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1. Introduction.

Arrow’s theorem [2], as formulated by [18], is the assertion that the
decisive coalitions of a reasonable1 social welfare function F form an ultrafilter2

U on the set I of individuals. Here the (two or more) voters in I decide about the
“social preference” (the output of the social welfare function) on three or more
alternatives. We assume that a “reasonable social welfare function” (section 2.2)
satisfies certain ethical and informational requirements.

If I is finite, then U is principal (∩U = {i}) and therefore F is dicta-
torial (i is the dictator, whose strict preferences are obeyed).

If I is infinite, then (assuming SPI introduced below) there exist free
(nonprincipal) ultrafilters U on I . Infinite societies I may represent future
generations, finitely many people who extend into the indefinite future or (c.f.
[23]) finitely many people who face (infinitely many states of) uncertainty. In
view of [18] a free ultrafilter U defines a nondictatorial social welfare function.

The axiom SPI , “each infinite set I carries a free ultrafilter”, depends
on the axiom of choice3 AC (c.f. [14]). This assertion is an example of an
independence theorem4 whose proof applies Weglorz’ models.

Roughly speaking (section 2.1), a model of (a language of) set theory gives
a “meaning” to the formulas (in that language). While “conventional” models
satisfy each axiom of ZFC (Zermelo-Fraenkel set theory with AC ) and hence
SPI , there are other models which satisfy ZF (or its variant ZFA of section
2.1) and not SPI . It is therefore of interest to study the existence of social
welfare functions from the viewpoint of set theory, applying different models, as
is exemplified by the work of H. J. Skala ([28], [29] and [30]; c.f. section 2.3).

For Weglorz’ models WΓ
B (of ZFA set theory) the validity of SPI de-

pends on parameters which can be investigated in “conventional” ZFC . The

1
In this paper “reasonable” has a technical meaning which needs not relate to “rational”.

2
[11] uses the equivalent notion of a two-valued finitely additive probability measure.

3
Each family of nonempty sets admits a choice function which picks an element of each set of the

family.
4

“Independence theorems” (section 2.3) determine the relative strength of set theoretical axioms.
(Economists are advised to consult [16].) In order to avoid confusion (and because we use a more
general framework) we shall rename welfare axioms which mention “independence” (IIA corresponds
to monotonicity of section 2.2).
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parameters are a group Γ of permutations of the individuals and a Boolean sub-
algebra B ⊆ P(I) of the powerset (algebra) of I . (Thus B with the constants
Ø and I is a Boolean algebra w.r. to the operations ∪ , ∩ and complementa-
tion − .) In the present paper we apply this observation to relate social welfare
theory in Weglorz’ models to (Armstrong’s generalization [1] of) social welfare
theory within the “conventional” models of ZFC : Weglorz’ models will provide
a framework for the investigation of different notions of anonymity and discrim-
ination.

In social welfare theory (section 2.2), B describes the “observable” coali-
tions and Γ defines “Γ-equal treatment of” and “finite Γ-discrimination among”
the individuals (Γ-anonymity resp. topological Γ-anonymity of section 3.1). The
latter condition requires that the individuals be partitioned into finitely many
(observable) classes (“equally treated components”), each consisting of individ-
uals that are treated equally in the following sense: The social preference does
not change by any permutation in Γ, as long as it permutes individuals within
each class (component), not across different classes. (In section 4.1 we discuss
the problem, if there are interesting topologically Γ-anonymous welfare functions
with more than two components.) We regard topological Γ-anonymity as an in-
formational (but not an ethical) requirement about the simplicity of the welfare
function: It is satisfied both by dictatorial functions (but not by all; c.f. lemma
23) and by functions which satisfy very strong forms of anonymity (c.f. section
3.1).

Our main result (section 3.2) is a translation between (i) assertions about
(the existence of) social welfare functions within the “mathematical universe”
(by this we mean a particular model V of ZFC which we use as a carrier of
mathematics) and (ii) assertions about (the existence of) ultrafilters in Weglorz’
models. The latter are instances of independence theorems (section 2.3). Note
that assertion (ii) may be true or not, depending on B and Γ; c.f. problem 1 in
sectwelfareion 4.1. (AC fails in WΓ

B , but some axioms close to AC do not.)

Exemplary result. The following assertions are equivalent:
(i) There is a reasonable finitely (Γ-)discrimatory nondictatorial social welfare
function F which observes B .
(ii) In WΓ

B there is a free ultrafilter on a set which represents I .

We conclude that Weglorz’ models provide meaningful information about
finite discrimination because they explain why Arrow’s theorem is true relative
to certain combinations of B and Γ. A similar analysis applies to ecological
reasoning (section 3.3). So the problem is now: Is finite discrimination such a
big deal?

We answer this question in the affirmative by deriving finite discrimina-
tion from a set theoretic condition of “symmetry” which in turn we view as a
minimal requirement for “empirical meaningfulness” (c.f. [8]) or “describability”.
(So an informational condition for social welfare functions is related to notions
of philosophy.) The paper thereby complements the studies (c.f. [23] and [22]) in
computability analysis of social choice, since computability requires the existence
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of an algorithm to “describe” the social welfare function.

2. Preliminaries.

2.1. Some set theory. The first application of independence theorems
about AC has been an analysis of different definitions of “finite”: I is finite, if
it is equipollent to (of the same cardinality as) an element of ω = {0, 1, . . .} . I
is Dedekind finite, if each countable subset is finite. In the presence of AC this
is another definition of “finite”. A more restrictive definition is amorphous: each
subset is finite or its complement is finite. (An infinite set is amorphous, iff the
Frechet filter of the cofinite subsets is an ultrafilter.)

In the absence of AC the latter two assertions are no longer definitions
of “finite”. Instead they form a hierarchy of notions of different strength: finite,
amorphous, Dedekind finite. The following observation ([26], Proposition 1.1)
about “Dedekind finite powerset” (c.f. [16]: if I is amorphous, then P(I) is
Dedekind finite) is useful and it applies in particular to R = P(ω):

Lemma 1. Without AC , if P(I) is Dedekind finite and α is an ordinal
number, then the range of each function f : I → P(α) is finite.

Also Arrow’s theorem (and its analysis by [11] and [18]) gives rise to a
notion of finiteness: A set I of individuals (with at least two elements) is Arrow
finite, if and only if each reasonable social welfare function on I (the definition
in section 2.2 includes the requirement that there are three or more alternatives)
is dictatorial (equivalently: if and only if each ultrafilter on I is principal). An
application of the Frechet ultrafilter shows that an infinite amorphous set is
Arrow infinite.

In ZF set theory without the axiom of choice AC , the following asser-
tions BA (due to Blass) and SPI (due to Halpern) are weak forms of AC which
do not imply AC (c.f. [14]). BA is the statement that some set is Arrow infinite
and SPI asserts that “Arrow finite” defines “finite”.
• BA : There exist an infinite set I and a free ultrafilter U on I ;
• SPI : On each infinite set I there is a free ultrafilter U on I .

In this paper we consider Weglorz’ [31] models, a specific class of per-
mutation models. Below we first discuss the notion of a permutation model in
general, followed by a discussion of Weglorz’ models. They appear naturally in
investigations of alternatives to SPI (c.f. lemma 14); [7] surveys their properties.

Permutation models are explained in [3], [5], [14] and [16]. They are
models of the modified set theory ZFA with a set A of atoms: a ∈ A is an
object without elements but different from Ø. (The language of ZFA has in
addition to =, ∈ and Ø the constant A .) We shall identify the individuals
with the atoms of the model. Roughly speaking the sets of the model will be
“definable5 from observable coalitions”. (For example, in order to “define” a

5
In Fraenkel’s original intuition, a model of set theory is a subclass of the “mathematical universe”

which consists of (parametrically) “definable” sets in a sense that has been made precise by [3]. We
shall use Mostowski’s definition, where the model consists of “symmetric” sets only.
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profile, we partition society into finitely many “observable” coalitions, all of
whose members agree w.r. to their preferences; c.f. the proof of lemma 20.)

Given are the model (“mathematical universe”) V of ZFC and I ∈ V .
We first construct a universe V (I) and a new ∈-relation ∈̄ (which we henceforth
write as ∈) such that the set A of atoms is a copy of I (as in [16] we may write
A = {ai; i ∈ I}) and

(V (I), ∈̄) |= ZFA+AC

Here “ |=” means “satisfies” or “is a model of”; e.g. (V,∈) |= ZF + AC . The
details of the construction of V (I) will not matter; c.f. [3], [5], [14] or [16].

Next we define a notion of “symmetry” in terms of a subgroup Γ of the
symmetric group S(I) of all permutations on I and a group topology on Γ. (A
group topology is a Hausdorff topology where the group operations, (π, ψ) 7→ π ·ψ
and π 7→ π−1 , are continuous. In the definition of a permutation model it will
be determined by a “normal filter” of subgroups which defines a neighborhood
base of the unit element.)

Note that π ∈ Γ defines a permutation π̄ on the set A of atoms:
π̄(ai) = aπi for π ∈ Γ. It extends to a permutation (a proper class) π̂ of
V (I) (Mostowski collapse) such that π̂(x) = {π̂(y); y ∈ x} . (We write π instead
of π̂ .) Then x ∈ V (I) is symmetric, if its stabilizer stab(x) = {π ∈ Γ;π(x) = x}
(= sym(x) in [16]) is an open (and therefore also closed) subgroup of Γ. We
regard the open subgroups of Γ as “degrees of symmetry”. (This is evident for
the group of the p -adic integers [5]. In general, however, they generate a topology
which appears peculiar.)

A general permutation model M consists of the “hereditarily symmetric”
x ∈ V (I) (i.e. each element of the transitive closure of {x} is symmetric, where
the transitive closure consists of x , its elements, the elements of these elements
. . . , ending with an atom or Ø). Thus x ⊆ M , an object of V (I), is a set in
the sense of the model, iff x ∈M , iff x is (hereditarily) symmetric.

If x ∈ V (Ø) (there is no atom in the transitive closure of x), then x is a
pure set. Pure sets are hereditarily symmetric (their stabilizer is the whole group
Γ) and therefore in the model. (The pure sets form a copy of the “mathematical
universe” within the model, whence lemma 2.)

AC fails in M , unless Γ is discrete: Set theoretical choice functions
in general are not symmetric. However, the following choice principle is always
true. (It says that, in a permutation model, a set carries a wellordering relation,
if and only if it is equipollent to a pure set.)
• PW : The powerset P(α) of an ordinal α is equipollent to an ordinal.

Lemma 2. Permutation models satisfy ZFA+ PW .

Weglorz’ models WΓ
B ⊆ V (I) are constructed from an infinite Boolean

algebra B ⊆ P(I), a subgroup Γ of its automorphism group Aut(B) and Weglorz’
group topology. (A bijective π : B → B is in Aut(B), if π(Ø) = Ø, π(I) = I ,
π(x ∪ y) = π(x) ∪ π(y), π(x ∩ y) = π(x) ∩ π(y) and π(−x) = −π(x).)

We shall assume that B contains all singletons {i} , where i ∈ I . Then
At(B) = [I]1 (recall that [I]n is the set of n -element subsets of I ), where
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At(B) is the set of the Boolean algebra atoms (minimal nonempty sets in B).
It follows that π ∈ Aut(B) may be identified with a permutation π̃ ∈ S(I):
π ∈ Aut(B) ⇒ π({i}) = {π̃(i)} ∈ At(B) for some π̃ ∈ S(I) and B ∈ B ⇒
π(B) = {π̃(i); i ∈ B} . (We thereby identify Aut(B) with the subgroup stab(B)
of S(I) which we actually use in the definition of the model.)

Weglorz’ group topology is defined from a neighborhood base of the unit
element (the permutation id). We define (a filter base)
• FWeglorz = {stab(b); b ∈ B}
Then U is a neighborhood of the unit element, iff it contains a finite intersection
of FWeglorz . The group topology is generated by the subbasis {π · stab(b);π ∈ Γ
and b ∈ B} .

Using the above identifications we may define (“<” means “subgroup
of” and Sfinite(I) is the group of all finite permutations of I ):

Definition. Given are a Boolean algebra B and a group Γ such that
[I]1 ⊂ B ⊆ P(I) and Sfinite(I) < Γ < Aut(B). The permutation model WΓ

B
consists of the hereditarily symmetric objects of V (I), where symmetry is defined
w.r. to the group Γ and the Weglorz’ group topology.

The assumption Sfinite(I) < Γ is included for technical reasons only. It
will ensure that WΓ

B |= ¬AC .
We may reformulate “symmetry”. If x ∈ WΓ

B , then (by the above
definition) there exists a finite D ⊆ B such that

stab(x) ⊇ fix(D) = ∩{stab(d); d ∈ D}
We may enlarge D to a subalgebra of B . Then At(D) forms a finite ordered
partition

Π = 〈P1, . . . , Pm〉
of A into elements Pk ∈ B which partition satisfies the following definition of a
support of x
• stab(x) ⊇ stab(Π) (= {π ∈ Γ;π(Pi) = Pi, all i} = fix(D))

In this paper we wish to compare the objects of Weglorz’ models with
sets of the “mathematical universe”. The formulation of our results is simplified,
if we use the same terminology for related objects.

As we use the same notation (i) for the individual i ∈ I ∈ V and the atom
ai ∈ A ∈ WΓ

B (see above), it will be convenient to identify also (ii) the set I ∈ V
of all individuals and the set A ∈ WΓ

B of the atoms of the model, (iii) the Boolean
algebra atom {i} ∈ B ∈ V and the singleton {ai} ∈ P(A) ∈ WΓ

B , (iv) the element
b ∈ B ⊆ P(I) ∈ V and the set b̄ = {ai; i ∈ b} ∈ P(A) ∈ WΓ

B (its stabilizer is in
FWeglorz ) and (v) B ∈ V with a subalgebra B̄ = {b̄; b ∈ B} ⊆ P(A) ∈ WΓ

B .
As follows from lemma 6, in general we cannot relate π ∈ Γ ∈ V to

a permutation in S(A) ∈ WΓ
B . Let us recall the identification (vi) of π ∈

Aut(B) ∈ V with a permutation π̃ ∈ S(I) ∈ V , (vii) of π ∈ S(I) ∈ V with
π̄ ∈ S(A) ∈ V (I) and (viii) of π ∈ S(A) ∈ V (I) with π̂ , a “permutation” of
V (I). In order to link our results with the economic literature (c.f. [21]), in V we
identify (ix) Aut(B) with the B-measurable permutations π of I (they satisfy
π∗(B) = {π−1(i); i ∈ B} ∈ B , whenever B ∈ B). (Note that π ∈ Aut(B) defines
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a B-measurable π̃ ∈ S(I). If conversely π ∈ S(I) is B-measurable, then π is a
representation of (π∗)−1 ∈ Aut(B).)

The original motivation behind WΓ
B has been the following result of

Weglorz [31] which says that in the identification (v) above B̄ = P(A).

Lemma 3. If I is infinite, [I]1 ⊂ B ⊆ P(I) and Sfinite(I) < Γ < Aut(B) ,
then WΓ

B |=“B = P(A)”.

Weglorz’ theorem relates Armstrong’s setting [1] to the formally simpler
approach of [18]. Lemma 3 asserts that, given B , we may consistently add the
axiom “B is isomorphic to a powerset algebra” (which in general contradicts
AC ) to ZF set theory. As follows from lemmas 22 and 23, this axiom does not
completely reduce [1] to [18]: [1] admits social welfare functions which are not
topologically anonymous and therefore not in the model.

In Weglorz’ models, the set of individuals sometimes is amorphous and
always has a Dedekind finite powerset [8].

Lemma 4. If I is infinite, [I]1 ⊂ B ⊆ P(I) and Sfinite(I) < Γ < Aut(B) ,
then WΓ

B |=“B is Dedekind finite”.

We illustrate the method of proof in WΓ
B by lemma 6 about an easy

correspondence between the “mathematical universe” and the model. First we
recall the following result [6] about partitions.

Lemma 5. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and Sfinite(I) <
Γ < Aut(B) . In WΓ

B all but finitely many elements of a partition E of the set A
of the atoms into finite sets are singletons.

Lemma 6. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and Sfinite(I) <
Γ < Aut(B) . In V (I) , if π ∈ S(A) is a permutation on the set A of the atoms,
then π ∈ WΓ

B if and only if π ∈ Sfinite(A) .

Proof. As “if” is trivial (a finite permutation is defined from finitely
many parameters within the model), we prove “only if”. Define a partition E
which consists of the sets {πz(a); z ∈ Z} where a ∈ A (π0(a) = a, π1(a) = π(a)).
These sets are finite by lemmas 4 and 1. Lemma 5 implies that (with finitely
many exceptions) all E ∈ E are singletons, where π(a) = a . It follows that
{a;π(a) 6= a} is contained in the finite union of the finite nonsingletons of E .

In [8] (a variant of) Weglorz’ models with Γ = Aut(B) has been given an
empirical interpretation (invoking the “theoretical terms” of philosophy): B is
the algebra of the “observable” objects and the model consists of those empirical
concepts which satisfy a necessary (but not sufficient) semantical test6 , namely
“symmetry” (hereditary symmetry), to be “describable”. (Thus the model is
constituted of those concepts which are not “empirically meaningless for obvious
reasons”.)

6
It is motivated by “Padoa’s method” [13] to prove undefinability.
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It follows from lemma 6 that the definition of “describable” depends in
an essential way on “indescribable” (“theoretical”, “empirically meaningless”)
permutations.

2.2. Some welfare theory. We formulate the basic notions of welfare
theory in a general setting. Our framework incorporates both the theory of Arrow
type social welfare functions (sections 3.1 and 3.2) which map “ordinal preference
profiles” to social preferences and a theory of ecological welfare mappings7 .

Recall that I is the set of individuals. A profile structure is a relational
structure (tuple) X = (X,p), where X is a set of alternatives (not necessarily
fixed or finite) and p is a profile (defined below) of I on X . We represent the
preferences of the individual i ∈ I by a binary relation ¹i on X . (We do not
always assume that it is transitive and complete8 .) The strict preference ≺i and
the indifference ∼i are defined in the usual manner. Finally, a profile p of I
on X is a function p : I → P(X ×X), a list p = 〈¹i; i ∈ I〉 of the individual
preferences on X .

The profile structure Y = (Y,q) is a substructure of X = (X,p) (symbol:
Y ⊆ X), if Y ⊆ X and for all x, y ∈ Y and for all i ∈ I the assertions
(x, y) ∈ q(i) and (x, y) ∈ p(i) are equivalent. Thus q is the restriction p|Y
which maps i ∈ I to the relation p(i)|Y = p(i) ∩ (Y × Y ).

An aggregation structure is a relational structure (X,¹,p). It adds a
social preference (“decision”) ¹ to the corresponding profile structure. (Unless
stated otherwise, the social preference may be just a binary relation on X .) A
substructure of an aggregation structure carries the restricted social preference
(and the restricted profile).

Social decision theory is concerned with the construction of aggregation
structures from profile structures. A decision rule is a function F whose domain
dom(F ) is a set of profile structures of the same signature (i.e.: I is kept fixed)
and whose range is a set of aggregation structures such that

F (X,p) = (X,¹F ,p) for X = (X,p) ∈ dom(F )
Here ¹F depends on X, p and F .

A subset (coalition) S ⊆ I is decisive with respect to an aggregation
structure (X,¹,p), if x ≺ y whenever x, y ∈ X and (∀i ∈ S)(x ≺i y). A
coalition S ⊆ I is decisive (with respect to a decision rule F ), if for every
X ∈ dom(F ), S is decisive with respect to the aggregation structure F (X).

Given a decision rule, an agent i ∈ I is a dictator, if {i} is decisive. The
decision rule satisfies strict unanimity (or “Pareto-efficiency”), if I is decisive.

A decision rule is more general than Arrow’s social welfare functions.
Arrow assumes that the set X of the alternatives is fixed and that the individual
preferences are defined on X . Thus in Arrow’s setting Y ⊆ X would carry the

7
They assign a preference relation to each set of utility distributions (“utility profiles”). We will

see that a well-behaved (“monotonic”) ecological welfare function is equivalent to a social preference
on the set of utility distributions (section 3.3; c.f. “social welfare orderings” [25] or [9]).
8

Several textbooks call this a “rational preference”.
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profile on X (instead of its restriction). In our approach, when considering a
subset Y , we forget the additional information about X \ Y . If we consider
only monotonic decision rules (as did Arrow, see below), then (for finite sets of
alternatives) the difference disappears.
Our approach appears natural from a logicians point of view: A structure which is based on Y usually
carries only relations which are defined on Y. We do not require the individuals to make up their
minds about potential alternatives not in Y. This has the following advantage: In Arrow’s setting
ethical principles may have unintended consequences (neutrality implies IIA) which cannot be derived
in the general framework.

Social choice theoretists, on the other hand, may feel uneasy about the arbitraryness of the
domain of a decision rule, which is an arbitrary set of profile structures of the same signature. (Even
the set of potential alternatives has not to be specified.) In addition to incorporating social welfare
functions (where the domain is fixed once the set of potential alternatives and the set of individuals
are fixed) as special classes, our formulation has an advantage as a descriptive theory: Consider the
modeling of political decisions about ecologically tolerable lay-outs of a projected highway. Often the
alternatives are compared by procedures which are defined for finite sets Y of (actually discussed)
alternatives only. During the decision process other alternatives will be added, but there is no a
priori upper bound, as the set X of potential alternatives is infinite and will never be specified in
practice. (As an application, [9] relate procedures such as “Borda counts” to legal requirements
about decision-making.)

Given a set X , a set P of profiles (of I ) on X and a decision rule F
which is defined on X ⊇ X0 = {(X,p); p ∈ P} , we define the corresponding
social welfare function CF (p) in Arrow’s sense as the mapping that assigns to
each profile p ∈ P the social preference of F (X,p). Conversely, an Arrow
social welfare function C extends to a decision rule FC such that FC(Y,q) =
(Y,C(q+)|Y,q), where Y ⊆ X and q 7→ q+ ∈ {p; p|Y = q} is a set theoretical
choice function. (If we consider only Y = X , then q+ = p and to each Arrow
social welfare function with domain P there corresponds a unique decision rule
F with domain X0 .)

While CF is uniquely defined, FC depends on the choice of q+ in
general. Thus CFC

= C is true, but FCF
= F needs not be true. However,

if F satisfies the following condition of monotonicity, then the last identity holds
for all choices of q+ .

The decision rule F is monotonic, if for profile structures X1 ⊆ X2

(where Xi ∈ dom(F )) we have F (X1) ⊆ F (X2) as aggregation structures.
It is weakly monotonic, if we add the requirement |X1| = 2 to the above
definition. These notions correspond to Arrow’s IIA (“independence of irrelevant
alternatives”).

We say that the domain of F is closed under two-element (finite) sub-
structures, if |X1| = 2 (X1 finite) and X1 ⊆ X2 ∈ dom(F ) imply X1 ∈ dom(F ).

Lemma 7. Without AC , a weakly monotonic decision rule F is mono-
tonic, if its domain is closed under two-element substructures.

Proof. A decision rule F whose domain is closed under two-element
substructures defines a monotonic canonical aggregation structure (X,¹F,can,p)
on X ∈ dom(F ), namely x ¹F,can y ⇔“x ¹F y is true in F (Y)”, where
Y = {x, y} is the substructure of X . If F is weakly monotonic, ¹F =¹F,can .

We are now ready to formulate (a special form of) Arrow’s theorem. We
let X be a set with at least three alternatives and assume that the domain of F
is:
• X I = {(Y,q);Y ⊆ X and q ∈ PI(Y )} where
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• PI(Y ) = {q; q : i 7→ transitive and complete preference q(i) on Y }
We use X I (which is a set of structures) instead of the “conventional” set PI(X)
of profiles. The same proof will work for “rich” domains in general, but it will be
easier to compare decision rules of the model WΓ

B with those of the “mathematical
universe”, if we confine ourselves to dom(F ) = X I .

Lemma 8. Without AC , let I have two or more elements, X three
or more elements and consider a nondictatorial monotonic decision rule F on
dom(F ) = X I which satisfies strict unanimity such that ¹F is transitive and
complete. Then the set U of decisive coalitions is a free ultrafilter on I .

Proof. The proof (e.g. [10], p. 578-580) reduces to considerations about
three-element structures X ∈ dom(F ) (whose profile p is a function on I with
at most 23×3 values p(i)). The profiles of I on X are explicitly defined in terms
of finitely many subsets of I . Therefore AC is not applied. Note that the proof
does not insist on the existence of a free ultrafilter.

In the ecological context (section 3.3) Arrow’s axioms will not suffice
to derive (a result whose proof resembles) Arrow’s theorem. There we need, in
addition, (an extension of) May’s [20] axiom of neutrality. Neutrality asserts
that the alternatives are “treated equally”. We prefer Mihara’s interpretation
[21] that neutrality is a condition of computational simplicity. (In the ecological
context “equal treatment” of the alternatives is built in the definition of the
structures.)

A mapping Φ : X → Y is an isomorphism of the profile structures X
and Y , if Φ is a bijection from X to Y and for all i ∈ I and for all x, y ∈ X we
have (x, y) ∈ p(i) ⇔ (Φ(x),Φ(y)) ∈ q(i). An isomorphism Φ of the aggregation
structures (X,¹,p) and (Y,v,q) is an isomorphism of the profile structures
(X,p) and (Y,q) such that x ¹ y ⇔ Φ(x) v Φ(y), all x, y ∈ X .

A decision rule F respects isomorphisms, if each isomorphism Φ of the
profile structures X, Y ∈ dom(F ) is also an isomorphism of the aggregation
structures F (X) and F (Y). In this case ¹F depends on the isomorphism type of
the profile only. This condition relates in the following way to the “conventional”
axiom of neutrality. (Note that the form below does not imply monotonicity, since
the domain of F consists of profile structures whose profiles q , q′ need not be
defined on the set X of all alternatives. In section 3.3 we shall consider another
variant of this notion.)

Lemma 9. Without AC , suppose that F is a monotonic decision rule
with domain X I . Then F respects isomorphisms, if and only if for all two-
element profile structures Y = ({x, y},q), Y′ = ({x′, y′},q′) ∈ X I (and
mappings u 7→ u′ ) the assertion

(∀i ∈ I)((x, y) ∈ q(i) ⇔ (x′, y′) ∈ q′(i))
implies x ¹ y ⇔ x′ ¹′ y′ , where ¹ (resp. ¹′ ) is the social preference of F (Y)
(resp. F (Y′)).

Proof. The assertion says that Φ(u) = u′ is an (arbitrary) isomorphism
between (arbitrary two-element profile structures) X and X′ . The conclusion
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says that Φ is an isomorphism of the aggregation structures. This is a special
case of respected isomorphisms. We now apply monotonicity: Φ is an isomor-
phism between profile/aggregation structures, if and only if it is an isomorphism
between all two-element substructures.

As has been observed by Fishburn [11] (c.f. [18]), a free ultrafilter on I
(if it exists) defines a decision rule as in the following (slightly stronger) lemma.
There are other decision rules with the same ultrafilter of decisive coalitions, too
(c.f. [21], p. 510-511). We set
• P (x, y) = Pp(x, y) = {i ∈ dom(p);x ¹i y}

Lemma 10. Without AC , let X be a set of at least three options, let I
be an infinite set of individuals and assume that there is a free ultrafilter U on
I . If (Y,q) ∈ X I , then the relation ¹U on Y ,

x ¹U y ⇔ Pq(x, y) ∈ U
is a transitive and complete social preference on Y . The aggregation F (Y,q) =
(Y,¹U ,q) defines a monotonic, strictly unanimous decision rule on X I which
respects isomorphisms and does not admit a dictator.

Proof. Note that the general form of ÃLoś’ theorem (which relates to
quantifiers) depends on AC (c.f. [14]). Lemma 10, however, applies instances of
this theorem (for quantifier-free statements) which do not depend on AC , but
refer directly to the defining properties of ultrafilters, instead.

We simplify our notation by introducing the following terminology: A
reasonable social welfare function on I is a monotonic and strictly unanimous
decision rule on the (transitive and complete) profile structures X I (where X ∈ ω
is a finite set of at least three options) whose social preferences (decisions)
are transitive and complete. (It is identifiable to a “reasonable” social welfare
function in Arrow’s sense. Henceforth we shall no longer refer to Arrow-type
social welfare functions.)

2.3. Some independence theorems. The Arrow and Fishburn the-
orems establish an obvious link to AC via ultrafilters. Independence results
about ultrafilters in their turn lead naturally to Weglorz’ models. These models
of ZFA prove independence theorems for ZF set theory (without atoms), since
we may apply lemma 11, the Jech-Sochor transfer theorem [16]. It compares
the “initial segments” Pα(·) of the models (defined by means of the up to αth

iterates of the powerset operation P(·)).

Lemma 11. Given are a ZFC model V , a permutation model M ⊆
V (I) and a V -ordinal α . Then we may construct a ZF model W ⊇ V and a
set B ∈W such that Pα(A) of M is ∈-isomorphic to Pα(B) of W .

Of particular interest is the structure of the prime filters (equivalent:
ultrafilters, maximal filters) of B within the model. We recall the following
results from [7] about Γ = Aut = Aut(B) (it satisfies Sfinite(I) < Aut(B)). Note
that (in V ) the countable structured atomic Boolean algebras are isomorphic
to each other [7], where B is structured, if each infinite b ∈ B splits into two
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infinite elements of B . (Lemma 12 appears to be in contrast to lemma 27 which
constructs a prime filter. However, as a set in WΓ

B the algebra B is not countable
by lemma 4. This situation resembles “Skolem’s paradox” of set theory.) Note
that the proof of lemma 13 in [7] (theorem 4 with I = ω ) extends immediately
to infinite I . [Let Sj ⊂ Pi have maximal cardinality.]

Lemma 12. If I = ω and B is a countable (in V ) atomic algebra such
that [I]1 ⊂ B ⊆ P(I) , then the following assertions are equivalent.
(i) V |=“B is structured”
(ii) WAut

B |=“Each ultrafilter on A is principal”.

Lemma 13. If I is infinite and B = P(I) , then in WAut
B each bounded

complex-valued finitely additive measure m on P(A) is concentrated on a finite
set.

By [7], the conclusion of lemma 13 is equivalent to “in WAut
B there is

no (finitely additive) probability measure on P(A) which vanishes on the finite
sets” (c.f. lemma 4). In particular, if I is infinite and B is the powerset algebra,
then

WAut
B |=“ultrafilters on A are principal”

In the models of lemmas 12 and 13 A is Arrow finite but infinite. (By
lemmas 8 and 10 SPI implies “Arrow finite = finite”. If BA fails, then each
set I with at least two elements is Arrow finite.) We apply lemma 11 to obtain
the following independence result of Skala [28].

Lemma 14. Relative to ZF set theory, the following assertion depends
on AC : “If I has at least two elements, then I is finite, if and only if I is
Arrow finite”.

[7] mentions “counterexamples” (lemma 15), where A is Arrow infinite.
Another trivial result is lemma 16.

Lemma 15. Let I be infinite.
(i) If B is the algebra of finite and cofinite sets and Sfinite(I) < Γ < Aut(B) ,
then in WΓ

B the Frechet filter (of the cofinite sets) is the unique free ultrafilter
on A .
(ii) If Γ = Sfinite(I) and [I]1 ⊂ B ⊆ P(I) , then in WΓ

B each nonprincipal filter
on A may be extended to a free ultrafilter.

Lemma 16. Let I be infinite, assume [I]1 ⊂ B ⊆ P(I) and let U be a
nonprincipal prime filter of B . Then Γ = {π ∈ Aut(B);πU = U}(= stab(U))
satisfies Sfinite(I) < Γ < Aut(B) and WΓ

B |=“U is a free ultrafilter on A”.

We next determine the structure of these ultrafilters from within the
model (Lemma 18). A filter U on I is a Ramsey filter, if each finite partition
〈C1, . . . Cn〉 of [I]2 admits a homogeneous set H ∈ U (which satisfies [H]2 ⊆ Ci

for some i ≤ n). Note that a free Ramsey filter is an ultrafilter. [Given S ⊆ I
consider the partition C1 = [S]2, C2 = [I \ S]2 and C3 = [I]2 \ (C1 ∪ C2). If U
is free, then |H| ≥ 3 and so [H]2 ⊆ C3 is impossible. As H ∈ U is homogeneous
it follows that H ⊆ S or H ⊆ I \ S , depending on [H]2 ⊆ C1 or C2 .]
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Lemma 17. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and
Sfinite(I) < Γ < Aut(B) . In V (I) , consider C ⊆ [A]2 . Then C ∈ WΓ

B , if
and only if for some ordered partition (support) Π = 〈P1, . . . , Pm〉 of A into
elements Pk ∈ B there is a representation of the form

C =
⋃

{i}∈M1

[Pi]2 ∪
⋃

{i,j}∈M2

([Pi ∪ Pj ]2 \ ([Pi]2 ∪ [Pj ]2))

where Mk ⊆ [{1, ...m}]k .

Proof. We verify “only if”: Let Π be a support of C . If S ∈ C ∩ [Pi]2 ,
then {π(S);π ∈ Sfinite(Pi)} = [Pi]2 . Therefore C ⊆ [Pi]2 , as these permutations
extend to elements of stab(Π), and we may set M1 = {{i};C ∩ [Pi]2 6= Ø} .
Similarly, if S ∈ C and S∩Pi 6= Ø, S∩Pj 6= Ø and i 6= j , then C ⊆ [Pi∪Pj ]2 \
([Pi]2∪ [Pj ]2) and we may set M2 = {{i, j};C∩([Pi∪Pj ]2 \([Pi]2∪ [Pj ]2)) 6= Ø} .

Lemma 18. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and
Sfinite(I) < Γ < Aut(B) . Then WΓ

B |=“free ultrafilters on A are Ramsey”.

Proof. In WΓ
B , let U be an ultrafilter on A , 〈Ck; k ≤ n〉 be a finite

partition of [A]2 and let Π be a support of U and all Ck . As Π is a finite
partition of A and U is an ultrafilter, there is some i ≤ m such that Pi ∈ U .
The set H = Pi is homogeneous. For if {i} ∈ M1(k), then [H]2 ⊆ Ck (where
M1(k) is M1 of Ck in lemma 17) and {i} 6∈ ∪k≤nM1(k) is impossible. [Otherwise
the Ck do not cover [Pi]2 ⊆ [A]2 .]

This result relates to the “social structure” of decision rules. As has been
observed by Skala [30], p. 255, decision rules which correspond to free Ramsey
filters are of a particular interest: They admit a decisive coalition where “each
knows the others” (a “clan”), or a decisive coalition where “no one knows any
other”. ([30] uses the partition C1 = {{i, j}; i knows j} , assuming that then
also j knows i , and C2 = [I]2 \ C1 .) We have shown in lemma 18 that this
observation applies to all reasonable nondictatorial social welfare functions on A
in WΓ

B ; it also applies to dictatorial ones. This motivates another “definition of
finite”:

A reasonable social welfare function on I is Ramsey, if the ultrafilter of
the decisive coalitions is principal or Ramsey. A set I of individuals with at least
two elements is Skala finite, if and only if each reasonable social welfare function
with the domain X I is Ramsey (equivalently: if and only if each ultrafilter on I
is principal or Ramsey).

Arrow finite implies Skala finite and in all Weglorz’ models the set A of
atoms is Skala finite by lemma 18. Lemma 19 (which follows from lemmas 15 and
11) shows that these notions are of a different strength. So we have a hierarchy:
finite, Arrow finite, Skala finite.

Lemma 19. Relative to ZF set theory, the following assertion depends
on AC : “If I has at least two elements, then I is Skala finite, if and only if I
is Arrow finite”.
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Skala (c.f. [29], p. 214) has investigated the significance of independence
results9 for the economist. He argues that in social choice theory existence
results which depend on AC (or its weak forms SPI and BA) in an essential
way should not be taken as undebatable facts. In this paper we do not insist
on a particular axiomatic system of set theory being suitable for studying social
choice. Instead, we investigate several alternatives (in terms of B and Γ).

3. Main results.

3.1. Finite sets of alternatives. How does Armstrong’s setting [1]
relate to the models?

We ask for a condition which ensures that a decision rule F on the
alternatives and profiles of WΓ

B (which will be sets of WΓ
B ) is a set in the sense

of WΓ
B . To this end we will relate the set theoretic notion of “symmetry” with

the social choice theoretic notion of “anonymity” (c.f. [20]). We assume (in this
and the next section, only) that
• X is finite and fixed.

In view of [I]1 ⊂ B ⊆ P(I) (which reduces the number of dictators to 0
or 1) we may identify the set I of the individuals with the set A of the atoms
of V (I) [and have V (I) |=“B ⊆ P(A)”]. Economists (c.f. [1]) interpret B as the
algebra of all “observable” (or “describable”; c.f. [23]) coalitions; by lemma 3 in
WΓ
B “symmetry = describability” (for subsets of A).

If Γ = Aut(B), then the interpretation of [8] requires that empirically
meaningful concepts (e.g. social welfare functions) should be described in terms
of “observable” coalitions only: These descriptions ensure (hereditary) symme-
try. Hence empirically meaningful social welfare functions should be symmetric
(and the asymmetric ones shall not be viewed as idealizations of real decision pro-
cedures). We extend this interpretation to the general case Γ < Aut(B), where
the “description” of the “meaningful” concepts might use additional structure.
For example, Γ = stab(U) of lemma 16 permits definitions which use the prime
filter U .

The finite set X of options will be represented by its cardinal number,
a pure set in WΓ

B . The next step is the characterization of the preferences
of the model. As the options form a pure set of WΓ

B , it follows trivially that
each collection of options and each preference relation (of the “mathematical
universe”) is pure, too, and therefore a set in the sense of the model.

The description of the profiles and profile structures of the model is
nontrivial: We ask for a criterion that a profile structure (X,p) (where dom(p) =
A represents I ) on a finite pure set X is a set in the sense of the model. The
following condition (due to [1]) which is a notion of “describability” (c.f. [8] and
[23]) ensures that: p is B-measurable, if x, y ∈ X ⇒ Pp(x, y) ∈ B . We set
• PI

B(X) = {p ∈ PI(X); p is B -measurable}

9
[4] has proposed similar arguments about the axiom of constructibility.
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Lemma 20. If I is infinite, [I]1 ⊂ B ⊆ P(I) , Sfinite(I) < Γ < Aut(B)
and the options form a finite set X ∈ WΓ

B , then for a profile p ∈ V (I) of A on
X the following assertions are equivalent:
(i) p ∈ WΓ

B
(ii) V (I) |=“p is B-measurable”.

Proof. If p ∈ WΓ
B , then x, y ∈ X implies (for sets in WΓ

B ) that
P (x, y) = {a ∈ A;x ¹a y} ∈ P(A). By lemma 3 this powerset in the sense
of WΓ

B corresponds to (the copy of) B (in the model V (I)); therefore V (I) |=
P (x, y) ∈ B . Conversely, a profile p ∈ V (I) on a finite (and without loss of
generality pure) set X attains at most finitely many values p(a) =vk∈ WΓ

B ,
k = 1, 2, ...K . As p is B-measurable, P (x, y) ∈ B and therefore
p−1(vk) = Sk = {a ∈ A; p(a) =vk}

= {a ∈ A; (∀x, y ∈ X)(x ¹a y ↔ x vk y)}
= ∩{P (x, y);x vk y} \ ∪{P (x, y);x 6vk y}
∈ B ⊆ WΓ

B , as X is finite.
We conclude that p is defined as follows as a set in WΓ

B
p(a) =vk∈ WΓ

B , if a ∈ Sk ∈ WΓ
B , where k = 1, ...K .

We next consider a decision rule F on XA and ask if its restriction to
WΓ
B is in the model. The domain “XA in the sense of WΓ

B ” (i.e. XA ∩ WΓ
B )

is the set XA
B of the “B-measurable profile structures” in V (I), where (in the

“mathematical universe”) we define:
• X I

B = {(Y,q);Y ⊆ X and q ∈ PI
B(Y )}

Since ¹F∈ WΓ
B and (the finite pure set) X is not moved by the permutations

in Γ, a decision rule F with domain XA
B satisfies F ⊆ WΓ

B . Thus F ∈ WΓ
B , iff

F is symmetric.

In social choice theory (c.f. [21]) a permutation π ∈ S(I) defines a
permutation

p′ = pπ = 〈¹πi; i ∈ I〉
of the individual preferences p . In lemma 22 we apply this notion to translate
symmetry. There we let p′ correspond to the permutation π−1 (and its extension
to the sets of V (I)).

• A decision rule F on X I
B is Γ-anonymous, where Γ < S(I), if for all permuta-

tions π ∈ Γ the following holds, whenever Y ⊆ X and qπ on Y is B -measurable:
¹=¹′ , where
¹ is the social preference (decision) of F (Y,q) and
¹′ the social preference (decision) of F (Y,qπ).

• A decision rule F on X I
B is M-anonymous, if it is S(I)-anonymous.

• A decision rule F on X I
B is C-anonymous, if it is Sfinite(I)-anonymous.

• A decision rule F on X I
B is topologically Γ-anonymous, where Γ < S(I) is a

topological group, if there is an open (relative to Γ) subgroup Γ′ < Γ such that
F is Γ′ -anonymous.

The idea of Γ-anonymity may be traced back to e.g. [20]. It is a condition
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of “equal treatment” of individuals (voters), where “equality” is (informally) de-
fined by means of a group Γ of permutations and statements (such as CF (p) =¹)
which should be invariant under Γ. Here the assumption Sfinite(I) < Γ is derived
from the minimal requirement that each pair of individuals be “treated equally”.

M-anonymity is anonymity in the sense of Mihara [21]. It corresponds
to the maximal assumption of “equality”: Equipotent coalitions are “treated
equally”.

If Γ < Aut(B), then the condition qπ ∈ PI
B(Y ) is satisfied for all π ∈ Γ,

Y ⊆ X and q ∈ PI
B(Y ), whence in this case Γ-anonymity generalizes the

“conventional” definition which omits “whenever ...” and refers to the finite
permutations only. [Apply remark (ii) in [21], p. 506: pπ is B-measurable,
as π ∈ Aut(B) is B-measurable.] The “conventional” notion therefore is C-
anonymity.

As we shall consider only Weglorz’ topology, we may reformulate topo-
logical anonymity in terms of supports. (Note that a decision rule F ∈ WΓ

B
admits a support Π: If π ∈ stab(Π), then π(F ) = F .) A decision rule F on X I

B
is topologically Γ-anonymous, if for some partition Π of I into finitely many
elements of B and all permutations π ∈ stab(Π) it holds that ¹=¹′ . Thus only
the voters within the same class of the partition are “equally treated”. (The
group stab(Π) does not contain all finite permutations but only those which
exchange individuals in the same class.)

If Γ′ < Γ and F is Γ-anonymous, then F is also Γ′ -anonymous. We
conclude:

Lemma 21. Without AC , let I be infinite, assume [I]1 ⊂ B ⊆ P(I)
and Sfinite(I) < Γ < Aut(B) , let F be a M-anonymous decision rule on X I

B and
endow Γ with the Weglorz topology. Then F is (topologically) Γ-anonymous.

Γ-anonymity is strictly stronger than topological Γ-anonymity in gen-
eral. For a C-anonymous decision rule excludes dictators, while a topologically
Sfinite(I)-anonymous decision rule does not [let Γ′ < stab({i}), i the dictator].

Lemma 22. Let I be infinite, assume [I]1 ⊂ B ⊆ P(I) and Sfinite(I) <
Γ < Aut(B) , endow Γ with the Weglorz topology and consider a decision rule
F ∈ V (I) on XA

B , where X is finite. The following assertions are equivalent:
(i) F ∈ WΓ

B
(ii) V (I) |=“F is topologically Γ-anonymous”.

Proof. In view of the assumption dom(F ) = XA
B , the domain is

supported by any Π. (We may use more general F , intersecting Γ′ with the
stabilizer of some support of the domain.)

We first show that if π ∈ Γ, then π−1(q) = qπ . The computation of
this group action is as follows.

Consider the extension of π ∈ S(I) to V (I) and let q ∈ V (I) be
a function on the set A of atoms whose range consists of binary relations
q(a) =¹a⊆ Y 2 ⊆ X2 ∈ V (I). We assume without loss of generality that the fi-
nite set X ∈ WΓ

B is pure. Then q ⊆ WΓ
B and the permutations of stab(Π) do not
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move Y ⊆ X . In this case π(¹a) = {〈πx, πy〉;x ¹a y} =¹a , whence π−1(q) =
{〈π−1a, π−1(¹a)〉; a ∈ A} = {〈π−1a,¹a〉; a ∈ A} = {〈b,¹πb〉; b ∈ A} = qπ .

We conclude that π−1(Y,q) = (π−1Y, π−1q) = (Y,qπ). If we apply
this identity to F we obtain π−1(F (Y,q)) = π−1(Y,¹,q) = (Y,¹,qπ) and
F (π−1(Y,q)) = F (Y,qπ) = (Y,¹′,qπ). Here the social preferences ¹ and ¹′
are the same as in the definition of Γ-anonymity. Hence π commutes with F
(i.e. π(F (X)) = (π(F ))(π(X)) = F (π(X)) or π(F ) = F as graphs), if and only
if the social preferences ¹=¹′ coincide. It follows that stab(Π)-anonymity is
the assertion that Π is a support of F .

We conclude: Decision rules which fail to be topologically anonymous are
“empirically meaningless”, even if they are constructed without AC ! Lemma 23
illustrates this point.

Lemma 23. Without AC , let I be countably infinite and assume [I]1 ⊂
B ⊆ P(I) . There is a reasonable B-social welfare function F on I which respects
isomorphisms but which is not topologically Γ-anonymous for any Γ with the
Weglorz topology and Sfinite(I) < Γ < Aut(B) .

Proof. We construct a hierarchical social welfare function F associated
to an injective sequence δ = 〈dn;n ≥ 0〉 of individuals dn ∈ I . (A similar
construction gives a nondictatorial F ; c.f. [21], p. 510.) We set x ¹F y , if
(lexicographically) either x ∼dn y for all n ≥ 0 or if x ≺dm y for some m ≥ 0
and x ∼dn y for all n < m . If n 6= m , then dn and dm are not “treated
equally”. We obtain a contradiction, as a topologically anonymous decision rule
distinguishes only finitely many classes of “equally treated” individuals.

The structure of the decision rules is considerably simplified, if the pro-
files are strict; here p is strict, if all ∼i= Ø. Lemma 24 excludes “hierarchies
of dictators” as in lemma 23. Lemmas 23 and 24 are illustrations of the more
general problem 5.

Lemma 24. Without AC , let I be infinite, assume [I]1 ⊂ B ⊆ P(I) and
consider a set F of dictatorial decision rules F on dom(F ) = {(Y,q) ∈ X I

B ; q is
strict} . Then F (Y,q) = (Y,q(dF ),q) for F ∈ F with the dictator dF ∈ I and
F is topologically anonymous.

3.2. Applications. The formulation of our main result may be sim-
plified, if we use the notation of [1]: A reasonable B-social welfare function is a
monotonic and strictly unanimous decision rule which is defined on the transitive,
complete and B-measurable profile structures X I

B (instead of X I ; again X ∈ ω
is a finite set of at least three options) whose social preferences are transitive and
complete. It then “observes” B .

Theorem 1. Let X ∈ ω be a finite set of at least three options, I an
infinite set of individuals, B ⊆ P(I) the algebra of observable coalitions which
satisfies [I]1 ⊆ B and Γ < Aut(B) a permutation group such that Sfinite(I) < Γ
and Γ carries the Weglorz’ topology. Then the following assertions are equivalent:
(i) V |=“there is a topologically Γ-anonymous reasonable B-social welfare func-
tion on I which does not admit a dictator”;
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(ii) V (I) |=“there is a topologically Γ-anonymous reasonable B-social welfare
function on A which does not admit a dictator”, where B ⊆ P(A) ∈ V (I) is the
copy of B ∈ V ;
(iii) WΓ

B |=“there is a reasonable social welfare function on A which does not
admit a dictator”;
(iv) WΓ

B |=“there is a free ultrafilter on A”.

Proof. (i) ↔ (ii) carries the notational simplifications of section 2.1.
(ii) ↔ (iii) is the content of lemmas 20 and 22. (iii) ↔ (iv) follows from lemmas
8 and 10.

Theorem 1 has several economic applications. Combining it with lemmas
13 and 21, we may improve proposition 1 in [21]. (Note that B = P(I) implies
Aut(B) = S(I) and X I

B = X I .)

Lemma 25. In ZFC , let I be infinite and suppose a reasonable so-
cial welfare function F on I is nondictatorial. Endow S(I) with the Weglorz
topology. Then F violates topological S(I)- (and therefore M-) anonymity.

If we use lemma 12 instead, then we obtain the following analogy to
theorem 1 of [21]:

Lemma 26. In ZFC , let I be countably infinite, B with [I]1 ⊂ B ⊆ P(I)
be countable and structured and endow Aut(B) with the Weglorz topology. Then
a nondictatorial reasonable B-social welfare function on I violates topological
Aut(B)- and M-anonymity.

Fishburn’s resolution of Arrow’s impossibility, lemma 10, has been criti-
cized on various grounds. For example, [19] mention that decision rules which are
based on prime filters exhibit an inherent arbitrariness in selecting decisive coali-
tions. Lemmas 25 and 26 are illustrations of this point in Armstrong’s setting.
Note that for B of lemma 26 there is a “constructive” nondictatorial reasonable
B-social welfare function F (by lemmas 10 and 27).

Lemma 27.Without AC , if I is infinite and B is countable and satisfies
[I]1 ⊂ B ⊆ P(I) , then B admits a nonprincipal prime filter U .

Proof. Modify the construction in [24] or [22]. [24] gives a social choice
interpretation of the proof. [22] considers the algebra of the recursive (decidable)
subsets of ω and constructs a nondictatorial social welfare function which is
“pairwise computable” relative to the second jump Ø′′ .

In general, by lemma 26, lemma 27 defines welfare functions which are
not anonymous. (As [24] notes, the construction depends in an essential way on a
fixed enumeration of the observable coalitions. By lemma 4 no such enumeration
is in the model.)

As follows from lemma 15 (ii) and theorem 1, the existence of topolog-
ically Γ-anonymous B-social welfare functions depends both on Γ and B . As
the ultrafilter of lemma 15 has support Π = 〈A〉 , in lemma 28 we can strengthen
topological to C-anonymity (c.f. [21] on p. 506).
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Lemma 28. In ZFC , let I be infinite and assume [I]1 ⊂ B ⊆ P(I) .
Then there exist nondictatorial reasonable B-social welfare functions which sat-
isfy C-anonymity.

Lemma 16 shows that a nonprincipal prime filter which is declared “de-
scribable” is not lost by the model; hence by lemma 10 (as the support of the
ultrafilter is Π = 〈A〉):

Lemma 29. In ZFC , let I be infinite, assume [I]1 ⊂ B ⊆ P(I) , let U
be a nonprincipal prime filter of B and set Γ = {π ∈ Aut(B);πU = U} . Then
there exist nondictatorial reasonable B-social welfare functions which satisfy Γ-
anonymity.

In view of Lemma 16 all prime filters of the “mathematical universe” can
be made “describable”, and so is e.g. Fishburn’s welfare function of lemma 29.
By lemma 23 there are, however, “inherently meaningless” reasonable B-social
welfare functions not in any WΓ

B (but taken care of by [1]).
Proposition 2 of [21] translates into a set theoretical result which im-

proves upon lemma 15 (i):

Lemma 30. In ZFC , let I be infinite, let B be an algebra which satisfies
[I]1 ⊂ B ⊆ P(I) and does not contain complementing sets of the same cardinality
and assume Sfinite(I) < Γ < Aut(B) . Then WΓ

B |=“there are free ultrafilters on
A”.

Proof. Proposition 2 of [21] asserts that there is a reasonable B-
social welfare function which satisfies M-anonymity. It satisfies topological Γ-
anonymity by lemma 21. Now apply theorem 1. (In V (I) the ultrafilter of this
construction is U = {S ∈ B; |S| = |A|} .)

3.3. Infinite sets of alternatives. In the ecological context there are
decision problems which ask for infinite societies with infinitely many choices (c.f.
[9]). There the individuals i ∈ I represent potential hazards such as damages
of type Di due to a substance Si in a medium Mi , Ti years from now. We
assume that there are infinitely many dangers about which we communicate in
terms of a Boolean algebra B of “types” of risks. An atom of B represents a
classification of equivalent hazards which by the assumption [I]1 ⊆ B are not
further differentiated. Also it is natural to assume that the set X of the options
is infinite (c.f. section 2.2).

For many practical purposes it suffices to consider (substructures of)
the standard structure (RI ,ps), where for (the alternatives) x, y ∈ RI we set
x ≤i y ⇔ x(i) ≤ y(i) and ps(i) =≤i is the standard profile. The standard
structure identifies the options with assignments of individual “cardinal” utilities.
It has an obvious ecological interpretation ([9]): The alternative x is identified
with the allocation x ∈ RI of the (forecasted) quantitative measurements of its
induced i-th damage. (For example, identify Di with the expected concentration
x(i) of a substance Si . This interpretation gives a special meaning to x(i) = 0.)

The bounded standard structure is the substructure `∞(I) ⊆ RI of
the bounded functions. (As follows from lemma 31, in Weglorz’ models the
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“bounded” notion coincides with the general one.)

We are interested in the “describable” options of RA∩WΓ
B : The decision

maker is confronted with imagined damages x : I → R . Let us assume that the
risks are described (or approximated in the mind of the decision maker) in terms
of finitely many types of “similar” potential hazards (coalitions of B). Then the
describable options are B-simple, where a function x : I → R is B-simple, if it
takes only finitely many values r ∈ R and all x−1(r) ∈ B . (Thus we should not
think of I as a time series, as the assumption excludes e.g. exponential decay.)
We let `B(I) ⊆ RI consist of all B-simple options. The restriction ps|`B(A) of
the standard profile to `B(A) is a set in the sense of WΓ

B . We call it the B-simple
standard profile and abbreviate it as ps (if there is no danger of confusion).

Lemma 31. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and
Sfinite(I) < Γ < Aut(B) ; then (for RA ∈ V (I)) we have RA ∩WΓ

B = `B(A) .

Proof. Since a B-simple function ∈ V (I) is defined as a set in WΓ
B

(constructed in a finite way from parameters ∈ WΓ
B , such as r ∈ R, b ∈ B), it

is a set in the sense of WΓ
B . Conversely, a function x : A → R ∈ WΓ

B is finitely
valued by lemmas 4 and 1. As each x−1(r) is a subset of A in the sense of the
model, lemma 3 implies x−1(r) ∈ B .

Many of the decision rules F (or “ecological indices”) which are actually
applied in ecological risk management (e.g. political decisions) are defined on
X fin
B (I). (This domain of the “mathematical universe” will be identified with

X fin
B (A) ∈ WΓ

B .)

• X fin
B (I) = the finite substructures of (`B(I),ps)

Legally sound decisions (c.f. [9]) seem to require monotonicity. Then
Y ∈ X fin

B (I) implies that F (Y) = (Y,¹F,can |Y,ps|Y ), where ¹F,can is the
canonical “decision” on RI (defined as in the proof of lemma 7). Isomorphisms
need not be respected. [Example: Indices which use weighted arithmetic means.]

We ask for a description of the monotonic decision rules on X fin
B (A)

which are sets in WΓ
B . “Anonymity of section 3.1” loses its original intent. [It

is automatically satisfied: If π ∈ Γ, then pπ
s = ps ; also π(ps) = ps .] Instead

we apply neutrality (c.f. [20]) together with anonymity (in the sense of “social
welfare orderings” in [25], but for π restricted to Γ). For these methods a version
of Arrow’s theorem will apply.

Lemma 32 is the ecological counterpart to lemma 9. Its condition of
neutrality roughly means that beyond its ordinal information the cardinal mea-
surement of the damages does not matter. (So we are in a situation which
resembles the theory of Arrow’s social welfare functions.) Note that there are
some neutral methods of ecological planning. (This is an empirical fact; c.f. [9].
We do not propose their use.)

Lemma 32. Without AC , a monotonic decision rule F with domain
X fin
B (I) respects isomorphisms, if and only if it is 1-neutral: for all x, y, x′, y′ ∈

`B(I) the following assertion
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(∀i ∈ I)(x(i) ≤ y(i) ⇔ x′(i) ≤ y′(i))
implies the assertion x ¹F,can y ⇔ x′ ¹F,can y

′ .

The following condition of invariance (where (x ◦ π)(i) = x(π(i))) is a
variant of “anonymity in the theory of social welfare orderings”.

• A relation ¹ on `B(I) is Γ-anonymous, if
x ¹ y ⇒ x ◦ π ¹ y ◦ π

for all π ∈ Γ and all x, y ∈ `B(I) such that x ◦ π and y ◦ π ∈ `B(I).
• A relation ¹ on `B(I) is topologically Γ-anonymous, if it is Γ′ -anonymous for
some open Γ′ < Γ.
• A monotonic decision rule F on X fin

B (I) is (topologically) Γ-anonymous, if
¹F,can on `B(I) is (topologically) Γ-anonymous.

We may combine neutrality and anonymity into the following condition
of “Γ-neutrality”.

Lemma 33. Without AC , let Γ < Aut(B) , where [I]1 ⊂ B ⊆ P(I) .
Then a monotonic decision rule F with domain X fin

B (I) is Γ-anonymous and
respects isomorphisms, if and only if it is Γ-neutral: for all π ∈ Γ and all
x, y, x′, y′ ∈ `B(I) the following assertion

(∀i ∈ I)(x(i) ≤ y(i) ⇔ x′(πi) ≤ y′(πi))
implies the assertion x ¹F,can y ⇔ x′ ¹F,can y

′ .

Proof. If Γ′ < Γ, then Γ-neutrality implies Γ′ -neutrality and therefore
1-neutrality of lemma 32. Next we consider x∗ = x ◦ π−1 and y∗ = y ◦ π−1 .
Then π ∈ Aut(B) implies x∗, y∗ ∈ `B(I). As x∗(πi) = x(i) and y∗(πi) = y(i),
Γ-neutrality (with x′ = x∗, y′ = y∗ ) implies x ¹F,can y ⇒ x∗ ¹F,can y

∗ which
is Γ-anonymity.

Assume conversely that ¹F,can is Γ-anonymous and 1-neutral. Let
x, y, x′, y′ satisfy the premise of Γ-neutrality. Then for all j ∈ I (which we write
as j = π(i), some i ∈ I ) we have x∗(j) ≤ y∗(j) ⇔ x(i) ≤ y(i) ⇔ x′(j) ≤ y′(j),
whence by 1-neutrality x∗ ¹F,can y∗ ⇔ x′ ¹F,can y′ . Anonymity implies
x ¹F,can y ⇔ x∗ ¹F,can y

∗ [x ¹F,can y ⇒ x∗ ¹F,can y
∗ and x∗ ¹F,can y

∗ ⇒ x =
x∗ ◦ π ¹F,can y = y∗ ◦ π ]. Therefore x ¹F,can y ⇔ x′ ¹F,can y

′ .

The following characterization of Γ-anonymity is similar to lemma 22.
It applies isomorphisms Φ between finite substructures of `B(A). Note that each
such Φ ∈ V (I) is a set in WΓ

B (and conversely).

Lemma 34. Let I be infinite, assume [I]1 ⊂ B ⊆ P(I) and Sfinite(I) <
Γ < Aut(B) and let Γ carry the Weglorz topology. The following assertions are
equivalent for a monotonic decision rule F ∈ V (I) with domain X fin

B (A) which
respects isomorphisms.
(i) F ∈ WΓ

B
(ii) V (I) |=“F is topologically Γ-anonymous”.

Proof. “(ii)⇒(i)”. In view of lemma 33 we may assume that ¹F,can

is stab(Π)-neutral, Π a finite ordered partition of A into elements of B . Then
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¹F,can is supported by Π. For given x ¹F,can y , consider x∗ and y∗ from the
proof of lemma 33. Then x∗ = π(x) and y∗ = π(y), where π ∈ stab(Π) now acts
on the sets. [π(x) = {〈πa, π(x(a))〉; a ∈ A} = {〈b, x(π−1b)〉; b ∈ A} = x∗ , where
b = π(a) and π(r) = r for r = x(a) ∈ R .] As x(i) ≤ y(i) is equivalent
to x∗(πi) ≤ y∗(πi), all i ∈ I , we conclude from stab(Π)- neutrality that
x ¹F,can y ⇔ x∗ ¹F,can y

∗ ⇔ π(x) ¹F,can π(y); thus π(¹F,can) =¹F,can .
“(i)⇒(ii)”: If Π is a support of F , then ¹F,can is stab(Π)-neutral. For
assume that for all i ∈ I and some π ∈ stab(Π) and x, y, x′, y′ we have
x(i) ≤ y(i) ⇔ x′(πi) ≤ y′(πi). Then the substructures on {x, y} and on
{x′ ◦ π, y′ ◦ π} of (`B(A),ps) are isomorphic, whence x ¹F,can y , if and only if
x′ ◦π ¹F,can y

′ ◦π , if and only if x′ = π(x′ ◦π) ¹F,can π(y′ ◦π) = y′ [here we use
π ∈ stab(Π)]. This is stab(Π)-neutrality and the conclusion follows from lemma
33.

The (bounded) standard structure satisfies Arrow’s and Fishburn’s the-
orems, lemma 35, but the substructure of the finitely supported allocations (the
“support” {i ∈ I;x(i) 6= 0} is finite) does not (c.f. [9] and the references cited
there). It is therefore meaningful to reprove theorem 1 for the standard structure.
[Note the following difference to Arrow’s theorem: The dictator depends on the
particular profile ps , but the options are variable. A dictator i therefore has a
different meaning: The ecological decision maker primarily will be interested in
minimizing the danger “i”. Also, the standard structure is not “rich”: While
(0, 1) ≤1 (1, 0), there is no other profile p such that for the individual “1” we
have (1, 0) ¹1 (0, 1).]

In analogy to the terminology of sections 2.2 and 3.2 (recall footnote
1) we say, that a monotonic and strictly unanimous decision rule on X fin

B (I)
which respects isomorphisms [!] and whose social preferences are transitive
and complete is a reasonable B-ecological welfare function on I . A reasonable
ecological welfare function is defined on the finite substructures of the standard
structure, instead. Lemmas 3 and 31 imply that a reasonable ecological welfare
function on A which is a set in WΓ

B is a reasonable B-ecological welfare function
in V (I).

Lemma 35. Without AC , let I have two or more elements and consider
a nondictatorial reasonable ecological welfare function on I . Then the set U of
decisive coalitions is a free ultrafilter on I . Conversely, given a free ultrafilter
on I , we may construct a nondictatorial reasonable ecological welfare function
on I .

The following ecological results paraphrase the social ones. First, we
combine lemmas 34 and 35.

Theorem 2. Let I be an infinite set and assume [I]1 ⊂ B ⊆ P(I) and
Sfinite(I) < Γ < Aut(B) . Then the following assertions are equivalent:
(i) V |=“there is a topologically Γ-anonymous reasonable B-ecological welfare
function on I which does not admit a dictator”;
(ii) WΓ

B |= “there is a free ultrafilter on A”.
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Next we apply the lemmas 12, 13 and 15, 30 about ultrafilters in WΓ
B .

Lemma 36. In ZFC , assume that I = ω and let either B = P(I) or
B be countable and structured such that [I]1 ⊂ B ⊆ P(I) . If Aut(B) carries the
Weglorz topology, then topologically Aut(B)-anonymous reasonable B-ecological
welfare functions are dictatorial.

Lemma 37. In ZFC , let I be infinite and let B be an algebra which
satisfies [I]1 ⊂ B ⊆ P(I) . Assume that either Γ = Sfinite(I) or that Sfinite(I) <
Γ < Aut(B) and B does not contain complementing sets of the same cardinality.
There are nondictatorial Γ-anonymous reasonable B-ecological welfare functions
on I .

4. Discussion.

4.1. Open problems. We have seen that Armstrong’s notion of “ob-
servable” coalitions which form an algebra B (such that [I]1 ⊂ B ⊆ P(I)) can
be extended to a definition of “describable” decision rules which are elements
of a Weglorz model WΓ

B . The additional ingredient is a group Γ (such that
Sfinite(I) < Γ < Aut(B)) which may be interpreted as a notion of “equal treat-
ment”.

The existence of a dictator for “describable” and reasonable social (or
ecological) welfare functions (Arrow’s theorem) depends on both B and Γ: If B =
P(I) and Γ = S(I), then there is a dictator who disappears, if B or Γ become
“small”. Thus Arrow’s axioms (which are logically inconsistent for finitely many
individuals) remain empirically inconsistent (not realizable in an empirically
meaningful way) for infinite societies, if they are combined with stronger notions
of “equal treatment” (within given coalitions: “finite discrimination”) embodied
in Γ and liberal regulations B about coalition forming. It is an open problem in
set theory to characterize these combinations (“dictator problem”):

Problem 1. Find a simple criterion about B and Γ which tells if in WΓ
B

there is a free ultrafilter on A .

A possible extension of our results depends on a weakening of the de-
terministic decision rules of this paper to randomized ones, where for example
a lottery chooses a dictator. In Armstrong’s context we may define the lottery
from a finitely additive probability measure µ on B , where µ(B) is the prob-
ability that the coalition B ∈ B contains the dictator. As follows from lemma
13, if I = ω , B = P(ω) and Γ = S(I), then the lotteries which may be repre-
sented as sets of the corresponding Weglorz model (short: symmetric lotteries)
involve only finitely many individuals. In this model symmetric lotteries have
“oligarchic” characteristics: They ignore the preferences of most individuals. On
the other hand, by the following lemma 38 (an observation on p. 112 of [7]), the
following reasoning about decision rules of A in WΓ

B is false: “If all deterministic
symmetric reasonable social welfare functions are dictatorial, then all symmetric
randomized decision rules have oligarchic characteristics.”

Lemma 38. Set I = Z , let B be the algebra which is generated by the
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arithmetic sequences and the finite sets and let the group Γ be generated by the
translations and the finite permutations. Then
(i) WΓ

B |=“Each ultrafilter on A is principal” and
(ii) WΓ

B |= “There is a probability measure µ on P(A) which vanishes on the
finite sets”.

The society of the lemma is best understood as the set of all (past
and future) generations of one individual. (They are represented by the atoms
of the model.) The lottery samples the “present generation” which decides.
The algebra B resembles the coalitions which are computed by finite automata
(c.f. [8]). The group Γ says that the decision rule is not biased towards a
particular choice of “present” (invariance of µ w.r. to the translation x 7→ x+1)
and moreover arbitrary pairs of generations are “treated equally”. The density
µ(B) = lim

n→∞
|{z∈B;−n<z<n}|

2n−1 is an example of a measure for lemma 38.

We conclude with a randomized version of the “dictator problem”.

Problem 2. Find a simple criterion about B and Γ which tells if in WΓ
B

there is a probability measure µ on A which vanishes on the finite sets.

Lemmas 28 and 37 seem to resolve Arrow’s theorem, if B or Γ are
“small”. We object to this resolution: B and Γ define a notion of “empirical
meaningfulness” which should be applicable in fields different from economy, too.
Results of [6] about Gleason’s theorem in the Hilbert space `2(A) of the model
WΓ
B suggest refuting “small” algebras B or Γ. The quantum theory notation for

the following lemma (which slightly extends [6]) is explained in [15] and [17].

Lemma 39. Let I be infinite and assume [I]1 ⊂ B ⊆ P(I) and
Sfinite(I) < Γ < Aut(B) . The following assertions are equivalent:
(i) WΓ

B |=“each bounded complex-valued finitely additive measure m on P(A)
is concentrated on a finite set”;
(ii) WΓ

B |=“the expectation values of (finitely additive) observables A on `2(A)
at (finitely additive) states σ exist”.

We conclude that quantum theory gives another motivation10 for the
“randomized dictator problem”.

Our main results express “describability” in terms of anonymity. We
have considered two extreme classes of decision rules; social (the “classical”
case) and ecological welfare functions. The “describable” reasonable social or
ecological welfare functions are topologically Γ-anonymous. For general decision
rules and general permutation models (instead of WΓ

B ) the following question
(“transcription problem”) is open:

Problem 3. Find an economically meaningful equivalent of “hereditary
symmetry” for general decision rules and models.

10
Alternatively one might restrict the admissible observables to the countably additive ones. This

condition, however, cannot be tested empirically.
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The “transcriptions” by means of the lemmas 22 and 34 depend on a
simple characterization of the symmetric profiles which does not generalize.

The standard profile is a special case of a componentwise defined profile
(replace ≤ by some relation vi on R or more generally on some subset of Rpi ).
It, too, is applied in ecology (c.f. [9]). By lemma 40 a componentwise defined
profile on the B-simple functions needs not be a set in the sense of WΓ

B , even if
it is B-measurable (c.f. lemma 20).

Lemma 40. Let I be countably infinite and assume [I]1 ⊂ B ⊆ P(I)
and Sfinite(I) < Γ < Aut(B) . Then in V (I) , there are componentwise defined
B-measurable profiles p ∈ V (I)\WΓ

B on A of complete and transitive preferences.

Proof. In order to construct p 6∈ WΓ
B , we let 〈Pk; k ∈ ω〉 be an infinite

partition of A into two-element sets (which by the premise are coalitions of B).
In V (I) we define vk as

r vk s⇔ (r ≥ s or r, s < k)
As R is a pure set, this sequence of relations is in WΓ

B . In V (I) we define p on
`B(A) as

x ¹a y ⇔ y(a) vk x(a), whenever a ∈ Pk

p 6∈ WΓ
B : Consider the constant functions r̄ ∈ `B(A), where r̄(a) = r ,

all a ∈ A . If p ∈ WΓ
B , so is the injective sequence n 7→ Sn , where Sn =

P (n− 1, n̄) = ∪{Pk; k > n} = A \ ∪{Pk; k ≤ n} ∈ B ; contradiction to lemma 4
(whose proof uses only finite permutations and does not depend on AC ).

p is B-measurable (as defined in sect. 3.1): If x, y ∈ `B(A), then there
is a finite partition 〈Qm;m ≤M〉 of A into elements of B such that x(a) = xm ,
if a ∈ Qm . If xm < ym , then Pp(x, y) ∩ Qm = Qm ∩ (∪{Pk; k > ym} =
Qm \ ∪{Pk; k ≤ ym} ∈ B . If xm ≥ ym , then Pp(x, y) ∩ Qm = Qm ∈ B .
Therefore also Pp(x, y) ∈ B .

The proofs of lemmas 22 and 34 answer the question, when a set F ⊆
WΓ
B of topologically Γ-anonymous reasonable B-social or B-ecological welfare

functions is empirically meaningful (lemma 41).

Lemma 41. Let I be infinite, assume [I]1 ⊂ B ⊆ P(I) and Sfinite(I) <
Γ < Aut(B) , endow Γ with the Weglorz topology and consider sets Fs of topolog-
ically Γ-anonymous decision rules F ∈ V (I) on XA

B (X a finite set of alterna-
tives) and Fe of topologically Γ-anonymous monotonic decision rules F ∈ V (I)
on X fin

B (A) which respect isomorphisms. Fs ∈ WΓ
B (resp. Fe ∈ WΓ

B ) if and only
if there is an open Γ′ < Γ such that F ∈ Fs (resp. F ∈ Fe ) and π ∈ Γ′ imply
G ∈ Fs (resp. G ∈ Fe ), where G is defined by (i) resp. (ii):
(i) G(Y,q) = (Y,¹G,q) , if F (Y,qπ) = (Y,¹G,qπ) , in the case Fs ;
(ii) f ¹G,can g ⇔ f ◦ π ¹F,can g ◦ π in the case Fe .

Proof. Lemma 22 proves (π−1F )(Y,qπ) = (Y,¹F ,qπ). Lemma 34
proves (f ◦ π−1, g ◦ π−1) ∈ π(¹F,can), if and only if f ¹F,can g . From this we
derive (i) resp. (ii) for G = π(F ).

In the ecological context sets F of decision rules arise from an analysis
([9]) of the decisions of government agencies: The consultant who prepares a
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decision usually applies a “formalism” F which is adapted to the particular
problem through an “interpretation”. (It determines a particular decision rule
F ∈ F .) We conjecture that only “formalisms” F ∈ WΓ

B are applied. However,
the practically applied decision rules in general do not respect isomorphisms,
whence lemma 41 does not apply.

For example (we report an empirical fact but do not judge its sound-
ness), many methods of “life cycle assessment” define “air pollution” by means
of a weighted sum of the concentrations x(i) of the airborne toxics (i.e. F = com-
parison by weighted sums). The weights depend on the “interpretation”. ([12]
defines the weights as the reciprocals of the minimal illegal emission levels11 .)
This example also shows that applied formalisms consist of sets F of decision
rules F with domain RJ , where J ⊆ I is finite (but not fixed).

It is an open problem to extend lemma 41 to general classes of decision
rules.

Problem 4. Find an economically meaningful equivalent of F ∈ WΓ
B ,

where F is a set of decision rules.

There are obvious extensions of problems 3 and 4 to other classes of
decision rules.

For example, the “randomized transcription problem” asks for a charac-
terization of the hereditarily symmetric generalized decision rules F : (X,p, µ) 7→
(X,¹,p, µ), where µ is a (herditarily symmetric) finitely additive measure on
B .

An easier problem is motivated by competitive equilibria. An exchange
economy is a triple X = (X,p, e), where X is a set of “commodity bundles”
(e.g. X = (R+)k ), p a profile and e ∈ XI an initial endowment. A generalized
decision rule F : (X,p, e) 7→ (X,¹,p, e) defines a social preference ¹ which
generalizes what is ordinarily called a price system and we may ask, when
F ∈ WΓ

B . [Commodity bundles are compared in terms of the values that
the price system assigns: B(i) = {x ∈ X;x ¹ e(i)} is the budget set and
D(i) = {x ∈ B(i); (∀y Âi x)(y 6∈ B(i))} is the demand set of i .]

Concerning problem 4, if a set F of generalized decision rules is given
(e.g. different price systems), one may ask, if some F ∈ F admits a Walrasian
equilibrium allocation. [f ∈ XI is a generalized Walrasian equilibrium alloca-
tion, if f(i) ∈ D(i) for all i ∈ I . We skip the condition that f be a feasible
allocation. In an abstract setting (without sums or integrals) it may be replaced
by some notion of “aggregation consistency” which relates to the endowments of
coalitions.] Again, only “empirically meaningful” F ∈ WΓ

B are of interest.

In view of lemmas 23 and 24 one might wonder, if there are interesting
finitely Γ-discrimatory decision rules with more than two equally treated com-
ponents. As the following construction shows, different supports Π give rise to
different topologically Γ-anonymous decision rules.

11
The regulation 95/365/EC of 25 July 1995 by the European Community has transformed this

interpretation into a peculiar legislation; c.f. its appendix 4.1 on “toxicity”.
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Consider, for instance, a partition Π = 〈P1, . . . , Pm〉 of the individuals
into social classes Pk ∈ B , a preference v on X (where |X| ≥ 2) and an
atomic probability measure µ on {1, ...m} . Define F (Y,q) = (Y,v |Y,q),
unless µ({k; (∀a ∈ Pk)(q(a) =¹)}) > 1

2 for some preference ¹ , in which case
F (Y,q) = (Y,¹,q).

Since the stabilizers of supports define only a special class of open sub-
groups, we may wonder, if the example generalizes: Are there are any restrictions
on the symmetry structure of decision rules?

Problem 5. Given a class F ⊆ WΓ
B of decision rules, determine the set

{stab(F );F ∈ F} of its stabilizers.
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