

Proof: It has already been shown th&{ (z*) is a completely metrizable convex subset of
P(Y). To see thatZ(z*) is a Borel subset in the topology 6f* uniform convergence, note
that 7 is closed.

Choose a functiorf : X — (0, 1) such thatf is twice continuously differentiable and, for

0 particular, ifs?(z*) = /(z*) for j = 1, thena = g} (z*) = b. If s(2*) = tJ(z*) for j # 1, then
a=1-(]J|-1)g}(z*) =b.



allz € X, D, f(x) # 0. Then define

1—9 1—¢>

plel) = (£ 0l = fo) T S

m@@)=:(ﬂl—ﬂmﬂﬁﬂm%l_¢ 1‘¢),

T2 T2
1 1
= |—,...,—],and
P = (i)

h(-l¢) = (p1(0), p2(-10), ps(-).- - ps(-)),

with ¢ € R.

The setH = {h(:|¢)|¢ € R} is a one-dimensional subspace®fY’). Consider any
in the open interval0, 1). By constructionp;(-|¢), p2(:|¢), andps(-) are twice continuously
differentiable response functions. Furthermdsg ) is constant for each candiddtes .J and
all policy profilesz € Y.** From these facts it follows thaty (P (x*)) > 0. It is now shown
that \y(Z(z*) + g) = 0 for anyg € C%. Suppose that, for somge C?, (Z(z*) + g) N H
contains more than one element. Then it must be the case that there exist distinct scalars
a, b € R and distinct vectors of response functions € Z(x*) such that

s+g = h(la),
t+g = h(-|b).

This would imply thatDs(x) = Dh(z|a) — Dg(z) and Dt(z) = Dh(x|a) — Dg(x) for any
x € Y. By definition,s, t € Z(z*) implies thatDs(z*) = Dt(z*) = 0, so that

Dh(x*|a) = Dg(x*) = Dh(x*|b).
In particular, considering the strategy of candidate 1, it must be the case that
Dg,h(z7|a) = Dy, g(x") = Dy, h(2|D).

Where, sincé(z*|-) andg(z*) aren x |.J| matrices, the differentiation denoted by, h(z*|a),
D, h(z*|b), andD,, g(x*) is performed component-wise in each case. Accordingly, this dif-
ferentiation results in the following:

D, h(z*|la) = (aDf(z"),—aDf(x*),0,...,0)and
D, h(z*|b) = (bDf(z"),—bDf(z"),0,...,0),

with D f(z*) # 0. It follows then thatDh(z*|a) = Dh(z*|b) impliesa = b, contradicting the
supposition that: andb are distinct. Therefore, sindg’(z*) + g) N H contains at most one
element, it must be the case that(Z(z*) + ¢g) = 0 for all g € C?. Hence,Z(z*) is finitely
shy relative toPy (z*), as was to be shown. |

Hgpecifically,Vi (z) = n/|J| for all candidateg and all policy profilesr.

9



The next lemma establishes that a finitely prevalent subset of-theensional profiles of
twice continuously response functions for whichmaximizes expected vote share is charac-
terized by all voters having different pivot probabilities for any given candidate in

Before proceeding to formally stating and proving the lemma, it is illustrative to describe
the logic of the proof. The first recognition is that it is sufficient to consider any pair of voters
(say, voters 1 and 2) and any candidate (say, candidate 1) and show that the set of profiles of
response functions that lead to equal pivot probabilities for those two voters for that candidate
is a finitely shy subset oP(z*). The set of profiles of response functions such that, for any
candidate, the pivot probabilities for that candidate for more than one pair of voters are equal
IS a subset of the set of response functions at which at least one pair of voters have equal pivot
probabilities for some candidate. Since the numbers of voters and candidates are each finite
and the union of finitely many finitely shy sets is itself finitely shy, this approach is sufficient
to show that the result holds.

The second fact motivating the proof of the result is that the pivot probability for voter 1
(for example) is a function of all other voters’ behaviorsrat(i.e., p_1(z*)) and not his or
her own behavior (i.ep;(z*)). In addition, this probability is a function only of the value
of all other voters’ response functionsadt This greatly simplifies the problem in the sense
that one can deal only with constant response functions (or, in other words, one can identify
each response function with a unique vectonify/)). Using these facts, the proof essentially
holds the response functions of votést, . .., n constant (after translation by € C?) and
then considers whether (*) restricts the set of,(z*) such that (p_,(z*)) = & (p_s(z*))
for some candidatgto a subspace with empty interior relativeA@.). If this is the case, then
the lemma follows.

Broadly speaking, the proof consists of four steps. The first step, after constructing a sub-
space of constant response functions, is the expression of voter 1's pivot probability for candi-
date 1 as a linear function of voter 2’s response function, holding the response functions of the
othern — 2 voters constant. The logic of this step is that, in most cases (in terms of the other
n — 2 voters’ response functions), any perturbation of voter 2's response function will result in
a different pivot probability for candidate 1. The second step of the proof is demonstrating that
this is indeed the case. The third step of the proof deals with situations in which perturbing
voter 2’s response function will not alter voter 1’s pivot probability. These cases are rare, but
important. This case is dealt with by considering voter 3 and perturbing his or her belavior.
This step is slightly complicated by the fact that thensthe 3 remaining voters’ behaviors are
held fixed. If these: — 3 response functions match up in a very specific way (which can not
be ruled out), then we must go further, considering voters 4,5, and so on. The final step of the
proof is showing that this process need include no more than the smallest strict majority of the
voters. At this point, it is impossible for the response functions of the dgther3)/2 voters?®

2An example of such a situation with three voters and two candidates is when voter 3 votes for candidate 1
with probability 1/2 and candidate two with probability 1/2. In this case, voter 1's pivot probability for either
candidate is 1/2, regardless of voter 2's behavior. If voter 3's behavior is perturbed slightly, then this is no longer
the case. | thank a referee for suggesting this example.

130r,n/2 — 1 voters ifn is even.
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to match up so that perturbing the + 1) /2th voter's“ response function does not affect voter
1's pivot probability for candidate 1.

The proof, while complicated in some ways, has a fairly straightforward logic behind it.
Any voter’s pivot probability for a given candidate is simply a sum of the product of the other
voters’ response functions over a subset of the possible vote profiles (namely, the vote profiles
in which that voter’s vote for the candidate in question is decisive). Lemma 2 allows us to
consider only cases in which all of these response functions are in the strict interior of the
|7|—1 dimensional simplex. This turns out to guarantee that varying one of the voters’ response
functions will generally change this sum of products. The complicated steps involve ensuring
that the special cases where this is not the case are nongeneric.

Lemma 4 For any pointz* € Int(Y'), the set
T(z*) = {p€ Py(a") \ B(z*) : 3i € N,k € N\ {i},j € J,8](p-s(*)) = 0} (p-r(a"))}
is finitely shy relative td, (z*).

Proof: It has been demonstrated previously tiat(z*) is a completely metrizable convex
subset ofP(Y"). To see thaf'(z*) is a Borel subset, note that it is a closed set intersected with
the complement of a Borel set (sinf&x*) is a Borel set).

Leth(-|aq,...,an) = (hi(:|laq), ha(-|lag), ..., hn(law)) = (aq, ..., ap), forag, ..., ap, €
RMI (in other words, each voter’s response function is a constant functiof)ohet O(.J) =
{a e R/ Z'Ji'l o/ = 1} and denote by then(|.J| — 1)-dimensional subset ¢ generated
by h:

H={h(-|ov,..., ) : 0, € O(J);Vi € N}.
Leta = (aq,...,a,). Itis clear that\y (P, (z*)) > 0 sinceh(-|a) € Py (z*) for all a such
thata?! > 0, foralli € N and allj € J.

Leth_i(z*|a_1)—g_1(2*) denote the vector of response functiohg(:|az) — go, h3(-|as) —
93y - -, hn(-|la,) — g2), evaluated at* and similarly forh_o(z*|a_s) — g_2(2*), h_s(x*|a_3) —
g-3(z*), and so forth. Fixy € C* and define

Ay (i, 5, k) = {a € (O(J))" :
0f (h—i(x*la) — g—i(a*)) = 05 (h—j(a*|a—y) — g—;(=*))}.
A, (i, j, k) is the set ofs € (O(J))™ such that
s+g = h(|a)

for somes € T'(z*). Accordingly, if A (A, (i, j, k)) = 0 for arbitraryg € C?,i # j € N, and
k € J, it follows thatT'(z*) is finitely shy in Py (z*).

I now consider voters 1 and 2 and candidate 1 (without loss of generality) and derive voter
1’s pivot probability as a function of voter 2's behaviae(, as), holding the behavior of the
remaining votersi., as, . . ., a,) constant.

140r, then/2 + 1th voter if n is even.
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Giveng € C?, suppose that € Py (z*), with s = h(-|a) — g for somea € O(J)", and that
voter 1 and voter 2 have equal pivot probabilities for candidate 1:

01(ho1(2*la—r) — g-1(2")) = 0y(h-z(2"|a—2) — g-2(2")).

Now express; (h_i(z*|a_1) — g_1(z*)) as a function of., — g, as follows:

01 (hy(a”|a—y) = g1 (%)) = Y (hh(a”|az) — g3(a")) K} (G, b — 9),

jeJ

whereK{fl(j, q) is the probability that voter is pivotal for candidaté:, conditional on voter
[ voting for candidatg’ and then-dimensional profile of response functiop$® Substituting
hi(x*|az) = al, this becomes

0 (hos(2”lar) = g-1(27) = Y (a5 — gy(2™) Ki(j, h — g).

jeJ

Note that voter 2's pivot probability for candidatedl, is not a function of voter 2's behavior,
hy — go. By suppositiong: (h_i(x*|a_1) — g_1(z*)) = d2(h_a(x*|a_s) — g_o(x*)). Therefore,
we need to show that

0y (hos(a*las) — g-2(a™)) = Y (a3 — g3(a")) K} o(j, b — g)- )

jed

holds for a subset aD(J) possessing Lebesgue measure zero.

There are two cases to consider. The first case (Case |) is if there exists two candidates
j.k € J such thatK{,(j,h — g) # K{,(k,h — g). This case holds “most” of the time. The
second case (Case Il) is when, for all pairs of candidates J, we have thaf<{ ,(j, h—g) =
K{,(k,h — g). | deal with the cases in order. Sinég ,(j, h — g) is a function ofas, . . . , a,,
these two cases correspond to different configurations of behavior by the remaining
voters.

Case |:There exist two candidatgsk € .J such thatK| ,(j, h — g) # K{,(k,h — g).

In this case, the set af; that satisfy Equation 2 possess dimension no greaterthan2,
which is strictly less than the dimensionality ©f .J) (which is|J| — 1), implying that this
subset possesses Lebesgue measure z&poin The Cartesian product of this subset and
O(J)"! lies withinO(J)". Since the subset defined by Equation 2 has measure zero, Fubini’s
theorem [Halmos, (1974), Theorem A, p. 147], then implies the set®f.A,(1,2,1) such
that Case | holds, defined as

Ay(1,2,1) ={a € Ay(1,2,1) : Fj,k € J st K{,(j,h — g) # Ki,(k,h— g),

While K7 ,(j, h — g) is conditional on thection of voter 2, the construction dk [, implicitly includes the
response functions of the— 2 voters other than 1 and €., as, . . ., a,,). By hoIdingK,{fl fixed, we are supposing
that thesen — 2 response functions are held fixed. Below, we define versiori§ tfat are conditioned on the
actions of more voterd.€,, voters 3, 4, and so on). The logic of those conditional probabilities is analogous to
that of K| ,(j, h — g).
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possesses Lebesgue measure ze(ih)".

Case Il:For all pairs of candidateg, k € J, K{,(j,h — g) = K{,(k, h — g) holds.

In this second case, voter 2’s behavioe.( a;) does not affect voter 1's pivot probability
for candidate 1% Therefore, | now consider voter 3 and expand Equation 2 to include voter
3's behavior, obtaining the following:

Oy (h_s(zlas) — ga(z*) = > (a} — g(z") D (@} — g} ()KL ,450i, 4% h—g).

jeJ jieJ

whereK1, 4(j,7% h — g) is defined in a manner analogousi@,(j, h — g), above: it is the
probability that voter 1 is pivotal for candidate 1, conditional on voter 2 voting for candidate
4, voter 3 voting for candidatg®, and then-dimensional profiles of response functions- g.

Now consider varyings. If there exists someg, k, 72 € J such that

K11,2,3(jaj37h—g) # K11,2,3(k7j37h—9)7 (3

then the set ofi; for which case (2) holds possesses Lebesgue measure 28(djn To see
this, first note that
K11,2<j7 h — g) - K112(ka h—g)

3

jseJ(aég — g5 () K{ 5505, 5% h—9) = X jscslay —gi (%) K{ o5k, % h — g)
= Zj3eJ<a?’) - 93<x*))[K11,2,3(jaj37 h—g)— K11,2,3(k>j3, h—g)].

Then, supposing that] , 5(1,q,h — g) # K{,3(2,q,h — g) forsomeq € J, K{,(j,h — g) —
Kll,Q(k, h — g) = 0 implies that (leaving thé — g argument implicit for reasons of space)

0 = Y (a) —gs(a*)) K] 051, 5%) — K1,5(2, 7)), 4)

j3ed

SinceK |, 5(1,q,h —g) — K{45(2,q,h — g)] # 0, this implies that (holding., as, a4, . . ., a,
constant) the set af; that solves Equation 4 is of dimensionality no greater han- 2. This
fact plus Fubini's theorem implies that, the set of solution@{d’)" to Equation 4 must possess
dimensionality no greater thai(|J| — 1) — 1, which implies that the Lebesgue measure (in
O(J)™, which is of dimensionality:(|J| — 1) of this set must be zero.

To finish this step of the proof, suppose that Equation 3 does not hold foi, gthy: € J.
The above argument for voter 3 can be applied iteratively, removing (i.e., conditioning upon
the actions of) additional voters one at a time and checking a condition analogous to Equation
3. Specifically, if we remove voters as ordered by their substfighd are considering voter
[ > 3, the analogue to Equation 3 is

Kll,Q ..... l(j7j37”'7jl_17jl7h_g)#Kll,Z ..... l(j?jgw"ajl_lajlah_g) (5)

6similarly, voter 1's behaviorife., a;) does not affect voter 2's pivot probability for candidate 1.
"This choice of order is unnecessary, but convenient.
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for someji~!, ji-1 4t € J.18 |f, at any voter/, Equation 5 holds, then the setafsuch that
Ki,(j,h —g) = K{,(k,h — g) forall j,k € J possesses Lebesgue measure zero(if).
(The process of proving this involves an extended version of the argument derived following
Equation 4, above.)

Now let! = (n+3)/2 (orn/2+2if nis even). In this case, it turns out that Equatianst
be satisfied. To see this, consider the case whésedd®and;j = j2 = ... = ji=! = jl = 1.
In this case, the probability of voter 1 being pivotal for candidate 1, conditional upon voters
2,3,...,(n+3)/2 (i.e, a strict majority of the voters) voting for candidate 1 is 0, as voter 1's
vote choice can not affect the outcome of the election. If, on the other hand, wattss for
(say) candidate 2.e., j' = 2), then voter 1's pivot probability for candidate 1 is positive by
the supposition that no voter’s response function assigns any candidate zero prolabjlity (
h—geT(z*)=h—g¢ B(z*)).

Writing this formally, it is the case that

i _{K>O if j'£1
33%-35 00 otherwise.

For our purposes, we do not need to know the exact value(afhich may depend upon the
value of;").2° Our sole interest im is that it is strictly greater than zero for anfy=£ 1.

I now claim that the set of; such that Equation 5 does not hold must possess Lebesgue
measure zero i)(J). To see this, note that

g -1 - .
Kll,Q,...,lfl(Ll?"'?.]l ! :17h_g) = Z(ag _glj( >>K11,2, ,l(l 1"-717]l>h_g>
jted
I l * . . .
= > (] —gl @)K, (575 h—g)
jte\{1}

(this step follows becausﬁj{f, = 0) and that

,..‘,jl_l,jl=1,l
J_ i T )
K11,2,...,l—1(1>17"-7]l ! :27h_g) = Z(CL{ _gl] ('T ))Kll,z,...7l(1’1"'727]l’h_g)v
jleJ
so that

K112 W= 1(171’-"7jl_1 :17h ) K11,2, Sl (]- L,. "ujl_1:27h_g)

=3[~ o @) ~ (o]~ @D Kl (L1 1 )

jled

18Note that the order of subscripts does not matter: one could, for example, phrase this condition as
K11,2 ,,,,, l(.jajgv"'ajlilajlvh_g)7éK11,2,...,l(j733’"'7jl71ajl7h_g) (6)

for somej?, j3, j' € J. This is because the simple plurality rule considered here is anonymous.
°The case where is even is analogous.
?Itis easily derived though: the actual valuefof ., ..,  for j'~" # 1is 0.5 multiplied by the probability
of all n/2 — 1 remaining voters voting fof' ~! if n is even. Ifn is odd, then it is 0.5 multiplied by the probability
of all (n — 1)/2 remaining voters voting for some candidate other tjfan (including candidate 1). While these

might obviously be very small numbers, they are not zero, by the requirement thatZ B(x*).
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Then, letting

7777777777

,,,,,,,,,,,,

holds only if,

jled

) - A .
Z (a] — g/ (x%)K(5")
Kll’Q ..... l(l,l...,Q,l,h—g)

jtea\{1}

+g/(z) = @)

-----

determined uniquely in Equation 7, the setupkatisfying Equation 7 must possess Lebesgue
measure zero if)(J).?* Thus, the set ofi, . . ., a, such thatk ,(j, h — g) = K{ ,(k,h — g)
possesses Lebesgue measure ze€(ih)".
Letting
Ag(:l? 2,1) = Ag(lv 2,1) \“719(17 2,1),

denote the subset od(1,2,1) in which Case Il holds, it follows that (1,2,1) possesses
Lebesgue measure zero @n(.J)", further implying (once again by Fubini’'s theorem) that
A,(1,2,1) possesses Lebesgue measure ze€(ih)".

To conclude the proof, first note that the Lebesgue measurg @f 2, 1) in O(J)" is less
than or equal to the sum of its Lebesgue measure in Cases | and Il

A (Ag(1,2,1)) < (A (1,2,1)) + A (A, (1,2, 1)).

Thus, the Lebesgue measure4yf(1, 2, 1) in O(J)" must be zero. Finally, note that the choice
of candidates and voters is arbitrary, thus proving the resuldfos, j, k), i, j € N, andk € J.
HenceT'(z*) is finitely shy relative taP, (z*), as was to be shown. |

The final lemma states that, given any poaifte Int(Y'), the set of profiles of response
functionsp € (Py(z*) \ (B(z*) U Z(z*) U T(2*))) that simultaneously satisfy, for each can-
didatek € J, the necessary first and second order conditions for maximization of expected
vote share and the necessary first order conditions for maximization of probability of victory
at z* is finitely shy with respect to the set of profiles of response functions that satisfy, for
each candidaté € J, the necessary first and second order conditions for expected vote share
maximization. This result is used to prove the paper’s main results, which state that the set

21The process described here, more generally, can be thought of as rewiting (z*|a_1) — g_1(z*)) as
a function of a.J| x |J| x ... x |J| “hypermatrix.” Each voter reduces the dimensionality of this hypermatrix.
Hopefully the derivation in terms of sums makes the logic more transparent.
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of profiles of response functions which simultaneously satisfy the necessary first and second
order conditions for maximization of both objective functions is finitely shy with respect to
the set of profiles that satisfy the first and second order conditions under expected vote share
maximization.

Lemma 5 For any pointz* € Int(Y'), the set
Ri(z*) ={pe Py(z")\ (Z(z") UB(z*)UT(z")) : DRj(z*) =0Vj € J}
is finitely shy relative tdP, (z*).

Proof: ThatPy (z*) is a completely metrizable convex subsefjt”) has been demonstrated
previously. It is easily verified tha®1(z*) is a Borel subset (it is the intersection of a Borel set
with a closed set).

Let f(-la) : X x R — (—=1/(2]J]),1/(2]J])) be a twice continuously differentiable func-
tion with f(z}) = 0 and D, f(z%) = 1..2? Define

hi(ylai, B;) = (i f(@1) + 85, /|| = i f(z1) = B3, 1/ ||, - .., 1/1T])
foralli € N. Let
a = (oq,...,ap),

ﬂ - (61w~76n)7
h(laaﬂ> = (hl("a’laﬁl)w"ahn<"anaﬁn>)7

and letH = {h(-|a, ) : DI, o = 0,8 € R"}. This is a2n — 1 dimensional subspace 6f.
Note that, for anyy € C?, any voteri ¢ N, any candidatg € J, and any3 € R", the
following holds for alla, o/ € R™:

0 (g-i(x") + hoi(2*|av, B)) = 6] (g—i(2") + hoi(a*|o, B)),

(where the subscript: denotes the appropriate vector of functions fogadl N\ {i}). In other
words, a fixed value of “pins down” the voters’ pivot probabilities. Similarly, for agyc C2,
any voter; € N, any candidatg € .J, and anyy, the following holds for all3, 5/ € R™:

D(g-i(z") + h-i(z"|a, B)) = D(g-i(") + h—i(z"|ex, 5)),

so that a fixed value af pins down the gradients of voters’ behaviors.
Note that\y (Py (z*)) > 0 sinceh(-|a, 8) € Py(z*)if Y1, a; = 0 and, for alli € N,
B € (=1/(2]|J]),1/2|J]). Itis now shown thah;(R1(z*) + g) = 0 for anyg € C2. To prove

22The notationr} denotes candidate 1's position in policy profife The functionf depends only on candidate
1’s policy position.
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this, it suffices to show that, for arbitrary fixede C? and for all 3 such that (g_;(z*) +
hoi(@*], B8)) # 03(g-2(2*) + hoa(a*]-, 8)),% the set

Sg(B) ={a € R": g+ h(z*|a, 5) € R1(z")}

possesses Lebesgue measure zeRy'in
To see why this is sufficient, fi, 5 and lets = g + h(-|«, 5). Then note that € R1(x*)
implies that there exists a distinct pair of votérs and a candidatg such that

D, s5i(z") > 0 > D, si(x").

Therefore, one can examine voters 1 and 2 and candidate 1 without loss of generality. Second,
note thats € R1(z*) implies that’ (s_;(z*)) > O foralli € N and;j € .J. Finally, 3 such that
81 (s_1(z*)) = d5(s_o(x*)) implies thats € T'(z*) and hence ¢ R1(z*).

Noting thats = g + h(-|c, 8) € R1(2*) implies that

Z 0i(5_i(2*))[Da,gi(z*) + Dy, hi(x*|as, 3i)] = 0,

it follows that, lettingK (v, ) = — > 5 6;(s—i(2%))[ D, gi (x*) + Dy, hi(x*|evi, 5;)]%4,

61(5-1(2*))[Dzy g1(x*) + Doy ha(x*[ s, B1)]
())[D

+63(5-2(2%)) (D, g2(2*) + D, ha(2* |0z, B2)] ke, 5).

Substituting forh; andh.,
61(5-1(2"))[Day g1(z") + an] + 02(5-2(2)) [ Dy, g2(27) + 2] = K(a, ).

A sufficient condition forAy (R1(z*) + g) = 0 is, for any fixeda_, = a_o, there exists a
unique value ofy, such thats,t € R1(z*), s = g + h(aq, &2, ), andt + g = h(ah, a_s, )
jointly imply thatay, = of. In other words, a necessary condition fgf(R1(z*) + g) > 0 is
that there exist some_,, § such that

K(o, f) = 01(s-1(27))[Dey91(2%) + aa] + 02(s2(27)) [Do, g2(27) + 2]
20(s—2(z")) = K(a,f) = d1(s-1(2"))[Day 91(2") + o] = d2(s5-2(2"))[Da, g2(2")]
_ K(a,8) = d1(s-1(2"))[Dauy g1(2") + 1] — 0a(5-2(2"))[Ds, g2(27)]
z = 8)
G2 (s—2(z*))
for more than one value of. However,s € R1(z*) implies thatd,(s_o(z*)) > 0, so thatz
is uniquely determined by Equation 8. Sinee, and 3 are arbitrary in Equation 8 (except
that 3 must, of course, be such thatZ T'(z*)), it must be the case thag; (R1(z*) +g) =0
because the dimensionality of the set of solutions to Equation 8 must be no great&t than
(implying that its2n — 1 dimensional Lebesgue measure is zero). Thigz*) is finitely shy
relative toPy (z*), as was to be shown. |

*

— 0
— 0

23Recall that specifying the vectgris sufficient to generate the the pivot probabilities for all votezsN and
all candidatej € J, even witha left unspecified.
24Note thatK («a, 3) is constant with respect t@, anda.

17



I now prove the following theorem, which states that a policy praffléhat simultaneously
satisfies each candidate’s first and second order conditions for maximization of expected vote
share generically (in terms of the voters’ response functions) does not do so for each candidate’s
probability of victory as well.

Theorem 1 For any pointz* € Int(Y'), the setPy (z*, J) is finitely shy inPy (z*).

Proof: Note thatPy z(z*, J) C R1(z*) U B(z*) U Z(x*). By Lemma 2,B(x*) is finitely shy
in Py(z*). By Lemma 3,Z(z*) is finitely shy in P, (2*). By Lemma 5,R1(z*) is finitely
shy in Py (x*). Thus, Py r(z*, J) is the subset of a finite union of sets that are finitely shy in
Py (x*, J) and hence finitely shy i#y (z*, J) as well. |

I now state the main result, which states that a policy profil¢hat satisfies the first and
second order conditions for maximization of expected vote share for any cangidateer-
ically does not do so for that candidate’s probability of victory. This result is stronger than
Theorem 1 in that the other candidates’ objectives are left arbitrary.

Before presenting the main result, define the following sets for all candigatesand alll
interior policiesz* € Int(Y):®

(z*) = {pe€ P(Y):DV;(z") = 0andD*V;(z*) is n.s.d}
(") = {p€ P(Y):DR;(z*) = 0andD*R;(z*) is n.s.d}
() = Pj(a*)n Py(z")
Bi(z*) = {pe Py(z*):3j € J,ie N suchthap!(z*) =0}
(%)
(%)
(%)

*

)

= {pe Py(z"): VzENDp]( ) =0}

= {pePv(@)\ B(a"): 3i # k€ N6 (p-i(a")) = 6](p-x(2))}

= {pe @)\ (Z(z")UB(")UT(z%)) : DRj(2") =0}

Note that, for any; € J, the proofs of Lemmas 2, 3, 4, and 5 can be applied to prove that
Bi(z*), Z(x*), T’ (x*), and R17(z*) are each finitely shy i) (z*). Thus, the following
result is stated without proof, as it is a mirror of the proof of Theorem 1.

Theorem 2 For anyj € J, z* € Int(Y), P}, () is finitely shy with respect t&/ (™).

Theorem 2 states that, when considering an arbitrary profile of response functions and a
vector of opponents’ policies under which an interior policysatisfies the necessary condi-
tions for maximization of candidatgs expected vote share, it is generally not the case that
the first and second order conditions for maximization of the candidate’s probability of vic-
tory will be satisfied atz* as well. One conclusion to be drawn is that, in general, the best

%1t might be useful to note thaPy (z*) = N Pl (x*), Pr(z*) = NjesPh(a*), Prr(z*) =
ijL]P‘J/v7R(.'If*), B(z*) = NjesBi(z*), Z(z*) = NjesZo(z*), T(xz*) = NjesT7(x*), and R1(z*) =
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response correspondences generated by maximization of probability of victory and maximiza-
tion of expected vote share maximization will differ. A second conclusion to be drawn is that
the genericity found in Theorem 1 does not depend on the assumption that all candidates share
the same objective. In other wordegardless of what the other candidates choose, platforms
satisfying the first and second order conditions for maximization of one objective generically
do not satisfy the first and second order conditions for the other. Thus, the results do not depend
on the assumption that the candidates all share the same objective function.

6 Conclusions

In this paper | have shown that satisfaction of the first and second order conditions for maxi-
mization of a candidate’s expected vote share generically implies the violation of the first and
second order conditions for maximization of that candidate’s probability of victory. Making
the point another way, the results presented in this paper demonstrate that the predictions of
game theoretic models of electoral competition with probabilistic voters will almost always
depend upon the assumed functional form of politicians’ objectives. Furthermore, this is true
for two commonly used versions of “office motivation.”

The paper’s results hold for any policy on the interior of the policy space as long as voters’
behaviors are only restricted to be twice continuously differentiable functions of the policy
profile chosen by the candidates. An important implication of this result is that best response
equivalence between these two objectives is “almost never” satisfied. This result is in accor-
dance with the tenor of the results of Aranson, Hinich, and Ordeshook (1974), which also
show that equivalence between maximization of vote share and maximization of probability of
victory is a rare event, though in a different framework.

The importance of these results lies in the research topics which remain open due to the
frequent failure of equivalence to hold. In particular, what are the properties of electoral com-
petition under different objective functions? Are equilibrium outcomes under one objective
function more representative than under another? What is the relative “punishment” (in terms
of decreased chances of victory) of candidates who seek to maximize vote share under different
electoral rules?

There are several questions regarding candidates objective functions which remain open.
Perhaps the most relevant of these questions is what are the effects of different electoral in-
stitutions on equivalence between candidate objective functions? For example, we have not
examined the properties of proportional representation, multiple winners, multiple ballot sys-
tems (e.g., simple majority rule systems with runoffs or party based systems with primaries),
or different scoring rules such as approval voting and the Borda count.

More immediate extensions of the model include the following. It may be of interest to
restrict attention to voter response functions which are symmetric. If v@essesses a sym-
metric response, then if 2 or more candidates choose the same policy; votes for each
such candidate with equal probability (this is a property of logit and probit response functions
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in a world of policy-motivated voters, for exampk)Also, | do not examine at least one other
plausible objective function: maximization of expected margin of victory. Aranson, Hinich,
and Ordeshook (1974), Hinich (1977), Ledyard (1984), and Patty (2001) each examine this
objective function, but primarily in the context of 2 candidate contests. Finally, the question of
abstention has not been dealt with in this paper. It is conjectured that allowing for abstention
will only strengthen the tenor of the results obtained in this p&per.
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A Proof of Lemma 1

Lemma 1 For any electoral game with differentiable response functigreny candidatg <
J, and any policy profile: € Y/,

= 6 (p=i(x)) Dy, pl ().

€N

Proof:

Ri(z) = Z 1l € W(a)] Prla|p(x)]

- > @ [ @)

acA:leW (a)

Dy Ri(z) = Z [ |Z[Hpj ] i ( )]

acA:leW (a i=1 Lj#i
J 1 N
=01 I v ol | ) )
k=1 | a€ AW (a),|W (a)|=k Li=1 j#i

[Hp ] aPi )” ©)
| a€ A:leW (a),|W (a)|=k J#i
[I7@

| a€AleW (a),|W (a)|=k,a;=l []7’51
Dy, pi( )” ' (10)

D SR | G
(a)|=k,a;#l
For any voteri € N and any vector of policy proposalse Y, Zlepﬁ(m) = 1, so that,

| =

M= 1=

M= IM-

| =

Ilpz )

el
I
=
-
Il
.

aCA:lEW (a),|W J#i
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for any candidatg € .J, 3"/, D,pl(z) = 0. Rewriting Equation 10:

D, R;(z) XJ:% fj > [Hp] ] =y ()

k=1 i=1 |aeD(i;l):|W(a)|=k Lj#i

N 5 [Hp ] A
(a) | =k,a:=1

a@D(is))AEW (a),|W i

[I» (50)] Dyypi(2) | | - (11)

+ [
a€A:leW (a),|W (a)|=k,a; £l Lj#i

For any voteri, any candidatg, and any vote vectar € A, a; # j implies thata ¢ D(i; 7).
Thus, it is possible to combine the second and third inner sums in Equation 11 and obtain

D, R;i(z) i% i > [Hp ] ()

k=1 i=1 | a€D(i;l):|W (a)|=k Lj#i

2 [H P?j(x)] Dypii(x) | | - (12)

a@D(isj)AEW (a),|W (a)|=k Li#i

+

For any voteri € N and candidatg € J, let N'D(i;j) € A_; denote the set of vectors of
votes other thaw's in which j € W (A) andi can not be pivotal foy. That is, regardless ok

vote, W (a) remains the same (and includgs Formally,

ND(Z,]) = {Cl_i S A_i ] € W(a,-;a_,-)Vai S J}

Rewriting Equation 12,

D, R;(z) XJ:% i > [Hp] ] wli()

k=1 =1 | a€D(i51):|W (a)|=k Lj#i
J
o [Z Hp;-”(as)] Dmp;”(x)] S )
a—; EN'D(i;5):|W (a)|=k Lm=1 Lj#i

SinceZ;;:1 D;p*(x) = 0foranyi € N andx € Y, the second inner sum in Equation 13

vanishes, leaving

D, Ri(z) = i% i > [H ] ()

k=1 i=1 | a€D(3l);|W(a)|=k Lj#i

22



Then, summing over the cardinality Bf (a), we obtain

W [Hp ] o lh(x )] (14)

DIle(x) = Z |: Z

=1 | a€D(3;l)
Finally, using Equation 1 and substitutingp_;(z)) into Equation 14, we obtain
Dlel Z(s] J l“zpz( )
as was to be shown. |
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