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Abstract

Frauds can be explained not only in terms of individual willingness to cheat, but

may also be driven by opportunities to behave dishonestly. The audit policy should

therefore be di®erent for di®erent categories of agents.

This paper focuses on the optimal audit policy when there are two categories of

agents and shows that the auditor adopts di®erent policies depending on its budget.

When resources are quite limited, the auditor sets identical audit probabilities for

both types. On the other hand, in most of the cases, the authority should ¯rst

ensure that people with lower opportunities choose not to commit an o®ence.
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1 Introduction

A major concern in various ¯elds of activity is the ¯ght against fraud. This is obviously an

important issue for society when it is related to major illegal activities like drug dealing,

smuggling or other organised criminal activities. However, it is also a major concern

for the tax authority to ¯ght against tax evasion and the "underground economy", for

insurance companies to identify false claims, for environmental organisations to prevent

pollution, or for commercial businesses to protect transactions against internet frauds.

Estimating the amount of fraud is impossible, given the nature of the activities involved.

However there is a common view that cheating is a pervasive phenomenon in many ¯elds of

activities.1 In the insurance market for example, estimating the exact ¯gure of fraudulent

claims2 is impossible, but Weisberg and Derrig (1991) have found that, in automobile

bodily injuries, the level of suspected fraud was about 10%; and according to Mooney

and Salvatore (1990), 13% of automobile insurance claims in Florida are fraudulent.3 The

main obstacle for combating fraud seems to be the high cost attached to the activity of

auditing and monitoring and the fact that only limited resources can be devoted to deter

cheaters. This usually implies that the rate of detection is very low. Evidence for tax

evasion suggests that, in the US in 1995, only 1:7% of all individuals tax returns were

audited.4

Cheating is costly for the o®ender. There is the cost of punishment, borne by the

1The National Audit O±ce estimates that H.M. Customs & Excise are losing more that $7bn a year
to fraud on indirect taxes such as VAT and tobacco duty. In 2001, 2770m of smuggled cigarettes were
seized but it is thought this accounts for just 15% of the actual smuggling.

2Fradulent claims can be of di®erent natures and include false or delibarate claims (claims for a loss
that never occured) or build-up (claiming higher damages than the actual loss, often in order to obtain
a payment that covers the contractual excess).

3In the US, the National Insurance Crime Bureau estimates that the annual cost of insurance fraud
between $20 and $30 billion, while fraud in health insurance is estimated to be larger than $50 billion
according to the National Health Care Association.

4See Andreoni et al. (1998).
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o®ender in case of detection, but also a cost intrinsic in the activity of committing a given

fraud, in that the o®ender usually needs to arrange his a®airs in a particular way. In the

case of insurance fraud, for example, the cheater has to provide false statements and proofs

for his/her fraudulent claim, which could be costly. In general this intrinsic cost depends

on the type of fraud. Moreover, for a given type of fraud, the cost will also depend on the

opportunities individuals have to cheat: some individuals may ¯nd it easier to commit a

fraud, thanks to their occupation or other personal characteristics. In case of tax evasion,

for example, hiding one's income is certainly more di±cult for a university lecturer than

for a self-employed. For other types of frauds, like internet frauds or industrial pollution,

di®erent technologies involving di®erent costs attached to the activity of defrauding may

exist.

We can think of di®erent opportunities to commit an o®ence in terms of the di®erent

costs that will be incurred: for a given fraud, the greater the opportunity to cheat, the

lower the cost incurred in doing so. Individuals with greater opportunities to commit an

o®ence will thus more easily engage in fraudulent or criminal behaviour.5 Examples cover

a whole range of possible situations: insurance fraud, tax evasion, pollution, or any other

type of criminal activities.

The monitoring or auditing strategy to deter cheaters should therefore be designed

accordingly. Evidence suggests that this is actually the tendency. For tax evasion the

audit policy di®ers across categories of tax payers: di®erent investigation units within

the revenue departments are devoted to small and large businesses. For example, among

5According to a survey by the of the U.S. IRS (Taxpayer Compliance Measurement Program, 1983),
tax compliance is on average 87.2% of net income, but di®ers a lot across sources of income (93.9% for
wages - more di±cult to hide as the employer pays taxes or national insurance / pension contributions
related to it, but only 47.0% for small business or 18% for farmers). [See also Macho-Stadler and Perez-
Castrillo (1997)].
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smaller businesses some are more likely to receive an audit: in particular restaurants,

take-aways, pubs, building trades, care homes and hotels are more targeted by the tax

inspectors. For large business units, auditing e®orts are concentrated in more complex

businesses such as businesses with related overseas companies and pharmaceuticals. For

insurance fraud, insurers appoint experts only when they consider that there are more

opportunities to fraud.6

Our objective is to analyse a situation in which individuals have di®erent opportunities

to commit a fraud, where we model these opportunities in terms of costs incurred to

defraud. We focus on costs intrinsic in the activity of cheating. Our view is that there

may exist di®erent technologies to commit a given fraud, involving di®erent costs. In a

context in which individuals incur di®erent monetary ¯xed costs, we analyse the problem

of setting the optimal audit policy for an anti-fraud authority in order to see how the

probability of audit should di®er accross types. To make this issue relevant, we consider

the case of costly audits and assume that the enforcement agency is endowed with limited

resources. We show that the optimal audit policy depends on the available budget. If

the budget is too low, the anti-fraud authority should not try to distinguish between the

two types of agents, but should set equal probabilities of audit for both types. Above a

certain threshold, it is optimal to ¯rst ensure that individuals with lower opportunities to

evade are fully deterred from cheating and devote the rest of the resources to the others.

This is because individuals who have to incur higher costs for cheating are more easily

deterred from committing a fraud and hence auditing is more e®ective for this group of

cheaters. If the budget is not large enough such a policy implies that those individuals

6See Brockett, Xia and Derrig (1998) for an audit algorithm about automobile bodily injury claims.
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with greater opportunities to commit a fraud face a lower probability of being detected.

The issue of the consequences of di®erent opportunities to cheat on the optimal audit

policy does not seem to be fully addressed in the wide literature on tax evasion or insur-

ance. Two papers can however be closely related to ours. Scotchmer (1987) analyses the

optimal audit policy for a tax authority facing two classes of agents, where classes are

de¯ned with respect to the distributions of income across individuals. Our approach is

quite di®erent in that we address the issue of classes of agents who di®er with respect to

their opportunities to defraud, and we do not consider individuals with di®erent income

and asymmetric information (adverse selection) between individuals and the authorities.

In our model individuals with the same income choose di®erent levels of o®ence, once

they face a di®erent intrinsic cost. This distinguishes our approach from the literature on

optimal enforcement policy.

More recently and more closely related to our paper, Macho-Stadler and P¶erez-Castrillo

(1997) analyse the optimal audit policy with heterogeneous taxpayers, where taxpayers

di®er in the income source and have either easy-to-hide or hard-to-hide income. They

obtain the standard result that, in each class, only individuals who reported an income

below a given threshold are audited. More interestingly, they also show that hard-to-hide

sources of income should be intensively monitored. Once again, the authors consider

asymmetric information between the taxpayers and the Internal Revenue Services and

base their approach on signalling problems in that the IRS can base its audit policy on

the self-reported income. We assume that the enforcement agency can only base its policy

on the type of the agent but does not receive any additional signal about the potential

fraud. Our ¯ndings are nevertheless similar to theirs in that, when the budget is very

limited, resources are allocated to deter fraud from the group of individuals who incur a
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higher cost of defrauding.

The paper is organised as follows: Section 2 describes the general framework. In section

3; we analyse the agents' behaviour and show that agents with lower opportunities to cheat

are deterred more easily from committing an o®ence. Section 4 characterizes the optimal

audit policy under a limited budget. Section 5 extends the analysis to two heterogenous

groups of agents, both of them consisting of the two types of individuals, but in di®erent

proportions. Section 6 concludes.

2 The Framework

In this section, we present the features of the basic model. In particular, we consider the

interactions between a legal authority (or auditors) and agents who have the opportunity

to commit an illegal action (o®ence).

2.1 Agents

The individuals are divided in two categories, N and C: The size of the whole population

is, without loss of generality, normalised to 1; and the proportions of type N and type

C individuals are ¸ and 1 ¡ ¸ respectively. Our objective in this paper is to isolate the

impact of the e®ect of di®erent opportunities to cheat (that is, di®erent intrinsic costs) on

the agents' behaviour. Therefore, we do not want income or attitude towards risk (risk

aversion) to play any role and thus assume that both types of individuals have the same

gross income Y and the same Von Neumann - Morgenstern utility function u: For the sake

of simplicity and to eliminate all income e®ects, we assume that the coe±cient of absolute

risk aversion is constant and equal to a, so that the utility function is u (y) = ¡e¡ay. Since
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we assume constant absolute risk aversion, income does not matter and, without loss of

generality, we can normalise it to Y = 0.

The agents have an opportunity to commit an o®ence and derive a bene¯t B from the

o®ence. B can take any positive value and is a strategic variable chosen by the agent. The

authority cannot directly observe whether an o®ence has been committed and therefore

needs to investigate. If an agent is being investigated and caught, the agent has to pay

a ¯ne proportional to the monetary value of the o®ence, (1 +F )B, where F > 0: The

agent thus pays back the bene¯t of the o®ence (B) plus a ¯ne FB, so that his net income

in case of detection is ¡FB:

The two types of individuals di®er only in their opportunity to commit a given o®ence.

Type C individuals incur a ¯xed monetary cost c > 0, if they decide to commit an o®ence.

Type N individuals don't face this monetary cost.

Internet fraud is a possible example of such situations. The o®ender can cheat the

internet users in a variety of ways. In general the scam consists of setting a web page

and o®ering certain services which are never delivered. Examples could be bidding for

items which will never be delivered, or falsely promising credit cards to people with bad

credit histories on payment of up-front fees or making requests for up-front fees to claim

winnings that will never be awarded. The technology required to be a fraudulent promoter

di®ers, in that in some cases the technology is more complex or may involve more complex

skills than in others. For these scams the cheater has to incur higher costs for defrauding.

Another example could be claiming bene¯ts to which you are not entitled to. Frauds

commited by income support (IS) and jobseekers allowance (JSA) claimants account for

around 57% of total losses for the Bene¯ts Agency in the UK. A report by the Analyti-
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cal Services Directorate at the Department of Work and Pensions estimates that in the

period April 2000 - March 2001, $573m were overpaid for IS fraud and $201m for JSA

fraud.7 The o®ender can either submit a false claim for income support or for jobseekers

allowance. In the case of jobseekers allowance the o®ender has also to sign on at a job

centre and frequently visit it. Moreover, if the person involved in the fraud is already

working, this fraud requires the collusion of the employer, who does not include the em-

ployee in his ¯nancial accounts. Hence cheating the Bene¯ts Agency may imply di®erent

costs, depending on the "technology" adopted: claiming for jobseekers allowance may

involve a higher cost relative to claiming for income support. The enforcement agency

can distinguish between the two "technologies" by looking at the type of claim.

2.2 Law Enforcement Agency

In the line of Cremer et al. (1990) who make the distinction between the tax authorities

(government who sets the tax rate t and the ¯ne rate F ) and the tax administration (tax

inspectors who set the probability of detection), we assume that the penalty rate F is set

by a di®erent authority (e.g. the government) and focus on the role of the law enforcement

agency.

The law enforcement agency (police, tax inspectors, insurance auditors, ...) is endowed

with a limited budget to investigate. The agency perfectly knows or can costlessly observe

the type of an agent (N or C), but cannot observe whether an individual has cheated or

not without investigating. Performing an audit or an investigation is costly and we assume

that the budget of the enforcement agency is su±ciently low so that it can only audit a

proportion n < 1 of the population. If an investigation takes place, it is successful and

7The report is available at http://www.dwp.gov.uk/publications/dwp/2002/fraud-error.
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the enforcement agency discovers whether an individual has cheated or not, and, when

relevant, observes the actual value of B:8 If an individual is caught, the enforcement

agency imposes a ¯ne proportional to the damage: the individual has then to pay back

(F + 1)B. The ¯ne rate F is exogenous and, for simplicity, we assume that F > 1:9

The enforcement agency is able to distinguish type N from type C agents and can

therefore set two di®erent probabilities of audits, one for each class of individuals. The

objective of the enforcement agency is therefore to set the probabilities pN and pC in

order to minimise the expected monetary value of the o®ences, given the available budget

(or the proportion of the population that can be audited) n. An important debate in the

tax evasion literature is the choice of the enforcement agency's objective function. The

question is usually whether the authority should incorporate the ¯nes collected in her

objective function or not. In most of the models on optimal enforcement for tax evasion,

it is assumed that the objective of the enforcement agency is to maximise net revenue.

In line with Greenberg (1984), we assume that the objective function of the anti-fraud

authority is to minimise the level of committed frauds. However, we could integrate the

expected amount of ¯nes into the objective function without qualitatively a®ecting our

results.

2.3 Timing of the Game

In line with most of the economic literature, we assume that the enforcement agency

can perfectly commit to an audit policy before the agents choose their strategy. We

8This assumption is not important and we could have considered an imperfect audit. In our situation,
a probability of audit (and detection) of p is equivalent to the case in which individuals are audited with
probability pA and the audit is successful with probability pS ; where p = pApS.

9This is a purely technical assumption. Our main result remains strictly identical for 0 < F < 1:
However the analysis is more complicated and we made the choice to present here the simplest possible
version of the model. Details are available from the authors upon request.
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are therefore looking for an ex ante optimal policy. As pointed out by Picard (1996),

the outcome of interactions between the agents (potential cheaters) and the authority

(auditors) critically depends on whether the authority can credibly pre-commit or not

to her auditing strategy:10 "in a situation where fraud is pervasive, it is essential for

the companies to credibly announce that a tough monitoring policy will be enforced. (...)

However, since monitoring is costly to the insurer, what is desirable ex ante may be

suboptimal ex post and a commitment to subject claims to close scrutiny may not be

credible." Even though some papers have analysed situations in which the tax authority

or the insurers cannot pre-commit and thus choose their optimal audit policy given the

agents' signals,11 this is not themost common case. Most of the existing literature assumes

that the authority can announce and credibly pre-commit to an audit strategy before the

agents make their report (or claim). This could be seen as a short cut for reputation: the

enforcement agency will always implement its policy even though it might not be optimal

ex post in order to deter o®ending individuals in the forthcoming periods. We do not want

to try to model these dynamic interactions here and take the pre-commitment hypothesis

for granted.

Moreover, in contrast with the standard literature where the issue of pre-commitment

determines whether you consider a screening or a signalling game, we consider the case of a

hidden action (moral hazard) which is neither veri¯able (i.e. contractible) nor observable,

directly or indirectly. Assuming that the agency cannot pre-commit on a given audit policy

would therefore lead to a game where the agents and the enforcement agency choose their

10Similarly, Reinganum and Wilde (1985, 1986) analyse the commitment and no-commitment equilib-
rium audit policies in the context of tax evasion.

11See for example Picard (1996) for the insurance case, and Graetz et al. (1986) or Hindrinks (1999)
for tax evasion.
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strategies simultaneously (amount of fraud and audit policy respectively). In this case,

there would never exist an equilibrium in which at least one type of agent does not cheat.

The game we analyse is thus the following:

1. The enforcement agency allocates the investigation budget n between the two types

of individuals, that is, pre-commits on the probabilities of investigation pN and pC :

2. Each individual (i = N;C) decides whether to commit an o®ence (Bi > 0) or not

(Bi = 0). If he decides to o®end, he chooses the level of bene¯t (and damage) Bi:

3. The investigation takes place according to the policy set in the ¯rst stage.

3 Agents' Behavior

We now analyse the agents' behaviour when they face a probability of audit p (in which

case they are caught and ¯ned at rate F > 1):

3.1 Type N Agents (Zero Cost)

When the agent N decides the level of fraud, BN ; he maximises his expected utility

UN(B) = (1¡ p)u (B) + pu (¡FB) = ¡ (1¡ p) e¡aB ¡ peaFB

Lemma 1 A type N agent commits an o®ence as long as the probability of being audited

is less than 1
1+F , and, when caught with probability p, this level of fraud is B¤N(p) = eB(p),
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where:

eB(p) = 1
a (1 +F )

ln
µ
1¡ p
pF

¶
.

Proof. The objective function is strictly concave, since u is strictly concave. The

¯rst-order condition is then:

dUN
dB

= (1 ¡ p)ae¡aB ¡ paFeaFB · 0, with equality if B > 0.

If the amount of fraud is strictly positive, this simpli¯es to

B = eB(p) = 1
a(F + 1)

ln
µ
1¡ p
pF

¶
,

and this remains valid as long as eB(p) > 0; that is as long as:

dUN
dB

¯̄
¯̄
B=0

= a (1 ¡ p (1 + F )) > 0.

This easily leads to the result.

Notice that this function eB(p) is strictly decreasing in p and strictly convex for any

p · 1
1+F .

3.2 Type C Agents (Positive Cost)

When a type C agent decides whether to commit an illegal action, and chooses the amount

of fraud (private bene¯t, B), he compares the utility he can get if he does not o®end, that

is u (0) = ¡1, with the expected utility he gets if the bene¯t derived from the o®ence is
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B > 0, that is:

UC(B) = (1¡ p)u (B ¡ c) + pu (¡FB ¡ c) = e¡acUN(B).

Under our CARA assumption, if a type C agent decides to o®end, the level of the o®ence

is identical to that of a type N agent facing the same probability of audit, that is: if

B¤C (p) > 0 ; then B¤C (p) = B¤N (p) = eB (p) . The only di®erence is that it is now more

costly to engage in a fraud and the probability of detection above which this agent stops

cheating is lower than for a type N agent. A type C agent o®ends and chooses B¤N(p) if

and only if:12

e¡acUN(B¤N(p)) > ¡1 , ¡UN(B¤N(p)) < eac.

As the level of o®ence is a strictly decreasing function in p, UN(B¤N(p)) is a strictly

decreasing function of p: For any cost c; it thus exists a unique probability pC(c) such

that UN(B¤N(pC(c))) = ¡eac and this probability is a strictly decreasing function of the

cost of evasion c, such that pC(0) = 1
1+F and lim

c!1
pC(c) = 0: The type C agent o®ends only

when the probability of audit is lower than this threshold. Type C agents can therefore

be characterized by this threshold pC rather than by the monetary cost of illegal actions.

Lemma 2 For any cost c > 0; there exists a critical value pC (c) < 1
1+F ; above which a

type C individual decides not to o®end. For any probability of detection p lower than this

threshold, this agent chooses B¤N(p) = eB(p) :

The results of lemma 1 and 2 are summarized in ¯gure 1.

12Here we assume that, when the agent is indi®erent between B = 0 and B = E¤
N (p) > 0; he chooses

not to o®end. This assumption does not modify the analysis.
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Probability of

Audit (p)

Benefit (B)

F+1
1

Cp

Type N agents

Type C agents

Figure 1: Level of the O®ence Committed by Type N and Type C Agents

4 Optimal Audit Policy

Let us now consider the optimal investigation policy. The objective of the enforcement

agency is to minimise the expected level of o®ence subject to its budget constraint. This

minimisation program writes as:

min
(pN ;pC)

EB (pN ; pC) = ¸B¤N (pN) + (1¡ ¸)B¤C (pC)

s:t: : pN =
nN
¸ ; pC =

nC
1 ¡¸ and nN + nC · n

If the available budget is su±ciently large
¡
n ¸ n´ ¸

F+1 + (1¡ ¸) pC
¢
, the enforce-

ment agency can set probabilities of audit such that both types of agent choose not to

o®end and this is obviously the optimal situation. However, this case is not interesting as

it implies that resources are not scarce.
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Let us now suppose that resources are limited. It is now no longer possible to deter

all individuals and the budget constraint will therefore be binding at the optimum. The

agency's minimisation program can therefore be rewritten:

min
p2[0;min(1; n1¡¸)]

EB (p) = ¸B¤N(p) + (1 ¡ ¸)B¤C
µ
n¡ ¸p
1¡ ¸

¶

Solving this programme leads to the following proposition, the results of which are

summarised in ¯gure 2:

Proposition 3 For any probability 0 < pC <
1
F+1 and any ¯ne rate F > 1 ; there exists

a threshold n¤; with (1¡ ¸) pC < n¤ · pC ; such that:

² If the available budget is too low (n· n¤) ; the enforcement agency sets equal prob-

abilities for both types of agents, p¤C = p¤N = n : The share of the budget allocated to

a speci¯c type of agents is thus equal to the relative size of this group (i:e: n¤N = ¸n

and n¤C = (1¡ ¸) n):

² If the available budget is su±ciently large (n¤ · n · n) ; the enforcement agency ¯rst

ensures that individuals with lower opportunities (type C) do not o®end (p¤C = pC)

and allocates the remaining share of the budget for type N agents.

Proof. See Appendix A.

The intuition of these results is as follows. If the available budget is too small (n ·

(1 ¡ ¸)pC , below line ¢1 in ¯gure 2), it is not possible to set a probability of audit equal

to pC for type C agents, who will therefore commit an o®ence whatever the allocation of

the budget (i.e. probabilities of audit) decided by the enforcement agency. In this case

both types will always engage in fraud. In deciding how to allocate the budget between
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Figure 2: Optimal Audit Policy

the two types, the enforcement agency compares the marginal bene¯t of increasing the

probability of detection for one type, e.g. type N individuals, (that is, the decrease in

the expected value of the o®ence committed by these agents) and the marginal cost of

such a change (that is, the increase in the expected o®ence by type C agents). For a

given budget allocation (nN ; nC), probabilities are inversely related to the size of the

relevant group
¡
pN = nN

¸ and pC = nC
1¡¸

¢
and the enforcement agency's objective function

(expected o®ence) is proportional to the size of the group (EB = ¸BN + (1 ¡ ¸)BC) : For

a marginal change of the probability of detection pN ;marginal bene¯t equals marginal cost

when the probabilities are identical, that is, when pN = pC :This is because both types

will choose the same amount of fraud once they face the same probabilty of detection.

When the available budget is large enough (pC < n · n, between lines ¢4 and ¢5),

setting equal probabilities is no longer optimal as this would imply pC > pC : By doing

this, the enforcement agency would devote more resources than necessary to ensure that

type C individuals do not commit any o®ence. It is then optimal to reduce the share of
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the budget devoted to type C agents to pC = pC and reallocate it to increase the share

devoted to type N agents.

Finally, for intermediate values of the budget ((1¡ ¸)pC < n · pC, between lines

¢1 and ¢4), the authority has to compare these two policies. Switching from equal

probabilities to a policy in which the enforcement agency ¯rst tackles type C individuals

and fully deters them from committing an o®ence implies to increase the audit probability

for type C individuals. This has two opposite e®ects: on the one hand, increasing the

probability of audit for type C from pC = n to pC = p¡C has a negative impact, in that it

increases the expected o®ence by type N individuals. This negative e®ect is larger when

the budget is more limited (lower n) and tends to 0 when n is closer to pC: On the other

hand, by setting pC = pC in order to prevent type C from o®ending (that is moving from

pC = p¡C to pC = pC ) the enforcement authority bene¯ts from the discontinuity in the

o®ending pattern of type C agents (they "jump" down to zero fraud).

If the budget is low (n close to (1¡ ¸) pC, line ¢2); the negative e®ect is very large and

overweighs the positive impact of the discontinuity. Switching from equal probabilities

(point A) to focusing on type C individuals (point B) requires to lower the probability of

detection for type N individuals by a substantial amount. The increase in the expected

o®ence by type N individuals will not be compensated by the jump to zero fraud by the

C types and the enforcement agency therefore chooses to set equal probabilities.

However, if the budget is large enough (n close to pC, line ¢3), the decrease in the

audit probability for type N individuals required to focus on type C individuals is much

smaller: the negative e®ect of switching from D to E is more than compensated by the

jump to zero fraud by the C types. The enforcement agency thus prefers to fully deter
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type C agents. In between these two cases, there exists a particular value of the budget

(n¤) for which the enforcement agency is indi®erent between the two policies, as switching

from one to another has no impact on the total expected fraud. Above n¤ it will always

be optimal to focus on type C individuals and below n¤ it will be optimal to set equal

probabilities

Finally, it is worth noting that ensuring that type C agents do not commit an o®ence

does not necessarily mean that the enforcement agency sets a higher probability of audit

for this group (or allocate a relative share of its budget higher than the relative size of

the group). This will depend on the size of the available budget, n: If n¤ · n < pC , then

we indeed have p¤C > p¤N (that is, n¤C > (1¡ ¸) n), but for pC < n · n ;then p¤C < p¤N :

Hence, when it is optimal to ¯rst target the group of o®enders with lower opportunities,

the smaller the available budget for auditing, the more likely the case that individuals

with greater opportunities to evade face a lower probability of being audited. In this case

the optimal audit policy would further increase the disparity in opportunities to evade.

5 Heterogeneous Groups of Agents

In the previous section, we have assumed that the law enforcement agency was costlessly

and perfectly able to distinguish the two types of agents. We now relax this assumption

and suppose that the enforcement agency has only an imperfect knowledge of the agent's

type. More precisely, we assume that the economy consists of two groups of agents of

equal size (and we normalize the size of each group to be 1
2; so that the size of the whole

population of agents remains equal to 1), and that each group is composed of agents of

types C and N: The two groups are assumed to di®er with respect to the proportion of
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agents who have greater opportunities to commit a fraud , namely type N agents: we thus

assume that the proportion of type N agents in groups 1 and 2 are respectively ®1 and ®2;

with ®1 > ®2. Group 1 can thus be considered as riskier by the enforcement agency, in

that people are more likely to commit a fraud. The problem for the enforcement agency

is to allocate the resources between the two groups, i.e. to set the audit probability for

each group. We assume that the agency can observe which group an individual belongs

to, but cannot distinguish between types.

An example for this setting could be tobacco, alcohol or drugs smuggling from conti-

nental Europe to the UK. In this case the Customs have to decide how many o±cers to

allocate to each harbour, or within the Dover ferry terminal how many cars/passengers

to stop for searching, knowing that some of them are more likely to smuggle because they

come from countries where getting the merchandise is less costly: cars coming to the UK

from France are more likely to be loaded with alcohol, for example, or passengers coming

from Holland are more likely to carry cannabis. The search probability should therefore

depend on they are arriving from.

The enforcement agency now needs to decides whether to focus on the "riskier" group

(namely group 1) and how to allocate its resources between the two groups. Within the

same group individuals will face the same probability of detection, regardless of their type,

and their behaviour is thus given by lemma 1 and 2. Once again, we make the assumption

that resources are scarce (n < 1
F+1), so that the enforcement agency cannot fully deter
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fraud, i.e. its budget constraint is binding. The enforcement agency's program is then:

min
(p1 :p2)

®1B¤N (p1) + (1¡ ®1)B¤C (p1) + ®2B¤N (p2) + (1¡ ®2)B¤C (p2) s.t. p1 + p2 = 2n:

This leads to the following proposition, the results of which are summarised in ¯gure 3.

Proposition 4 For any probability 0 < pC < 1
F+1 , any ¯ne rate F > 1 and any propor-

tions ®1 > ®2, there exist three threshold values n¤, n¤¤ and n¤¤¤; with:

1
2pC < n

¤ < pC < n¤¤ · 1
2

¡
pC + 1

1+F

¢
· n¤¤¤ < 1

1+F ;

such that:

1. If n· n¤; the enforcement agency sets equal probabilities for both groups of agents,

p¤C = p¤N = n and all agents fraud.

2. If n¤ · n · n¤¤; the enforcement agency ¯rst ensures that the type C agents of the

"less risky" group do not fraud, that is sets p¤2 = pC and thus p1 = 2n¡ pC :

3. If n¤¤ < n < n¤¤¤; the optimal policy is such that all type C agents do not fraud

but all type N do, and the enforcement agency allocates more resources to audit the

"riskier" group, that is pC < p¤2 < n < p¤1 < 1
1+F :

4. Finally, if n¤¤¤ · n · 1
1+F ; the enforcement agency mainly focuses on the "riskier"

group to make sure that these agents do not fraud setting p¤1 = 1
1+F : In that case,

only the type N agents of the "less risky" group fraud.

Proof. See Appendix B.
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Figure 3: Optimal Audit Policy with Heterogeneous Groups of Agents

For low values of the budget (n < pC) ; the situation is very similar to the case in which

the enforcement agency is able to observe the type of the agents. When resources are very

limited
¡
n < 1

2pC
¢
; all agents (both types in both groups) will engage in fraud because

with those resources the enforcement agency is unable to set a probability of detection

high enough to deter even type C individuals from cheating. In this situation, like in the

case for which the enforcement agency was able to distinguish the agents (see proposition

3), the expected amount of fraud is minimised when the probabilities of detection are

equal.

When resources are higher but still too low to deter all type C agents
¡1
2pC < n < pC

¢
;

the enforcement agency has the choice between deterring some of the type C agents or

setting equal probabilities with all agents defrauding. If the agency has decided to deter

fraud from the type C agents of a given group (let say 1), it is optimal to do it with

p1 = pC. Suppose on the contrary that p1 > pC : since all agents in group 2 defraud
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whereas only type N agents do so in group 1; decreasing slightly the probability of audit

p1 would reduce the total amount of fraud. Since it is optimal to tackle the type C

agents of the chosen targeted group with a probability of audit equal to pC; the amount

of fraud for non-targeted group does not depend on the identity of the targeted group
³
1
2

eB (2n¡ pC)
´
: As the proportion of type C agents is larger in the less risky group

(namely group 2), it is better to deter fraud from type C agents in this group rather than

in the riskier group.

For these values of the agency's budget, the choice is then between equal probabilities

of audit and deterring type C defrauders in the less risky group. The argument is now very

similar to the "perfect information" case: switching from equal probabilities to p2 = pC

has two opposite e®ects: on the one hand, increasing the probability of audit for type 2

from p2 = n to p2 = p¡C has a negative impact, while moving from p2 = p¡C to p2 = pC

allows the enforcement authority to bene¯t from the discontinuity in the o®ending pattern

of the type C agents in group 2: Since the negative e®ect is larger for lower values of n

(in¯nite for n = 1
2pC and equal to 0 for n = pC), there exists a critical budget n¤ for

which the enforcement agency switches between these two regimes.

When the available budget increases and becomes larger than pC ; the enforcement

agency can set the two probabilities of audit above pC in order to deter all type C agents.

The choice will now depend on the relative proportions of type N individuals in the two

groups. Starting from p1 = p2 ; the marginal bene¯t from an increase in p1 is indeed

proportional to ®1 ¡ ®2 . Because this proportion is higher in group 1; the enforcement

agency now prefers to set a higher probability of audit for the riskier group. However,

the choice is still constrained by the need to deter all type C agents, i.e. keep the audit
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probability for the less risky group above pC : Therefore for lower values of the budget

(n · n¤¤) this constraint is binding and the enforcement agency sets p¤2 = pC : For higher

values of n; the enforcement agency can increase the audit probabilities for both groups

above this level and maintain a higher probability for the riskier group. Finally, when the

budget is large enough (n > n¤¤¤), the enforcement agency can target the type N agents

in the riskier group.

6 Concluding Remarks

In this paper, we have considered the e®ect of di®erent opportunities to commit a fraud

on the optimal audit policy with scarce resources. We ¯rst analysed the case where the

enforcement agency observes the agents' types and have shown that she should usually

set di®erent probabilities of audit for agents with di®erent opportunities to cheat. If the

budget of the enforcement agency is too small, it would be too costly (or even impossible)

to deter agents with lower opportunities to cheat, and the agency sets equal probabilities,

thereby allocating to each group a share of the budget equal to its relative size. How-

ever, as the budget increases, it becomes optimal to ¯rst ensure that agents with lower

opportunities are deterred from cheating. This might lead to situations where the agents

who incur a higher cost for cheating are also the agents facing a higher probability of

detection.

This result relies on some speci¯c assumptions, but is more robust than it may ¯rst

appear. Relaxing some assumptions would modify the fact that the enforcement agency

sets equal probabilities (i.e. considers that there is only one class of individuals) when its

budget is very limited. However, the existence of a zone for which the authority focuses
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¯rst on the agents with the lowest opportunity to evade would remain. This would, for

example, be the case if we relax the CARA assumption or consider a cost of fraud of the

form C(B) = c + g (B). We also assumed that the enforcement agency does not take the

¯nes into account in its objective function. Relaxing this hypothesis would not alter our

results but only modify the value of the threshold n¤:

We then considered the case where the enforcement agency does not observe if an agent

has a high or low opportunity to commit a fraud, but knows whether the agent belongs to

a more or less risky group. Although the enforcement agency cannot distinguish whether

individuals have to incur a cost for cheating, the audit rule is very similar to the case where

there is perfect information about the agents type. If the budget is too small it would

be too costly to set di®erent probabilities of audit for the two groups. When the budget

increases, the criterion is still to tackle ¯rst the individuals with lower opportunities to

evade (although the enforcement agency cannot distinguish them) : if the resources are

not enough to deter type C in both groups, they should be tackled in the group where

they are more numerous, that is the less risky group.

Hence, we can generalise our results and conclude that when there are di®erent tech-

nologies to commit a given fraud, implying di®erent costs and hence di®erent opportunities

to engage in illegal behaviour, the audit strategy should take this into account. When the

budget of the enforcement agency is limited, the enforcement agency should ¯rst tackle

individuals who are more easily deterred from cheating, i.e. those incurring higher costs

to defraud, or using a more complicated technology. In terms of the cases we considered

above, this implies for example that frauds for claiming job seekers allowance should be

more targeted than frauds from income support claims. Or, again, in the case of internet

frauds, if resources to devote to auditing are tight (which we can assume is the case),
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the anti-fraud authority should ¯rst tackle the fraudsters using the more complicated and

hence costly technology. How this relates to actual policy is hard to tell, as it is quite dif-

¯cult to access information on the audit strategy, which is considered highly con¯dential.

For tax evasion, the audit policy seems to rely on the results of past audits. Evidence

for the U.S. suggests that the IRS informs its audit strategy on the basis of the results

of a program of intensive audits conducted on a strati¯ed random sample of returns (Tax

Compliance Measurement Program (TCMP)).13 In particular, the IRS calculates a so

called "discriminant function" (DIF) from the results of the TCMP, which it uses to as-

sign each return a score (DIF score) for the likelihood that it contains some irregularities

or evasion. Apparently over one-half of all audit selections are based at least partly on

the DIF score. Hence it seems to be the case that the audit policy is adjusted on the basis

of previously detected cases of tax evasion. In constrat with our results (which imply

focusing on frauds which are easier to deter), the criterion underlying the enforcement

strategy seems to consist of ¯rst tackling frauds that are easier to detect. Distinguishing

over the type of technlogy used or the range of di®erent opportunities to commit a certain

fraud could therefore be an additional criterion to adjust the audit strategy.

13See Andreoni (1998).
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A Proof of Proposition 3

Using the results of lemma 1 and 2, we can divide the space (pN ; pC) in three zones,

according to the following ¯gure:
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Figure 4: Agents' Behaviour

A.1 Zone by Zone Analysis

² In zone 1
¡
pC ¸ pC and pN < 1

1+F

¢
: Type C individual do not commit any of-

fence (B¤C = 0) whereas type N agents frauds (B¤N > 0) : An increase in pN does

not a®ect type C 's behaviour and decreases the expected o®ence for the type N

agents. The enforcement agency therefore wants to move towards pC = pC ; that is,

pN =
n¡ (1¡ ¸) pC

¸
:

² In zone 2
¡
pC < pC and pN ¸ 1

1+F

¢
: This situation is similar to zone 1 inverting

the roles played by the two types of agents. The enforcement agency therefore wants

to move towards pN =
1

1 + F
:

² In zone 3
¡
pC < pC and pN < 1

1+F

¢
: In that case, both types of agents commit
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an o®ence and the ¯rst order condition of the enforcement agency's minimisation

program writes as:

¸ eB0(p)¡ ¸ eB0
µ
n¡ ¸p
1¡ ¸

¶
= 0 , p = n, pN = pC = n

Notice that this ¯rst order condition is necessary and su±cient (since eB00 > 0): In

this zone 3; the enforcement agency sets equal probabilities for both types whenever

it is possible, that is, whenever n < pC : For n ¸ pC; the optimum (in zone 3) is to

set a probability of audit for type C as close as possible to pC.

We can now summarise the results obtained in the di®erent zones. We should ¯rst

notice that the expected amount of o®ence is continuous when we move from zone 2 to zone

3
¡
at pN = 1

1+F

¢
; however we have a discontinuity between zones 1 and 3 (at pC = pC)

due to the discontinuity in the level of bene¯t chosen by type C agents, the optimal choice

for the enforcement agency being then to choose pC = pC (rather than pC¡):

A.2 Optimal Audit Policy

Summarising all these results we now have: the enforcement agency's optimal choice is

such that:

² if n· (1 ¡¸)pC : p¤ = n, p¤C = p¤N = n;

² if pC · n · n : p¤ = n¡ (1¡ ¸) pC
¸

, p¤C = pC;

² if (1 ¡ ¸)pC < n < pC : p¤ = n or p¤ =
n¡ (1¡ ¸) pC

¸
: Expected o®ence is then,
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either

B1 (n) = eB (n) or B2 (n) = ¸ eB
µ
n¡ (1¡ ¸)pC

¸

¶
:

Let us compare these two values and de¯ne

¢(n) = B2 (n) ¡B1 (n) = ¸ eB
µ
n¡ (1 ¡ ¸) pC

¸

¶
¡ eB (n) :

Notice that, because eB 00 < 0, we have:

¢0 (n) = eB 0
µ
n¡ (1 ¡¸)pC

¸

¶
¡ eB 0 (n) < 0:

Moreover lim
n!(1¡¸)pC

¢ (n) = +1 and ¢ (pC) = ¡ (1 ¡ ¸) eB (pC) < 0 : There thus

exists a unique threshold n¤; with (1 ¡ ¸) pC < n¤ < pC ; such that ¢ (n) < 0 for

any n > n¤ (and the enforcement agency then prefers pC = pC); and ¢ (n) > 0 for

any n < n¤ (and the enforcement agency then prefers pC = pN = n): This threshold

is the unique solution of the equation

¸ eB
µ
n¡ (1¡ ¸) pC

¸

¶
= eB (n) , ¸ ln

µ
¸¡ n + (1¡ ¸) pC
(n¡ (1 ¡¸)pC)F

¶
= ln

µ
1¡ n
nF

¶
:

B Proof of Proposition 4

Building on the proof of proposition 3 above, we can, using the results of lemma 1 and 2,

divide the space (p1; p2) in eight zones, according to the following ¯gure:
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Figure 5: Expected fraud in the case of heterogeneous groups of agents

B.1 Zone by Zone Analysis

Keeping in mind that p1 + p2 = 2n, it is easy to see that, provided that p1 ¸ 1
1+F ; the

enforcement agency wants to maximise p2 and will thus never set p1 > 1
1+F : For the same

reason, the enforcement agency will never set p2 > 1
1+F :

² Let us now consider the case pC < p1 · 1
1+F and p2 < pC:

In that case, the expected fraud (as a function of p1) is

EB (p1) =
1
2

³
®1 eB (p1) + eB (2n¡ p1)

´

and

EB0 (p1) =
1
2

³
®1 eB0 (p1)¡ eB 0 (2n¡ p1)

´
> 0:

The enforcement agency will therefore try to minimise p1 in that zone and thus

set either p1 = pC (and thus p2 = 2n¡ pC ) if n · pC , or p1 = 2n¡ pC (and thus
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p2 = pC ) if n¸ pC . The analysis is very similar for the "symmetric" case: p1 · pC

and pC · p2 · 1
1+F :

Finally, we can easily check that it is always preferable to choose p2 = pC and

p1 = 2n¡ pC rather than p1 = pC and p2 = 2n¡ pC : If, for example, n¸ pC ; we

have to compare:

² for p1 = pC : EB1 ´ ®2 eB (2n¡ pC) +®1 eB (pC) ;

² for p2 = pC : EB2 ´ ®1 eB (2n¡ pC) +®2 eB (pC) ;

and we have: EB1 ¡ EB2 = (®1 ¡ ®2)
³

eB (pC)¡ eB (2n¡ pC)
´

¸ 0:

If now n · pC ; we have to compare:

² for p1 = pC : EB1 ´ eB (2n¡ pC) + ®1 eB (pC) ;

² for p2 = pC : EB2 ´ eB (2n¡ pC) + ®2 eB (pC) ;

and we have: EB1 ¡ EB2 = (®1 ¡ ®2) eB (pC) ¸ 0:

² Let us now consider the case p1; p2 < pC :

In this case, the situation is identical to the zone 3 of ¯gure 4 (see Appendix A -

Proof of Proposition 3) and the enforcement agency's (constrained) optimal choice

is to set equal probabilities for the two groups of agents, that is, p1 = p2 = n :

² The ¯nal case we need to consider is pC · p1; p2 · 1
1+F :
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In that case, the expected fraud (as a function of p1) is

EB (p1) =
1
2

³
®1 eB (p1) +®2 eB (2n¡ p1)

´

and

EB0 (p1) =
1
2

³
®1 eB 0 (p1)¡ ®2 eB0 (2n¡ p1)

´
:

We can furthermore notice that eB (p1) being strictly convex, EB (p1) is also strictly

convex and EB 0 (n) < 0: Let us now de¯ne the two following functions:

¢1 (p) = ®1 eB 0
³

1
1+F

¡
´

¡ ®2 eB 0 (p) and ¢2 (p) = ®1 eB 0 (p) ¡ ®2 eB 0
¡
p+C

¢
:

Notice that ¢1

³
1

1+F
¡
´
< 0; ¢2

¡
p+C

¢
< 0; ¢1 is a strictly decreasing function

of p, while ¢2 is strictly increasing in p, for p+C < p <
1

1+F
¡ ; and

¢1
¡
p+C

¢
= ¢2

³
1

1+F
¡
´
= ®1 eB0

³
1

1+F
¡
´

¡ ®2 eB 0
¡
p+C

¢
:

We therefore have to consider two possible situations:

{ if ®1 eB 0
³

1
1+F

¡
´

¡ ®2 eB0
¡
p+C

¢
> 0; then there exist two critical values n¤¤ and

n¤¤¤, such that:

pC < n¤¤ < 1
2

¡
pC + 1

1+F

¢
< n¤¤¤ < 1

1+F ;

and such that the minimum expected fraud in the zone pC · p1; p2 · 1
1+F is
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attained at:

for pC · n · n¤¤ : p2 = pC and p1 = 2n¡ pC ; (1)

for n¤¤¤ · n · 1
1+F : p1 = 1

1+F and p2 = 2n¡ 1
1+F ; (2)

for n¤¤ < n < n¤¤¤ : p1 = ep (n) and p2 = 2n¡ ep (n) ; (3)

where ep (n) is the unique solution of the equation ®1 eB 0 (p)¡®2 eB 0 (2n¡ p) such

that pC < ep (n) ; 2n¡ ep (n) < 1
1+F :

{ if ®1 eB 0
³

1
1+F

¡
´

¡ ®2 eB 0
¡
p+C

¢
· 0 : in this particular case we have

n¤¤ = n¤¤¤ = 1
2

¡
pC + 1

1+F

¢
:

B.2 Optimal Audit Policy

Looking for the optimal audit policy is now straightforward:

² For n > pC ; the enforcement agency applies the policy given by (1) ; (2) and (3) :

² For n · pC ; the enforcement agency has to choose between p1 = p2 = n and p2 = pC :

The situation is very similar to the proof of proposition 3. Therefore, there exists a

unique 1
2pC < n

¤ < pC; solution of the equation

eB (2n¡ pC) +®2 eB (pC) = 2 eB (n) ;
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such that the optimal choice is given by:

For n · n¤ : p¤1 = p¤2 = n;

and for n ¸ n¤ : p¤2 = pC and p¤1 = 2n¡ pC:
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