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ABSTRACT 

The purpose of our paper is to derive instructive analytics on how to account for differentials in 
demographic variables, and in particular mortality, when performing welfare comparisons over time. 
The idea is to “correct” in various ways estimated income distribution measures for “sample selection” 
due to differential mortality. We implement our approach empirically using three waves (1993, 1997 
and 2000) of the Indonesian Family Life Surveys (IFLS). We distinguish the direct effect of mortality, 
i.e. individuals who die are withdrawn from the population and no longer contribute to monetary 
welfare, from the indirect effect, i.e. the impact on survivors pertaining to the same household of dead 
individuals, who may experience a decrease or an increase in monetary welfare. For the case of 
Indonesia, we show that the direct and indirect effects of mortality on the income distribution have 
opposite signs, but have the same order of magnitude. We also show that the effect of other 
demographic changes, like changes in the structure of fertility, migration, and educational attainment, 
dominate the effects of mortality, whether direct or indirect. However, we find that none of these 
demographic developments are large enough to explain a significant part of the change in income 
distribution, whether the pre-crisis period (1993-1997) or the post-crisis period (1997-2000) are 
considered. 

Keywords: Differential Mortality, Income Distribution Dynamics, Welfare Comparisons, 
Decomposition. 

RÉSUMÉ 

L’objectif de ce papier est de proposer des instruments analytiques permettant de prendre en compte 
les différentiels relatifs aux variables démographiques, en particulier la mortalité, lorsqu’on effectue 
des comparaisons de pauvreté au cours du temps. L’idée de base consiste à « corriger » les estimations 
de la distribution du revenu de la sélection liée à la mortalité différentielle. Nous mettons en œuvre 
notre approche sur les trois vagues (1993, 1997 et 2000) de l’Indonesian Family Life Survey (IFLS). 
Nous distinguons l’effet direct de la mortalité, à savoir la disparition des individus décédés de la 
population de calcul du bien-être monétaire, de l’effet indirect, à savoir l’impact sur les survivants 
appartenant au même ménage qu’un individu décédé. Dans le cas de l’Indonésie, nous montrons que 
les effets directs et indirects de la mortalité sur la distribution du revenu ont des signes opposés mais 
environ le même ordre de grandeur. Nous montrons aussi que l’effet des autres changements 
démographiques (comme ceux de la structure de la fécondité, de la migration ou de l’éducation), 
dominent les effets de la mortalité qu’ils soient directs ou indirects. Cependant, nous trouvons enfin 
qu’aucun de ces changements démographiques n’est assez important pour expliquer une part 
significative du mouvement de la distribution du revenu, que l’on regarde la période précédant la crise 
économique (1993-97) ou la période suivante (1997-2000). 

Mots-clefs : Mortalité différentielle, Dynamique de la distribution du revenu, comparaisons de bien-
être, décomposition. 

JEL codes : D10, D63, J17 
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1 Introduction1

Demographic behavior may significantly affect the income distribution, when-

ever it is correlated with the used income measure. Poor people who are more

likely to die than rich people, poor people who have more children than rich

people or poor people who are more likely to migrate than rich people, are

all channels which can have significant and even substantial effects on income

distribution dynamics. When analyzing the causes of distributional change, it

seems worthwhile to isolate these effects from changes in labor supply behav-

ior or changes in the returns on the labor market which in turn can also have

a strong impact on the income distribution, but which are rather driven by

structural and institutional change. Of course, the cited transmission chan-

nels can be interdependent and therefore hard to disentangle. For instance,

the death of one household member can alter labor supply, educational in-

vestment, and consumption behavior of other household members. Given the

lack of appropriate methods to explore the importance of the demographic

channels, not much is known concerning their empirical importance.

The purpose of our paper is twofold: first to derive instructive analytics

on how to account for differentials in demographic variables, and in particular

mortality, when performing welfare comparisons over time; second, to explore

the potential impact of demographic change on the distribution of welfare.

The idea of the methodology we suggest, is to ‘correct’ in various ways esti-

mated welfare distributions for ‘sample selection’ due to differential mortality.

A central issue is then to derive reliable estimates for mortality rates as a

function of income or its correlates and age. Once the conditional density of

mortality is known, one can compute a reweighted welfare distribution giving

the welfare variation attributable to individual deaths. Further complications

arise when the household and not the individual is the unit of analysis. The

key estimation problem becomes then to construct a counterfactual distribu-

tion that would have prevailed if the survivors would still live with their former
1Many thanks are due to participants at the ESPE (Bergen) and IARIW (Cork) con-

ferences 2004. We are particularly grateful for the comments and suggestions received by
Gordon Anderson. Finally, we thank BPS Statistics Indonesia for having given us access to
price data.
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household members and would decide jointly on labor supply and consump-

tion expenditure. The semiparametric procedure we suggest to address these

issues is very much in the spirit of the decompositions performed by DiNardo,

Fortin and Lemieux (1996).

We proceed as follows. In the next section, we discuss the welfare impli-

cations of differentials in demographic variables and in particular differential

mortality and provide a quick review of the related literature. In Section 3, we

present our methodology. In Section 4 we implement our approach empirically

using three waves of the Indonesian Family Life Surveys (IFLS). In Section 5,

we summarize our main results and conclude.

2 Welfare implications of differential demographics

A well known problem of welfare comparisons over space and time are varia-

tions in population size. This problem was raised, for instance, by Dasgupta,

Sen and Starrett (1973) in their note on Atkinson’s seminal paper on the mea-

surement of inequality (Atkinson, 1970). It appears also in the literature on

the general form of social welfare functions (see e.g. Blackorby and Donaldson

(1984) and Blackorby, Bossert and Donaldson (1995)). Two aspects are of

importance here. First, which dimensions of personal well-being we allow to

enter the individual welfare function, i.e. should the length of life matter. Sec-

ond, should a social welfare function take into account the number of members

in the society at a given point in time.

The standard welfaristic approach usually neglects non-materialistic sour-

ces of personal well-being and has—at least in the empirical literature—a

strong focus on annual income flows. Under these assumptions interpersonal

utility comparisons are not affected by the fact that two individuals have

to expect a different length of life. In other words, two persons receiving the

same income over a given period of time and having the same individual utility

function are regarded as enjoying the same utility, irrespective of differences

in their expected length of life. Recognizing these drawbacks of the standard

welfaristic approach, Anderson (2003) suggested recently a framework which

includes life expectancy into the calculus of economic welfare comparisons.
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He implements his approach at the level of countries and compares how GDP

performs over time with and without accounting for changes in life expectancy.

In the case of Africa, when life expectancy is included he founds a substantial

decline in welfare over time, which is not the case if usual GDP comparisons

are undertaken.

In contrast to the welfaristic approach, Sen’s capability approach has in

this sense a much wider focus and is much more flexible (Sen 1985). This

approach can easily be defined in a way, that factors or functionings which

allow a less or more long length of life are explicitly taken into account, by

assuming that health or a certain length of life can be produced in a com-

plementary way through commodities q, personal characteristics and societal

and environmental circumstances z. Therefore if q and z are favorable for

health they will map into longer life and by this channel enlarge the so-called

‘capability’ set.

Turning now to the second point; the classical utilitarian (or Benthamite)

social welfare function is given by the sum of individual utilities W =
∑N

i=1 ui(xi),

where N is the total number of individuals, xi are commodities and ui is the

utility drawn by individual i from xi. So, clearly, here the number of individ-

uals in the society N can be seen as a source of social welfare. But, in most

cases we think of a constant population when invoking such an utility function

or simply use it in per capita terms (W/N) and sidestep this issue. The im-

plicit ethical judgement, then, is that we are ‘neutral’ toward population. At

the same time, the focus on per capita welfare means that we are indifferent

to the unborn and are even biased toward keeping population growth down if

it affects per capita welfare adversely.

Empirical studies on the dynamics of inequality and poverty generally do

not really address this issue by supposing implicitly a constant population.

They usually provide a kind of ‘snapshot-measure’ of economic well-being. In

other words, we consider indicators such as GDP per capita, the Human De-

velopment Index, the poverty headcount or the Gini coefficient at two different

points in time without asking if the population size has changed during the

relevant time period.

6



When considering a single country, variations in population size over time

are driven by three demographic forces: fertility, mortality and migrations. If

these forces are correlated with the used welfare measure, welfare comparisons

may become complex and sometimes ambiguous. For instance, if mortality is

negatively correlated with income which seems indeed to be the case in de-

veloping as well as in developed countries,2 standard poverty measures as the

headcount-index of the FGT-family (Foster, Greer, and Thorbecke, 1984), for

instance, may show an improvement over time if individuals under the poverty

line die. Or, put differently, higher mortality among the poor is ‘good’ for

poverty reduction. The current AIDS epidemic in developing countries, the

1918 influenza epidemic or the black plague centuries ago might thus have re-

duced poverty, not only by increasing the capital-labor ratio, but also simply

by killing the poor if they are more than others affected by these diseases.3

Most people will agree that this kind of ‘repugnant conclusion’ is not compat-

ible with the axiomatic on which poverty concepts are normally based. This

point was recently raised by Kanbur and Mukherjee (2003).

The problem is alike if we consider fertility. Higher fertility among the

poor may increase poverty simply due to differential growth rates over the

income distribution. One might conclude that minimizing fertility among the

poor is a mean to reach poverty reduction.4 Again, this seems neither eco-

nomically nor ethically reasonable or acceptable. Finally, migration from rural

to urban migration might reduce rural and increase urban poverty, without

having changed anything in the situation of those who stayed at their initial

place.

Kanbur and Mukherjee (2003) proposed to compute FGT-poverty mea-

sures based on the lifetime income profile of an individual. They define a
2For empirical evidence see e.g., Kitagawa and Hauser (1973), Deaton and Paxson (1999)

or Lantz et al. (1998). Valkonen (2002) provides a survey of the empirical evidence concern-
ing social inequalities in mortality. He finds that social inequality was observed in almost all
studies using different populations and using different indicators of socio-economic position,
such as social or occupational class, socio-economic status, educational attainment, income
and housing characteristics.

3For instance Brainerd and Siegler (2003) found empirical evidence that the 1918 influenza
epidemic had a robust positive effect on per capita income growth across US states during
the 1920s.

4See on this issue the analytics and discussions in Lam (1986), Chu and Koo (1990) and
Lam (1997).
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normative measure for the length of life to account for premature mortality

among the poor which affect the poverty measure positively. There are how-

ever two crucial issues in their procedure. First, the choice of the normative

length of life, which can influence on the poverty ranking of different popula-

tions. Second, the hypothetical income which has to be imputed for the years

between the actual age of death and the normative age of death. This issue

is handled by supposing constant income levels over time, no mobility across

income levels, and that each individual at income level Yi lives for li periods,

after which time her or she is replaced by exactly one individual. The criti-

cal assumption concerning the hypothetical income that should be imputed,

raises the general question of which ‘value’ we might want to attribute to a

foregone life. Even if we exclude here issues of personal pain and loss, the pure

materialistic loss can only arbitrarily be computed.

In what follows we suggest some general methods to account for differ-

entials in demographic ‘behavior’, and especially mortality, when performing

poverty comparisons over time and circumvent the problem of giving a value

to lost life. We first consider only what we call the ‘direct effect’ or ‘pure

demographic effect’ and then develop successively measures which take into

account the effect that a deaths might have changed household income (not

only household income per capita), first because the person who died does not

anymore contribute to the household income and, second, because the death

might have changed labor supply behavior of the other household members.

3 Some general methods to account for differential
mortality in poverty comparisons over time

For each period t, the welfare indicator y is defined over a population of

individuals. It is assumed that y is a continuous variable which may vary

between 0 and max(y), with a c.d.f. Ft(y) and a d.f. ft(y) = dFt(y). In the

utilitarian tradition, a monetary welfare index is then defined as

W (Ft) =
∫ y max

0 w(y)dFt(y)dy (1)
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w being a non-decreasing function of income. In the same sense, a large class

of monetary poverty indexes corresponds to

P (Ft) =
∫ z

0 p(y)dFt(y)dy (2)

where z is the poverty line and p a non-decreasing non-negative function of

income defined over [0; z].

Expressed in its most general form, our problem is to design counterfactual

distributions of y, F ∗
t+1(y) under alternative mortality processes taking place

between t and t + 1, and then to compute

W (F ∗
t+1) =

∫ y max
0 w(y)dF ∗

t+1(y)dy, (3)

or

P (F ∗
t+1) =

∫ z
0 p(y)dF ∗

t+1(y)dy (4)

More precisely, let us assume that we have some knowledge about the mortality

process taking place between t and t + 1. The occurrence of individual deaths

should theoretically have at least three kinds of effects on the distribution of

income:

1. a direct ‘arithmetical’ individual impact: people who die are withdrawn

from the population and do not longer contribute to monetary welfare

or to poverty;

2. an indirect micro-economic impact on household income: survivors per-

taining to the same household than those who died may experience a

decrease or an increase in y, with the previous income contribution of

the dead being withdrawn from household income, with the number of

equivalent consumption units being modified, and with various labor

supply or household composition adjustments occurring;

3. a ‘general equilibrium’ or ‘external’ macroeconomic impact on the overall

income distribution.

In the following, we shall not consider the third, general equilibrium, effect.

Hence, the construction of a counterfactual distribution of income requires to
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deal with, first, the direct impact, and, second, the indirect impact. However,

what is meant by ‘counterfactual’ should first be clarified for both cases. In-

tuitively speaking, we seek to reconstruct what would be the distribution of

income in t + 1 if the observed deaths between t and t + 1 had not occurred.

This definition of a counterfactual raises no particular difficulty when the mor-

tality process can be assumed exogenous from the distribution of income itself.

Think at a sudden epidemics coming from outside the country or at a natural

catastrophe like an earthquake or a flood. Of course the exogeneity of mor-

tality does not preclude that it can be correlated with income. Things are

more intricate when the probability of dying is causally determined by the

contemporary individual income, by the distribution of income within some

reference group, or by the overall distribution of income (see Deaton and Pax-

son, 1999). For instance, people whose income has fallen under a subsistence

level (extreme poverty line) may have been exposed to death with a proba-

bility close to one. Giving these people a ‘counterfactual income’ under the

subsistence level would have no meaning at all if nobody can survive in this

situation. It seems to us that a meaningful counterfactual distribution of in-

come should always include those deaths that are income determined, or, put

in another way, should only try to discount the distribution of deaths that is

exogenous to the final income distribution. In the remainder, we shall always

make the assumption that mortality is exogenous to transient components of

contemporary income, but may vary with permanent income determinants.

Finally another important aspect regarding the construction of counter-

factuals has to be emphasized. Assessing the impact of mortality between

two dates does not mean the same than assessing the impact of changes in

mortality. In the first case we need to subtract the impact of all deaths during

the period, while in the second case we need to subtract the impact of the

difference between the ex-post and ex-ante pattern of occurred deaths. We

focus on the first case in the following section and examine the second case

afterwards.
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3.1 The direct arithmetical impact of individual mortality

Let us first assume that individual deaths have no external effects, neither on

other individuals like household survivors or neighbors nor on the whole pop-

ulation. We therefore seek to design a counterfactual for a pure arithmetical

individual effect. Assume second that mortality patterns between t and t + 1

are totally described by observable individual attributes x which are either

constant over time like sex and education of adults, or varying with time like

age, health status and household composition. This makes the survival rate

sx,t(x) independent from the distribution of attributes, i.e. the survival rate

is independent from the population structure. Assume third that the income

pattern belonging to each attribute, i.e. the conditional density of income

with respect to attributes, does not depend on the distribution of attributes

but instead only on some ‘income schedule’ that changes over time through

redistribution policies and other changes in the returns to attributes (in the

spirit of the Oaxaca (1973) or DiNardo et al. (1996) decompositions). This

means that we assume again that mortality has neither external effects nor

‘general equilibrium’ effects. This also means that we exclude the possibility of

non-random selection of deaths by contemporary unobservable determinants

of income (yt+1), i.e. that mortality is caused by the transient components of

income.

The econometrician observes f(y|ty = t) that is the actual density of in-

come for each t. He may write the following conditionnal density:

f(y, x|ty,x = t + 1) = f(y|x, ty = t + 1)dF (x|tx = t + 1) =

f(y|x, ty = t + 1)
sx,t(x)
Ψx,t(x)

dF (x|tx = t), (5)

where Ψx,t(x) characterizes the changes in the population structure which

are not due to mortality, but instead due to births, migrations, household

composition etc. having occurred over [t ; t + 1]. We may then compute the

counterfactual distribution of income due to deaths related to initial attributes,

by simply reweighing observations with sx,t(x).

f∗
t (y) =

∫
x∈Ωx

sx,t(x)f(y|x, ty = t)dF (x|tx = t) (6)
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Semiparametric decompositions as proposed by DiNardo et al. (1996) allow

to go a bid further by isolating the impact of changes in the distribution of all

attributes. Hence, we can compute the following counterfactual which gives

the overall impact of all changes in attributes (including changes linked to

mortality) on income distribution:

g∗t (y) =
∫

x∈Ωx
f(y|x, ty = t)dF (x|tx = t + 1) (7)

using DiNardo et al. (1996) and using the reweighing technique based on

Bayes’ rule:

sx,t(x)
Ψx,t(x)

=
dF (x|tx = t + 1)

dF (x|tx = t)
=

Pr(tx = t + 1|x)
Pr(tx = t|x)

.
Pr(tx = t)

Pr(tx = t + 1)
,

where Pr(tx = t|x) can be estimated with a probit model. We then obtain,

for instance:5

g∗t (y) =
∫

x∈Ωx

sx,t(x)
Ψx,t(x)

f(y|x, ty = t)dF (x|tx = t). (8)

So far, we have considered the counterfactual impact of the level of individ-

ual mortality. Computing the impact of changes in mortality patterns (based

on individual observables) just calls for an additional preliminary reweighing

of the t income distribution by past survival rates:

f∗∗
t (y) =

∫
x∈Ωx

sx,t(x)
sx,t−1(x)

f(y|x, ty = t)dF (x|tx = t) (9)

We shall come back to this latter decomposition when taking into consideration

the indirect impact of the changes in the distribution of household survivors.

3.2 The indirect micro-impact of mortality on survivors in-
come distribution

When the income concept that is used is household income per capita or per

adult equivalent unit, mortality has, as mentioned above, obviously an indirect
5We may also compute: g∗

t+1(y) =
∫

x∈Ωx
f(y|x, ty = t + 1)dF (x|tx = t) and: g∗∗

t+1(y) =∫
x∈Ωx

f(y|x, ty = t + 1)sx,t(x)dF (x|tx = t).

The difference between g∗
t+1(y) and g∗∗

t+1(y) should indicate the impact of mortality on a
distribution of income characterized by the final income schedules f(y|x, ty = t + 1) and
the initial distributions of attributes dF (x|tx = t). Then the double difference between
[g∗∗

t+1(y) − g∗
t+1(y)] and [f∗

t (y) − ft(y)] gives the mortality impact linked to the change in
income schedule from f(y|x, ty = t) to f(y|x, ty = t + 1).
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impact on the distribution of income over household survivors. In order to

analyze this indirect impact we have to construct a counterfactual income

distribution which includes a counterfactual income pattern for survivors. Let

z ∈ {0, 1} be a variable indicating whether somebody has experienced a death

in his/her household between t and t + 1. The observed density of income in

t + 1 is a weighted sum of conditional densities on z

ft+1(y) = Pr(z = 0|tz = t + 1)f(y|z = 0, ty = t + 1)+

Pr(z = 1|tz = t + 1)f(y|z = 1, ty = t + 1). (10)

We would like to design a counterfactual which can be written as

f#
t+1(y) = Pr(z = 0)f(y|z = 0, ty = t + 1)+

Pr(z = 1)fz=0(y|z = 1, ty = t + 1). (11)

It requires the estimation of the counterfactual density for survivors fz=0(y|z =

1, ty = t + 1). Computing such a counterfactual is very difficult. Quantile

treatment IV estimators could be used (Abadie, Angrist, Imbens, 1998) if some

instrument was available for the occurrence of a death within the household

(some knowledge about death causes could prove useful in this respect). Under

the assumption of conditional independence on a set of attributes x,6 quantile

treatment effects may also be computed using matching estimators (Firpo,

2004).

However, given that we have information on survivors at period t, that is

people having experienced a death within the household between t − 1 and

t, a counterfactual for the impact of changes in mortality patterns can prove

easier to construct. Indeed, when survivor status z is known for both periods,

we may apply the DiNardo et al. (1996) reweighing technique to isolate the

effects of changes in the ‘survival rate’. Hence, we write

f indir
t+1 (y) =

∫ ∫
f(y|x, z, ty = t + 1)dF (z|x, tz|x = t)dF (x|tx = t + 1) =

∫ ∫
Ψz|x(z, x)f(y|x, z, ty = t + 1)dF (z|x, tx = t + 1)dF (x|tx = t + 1), (12)

6Pr(z = 1|yz=0, yz=1, x) = Pr(z = 1|x).

13



where

Ψz|x(z, x) = dF (z|x, tz|x = t)/dF (z|x, tz|x = t + 1) =

z
Pr(z = 1|x, tz|x = t)

Pr(z = 1|x, tz|x = t + 1)
+ [1 − z]

Pr(z = 0|x, tz|x = t)
Pr(z = 0|x, tz|x = t + 1)

can be estimated using a standard probit model such as

Pr(z = 1|x, tz|x = t) = 1 − Φ(−β′
tH(x)).

We may then design a triple decomposition for the impact of changes in

mortality patterns between t and t + 1. First, we compute a counterfactual

for the t + 1 distribution of income discounting the direct arithmetic impact

of changes in individual mortality patterns based on observable attributes

f∗∗
t+1(y) =

∫
x∈Ωx

sx,t+1(x)
sx,t(x)

f(y|x, ty = t + 1)dF (x|tx = t + 1). (13)

Second, we compute a counterfactual for the t + 1 distribution of income

discounting both the direct and the indirect impact of changes in mortality

patterns based on observable attributes:

f∆
t+1(y) =

∫ ∫
Ψz|x(z, x)

sx,t+1(x)
sx,t(x)

×

f(y|x, z, ty = t + 1)dF (z|x, tz|x = t + 1)dF (x|tx = t + 1). (14)

Third, we compute a counterfactual for the t + 1 distribution of income

discounting the effect of all changes in the distribution of observable attributes:

g∆
t+1(y) =

∫ ∫ Ψx,t(x)
Ψx,t+1(x)

Ψz|x(z, x)
sx,t+1(x)
sx,t(x)

×

f(y|x, z, ty = t + 1)dF (z|x, tz|x = t + 1)dF (x|tx = t + 1). (15)

4 An empirical implementation for the case of In-

donesia

4.1 Data and economic context

To illustrate the methods proposed in Section 3, we use the three waves of

the Indonesian Family Life Survey (IFLS) conducted by RAND, UCLA and

the Demographic Institute of the University of Indonesia. The IFLS is a con-

tinuing longitudinal socioeconomic and health survey. It is representative for
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83% of the Indonesian population living in 13 of the nation’s 26 provinces.

The first wave (IFLS1) was carried out in 1993 and covers 33,083 individuals

living in 7,224 households. IFLS2 sought to reinterview the same respondents

in 1997. Movers were tracked to their new location and if possible interviewed

there. Finally a full 94.4% of IFLS1 households were relocated and reinter-

viewed, in the sense that at least one person from the IFLS1 household was

interviewed. This procedure added a total of 878 split-off households to the

origin households. The whole cross-section of IFLS2 includes 33,945 individ-

uals living in 7,619 households. The third wave, IFLS3, was conducted in

2000. It covered 6,800 IFLS1 households plus 3,774 split-off households, in to-

tal comprising 43,649 individuals. In IFLS3 the re-contact rate was 95.3% of

IFLS1 households. Hence, nearly 91% of IFLS1 households are complete panel

households.7 Table A1 in the appendix presents some descriptive statistics of

the complete samples in 1993, 1997 and 2003. The samples of 1997 and 2003

are cross-sections in the sense that they include besides the panel-individuals

also the individuals who were born after 1993 or joined a household of the

initial sample or a split-off household by another reason.

Using the data we constructed two longitudinal samples: 1993 to 1997 and

1997 to 2000. We included in each those individuals who were reinterviewed at

the end of the respective period or for whom a death or another reason for an

‘out-migration’ was declared. Out-migration means here that these individuals

left their households for other reasons and moved to provinces not covered by

the survey.8 The survey informs about the exact date of the interviews and

the month of death, such that a relatively detailed survival analysis can be

performed. Between 1993 and 1997 we counted 743 deaths and between 1997

and 2000 558 deaths (see also Table A1).

The IFLS contains detailed information on household expenditure. In con-

trast, household incomes and especially individual incomes are not completely

observed, therefore we use in what follows real household expenditure per

capita as welfare or income measure. Expenditures are expressed in prices
7For details see Frankenberg and Karoly (1995), Frankenberg and Thomas (1997) and

Strauss, Beegle, Sikoki et al. 2004.
8Or they migrated to provinces covered by the survey but have not been relocated.
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of 1994 and adjusted by regional price deflators to the price level of Jakarta.

Inter-temporal price variations are taken into account by household-specific

price deflators, i.e. using disaggregated price deflators and the observed bud-

get shares of each household as weights.

It is worth to emphasize that the economic crisis began to be felt in the

southeast Asia region in April 1997, but that the major impact did not hit

Indonesia until December 1997/January 1998, that is just after the IFLS2 was

carried out. The sustained crisis period lasted in Indonesia more than one

year. But, in the year 2000, year of the IFLS3, the population had again

achieved roughly the pre-crisis living standard, with some people even a little

better off (Strauss, Beegle, Dwijanto et al., 2002). When constructing the

expenditure distributions for 1997 and 2000 we find exactly this dynamic, i.e.

slightly lower poverty and inequality in 2000 compared to 1997. For the pre-

crisis period 1993 to 1997 we state a substantial poverty reduction. This is

also consistent with other findings (see e.g. Tjiptoherijanto and Remi, 2001)

and explains very well why Indonesian households—using the former positive

dynamic—recovered so quickly from the crisis.

However, public health expenditures fell significantly during the crisis. In

addition the 1997/98 drought, which was a consequence of El Nino and serious

forest fires led in some regions to serious health problems and a sharp drop

in food production. Rukumnuaykit (2003) shows that the drought and smoke

pollution had significant adverse effects on infant mortality in rural areas.

However, Strauss, Beegle, Dwijanto et al. (2002) found that adult Body-

Mass-Indices did not worsen and that the fraction of preschool-aged children

who have very low heights for their age and sex even dropped over the whole

period between 1997 and 2000.

4.2 Some illustrative simulations

Before we implement empirically the approach suggested in Section 3, it seems

useful to give an order of magnitude of the potential effects of differential mor-

tality on standard income distribution indicators. For this purpose we use a

fictitious sample of 10,000 individuals i where the only observed heterogeneity
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stems from income yi. To this sample we apply a crude death rate of d. In

the baseline scenario, deaths are drawn randomly, i.e. independent of income.

Then we analyze various scenarios where the selection of death events is corre-

lated with income, but perturbed by some unobserved heterogeneity γi. The

relative risk ri of death is assumed to be given by the relationship

ln ri = λ ln yi + γi. (16)

The term for unobserved heterogeneity is drawn from a normal distribution

N(µγ , σ2
γ). Therefore the correlation coefficient between ri and income yi,

ϕ(ri, yi), depends, for a given distribution of yi, on λ, µγ and σ2
γ . Persons

who die are selected by ranking in a descending order the sample according

to ri and simulating a death for the d times 10,000-persons for whom ri is the

highest. Therefore, we can write the individual probability of death, Pi, as

follows

Pi = P (di = 1) = P (ri ≥ r̃) = P (λ ln yi + γi ≥ ln r̃) =

P

[
γi − µγ

σγ
≥ ln r̃ − µγ − λ ln yi

σγ

]
(17)

and the corresponding c.d. as

Pi = 1 − Φ

(
ln r̃ − µγ − λ ln yi

σγ

)
. (18)

In total we examine four different simulations, which we compare with the

baseline scenario. The various sets of parameters assumed are noted in Table

1.

[please insert Table 1 about here]

The incomes yi are drawn from a log-normal distribution where the mean

and the variance correspond to those observed in our sample drawn from the

IFLS1. As income distribution indicators we consider the Gini-coefficient and

the poverty headcount-index, i.e. the percentage of persons below the poverty

line. We chose two alternative poverty lines. A first which considers the 10%

and a second which considers the 50% at the bottom of the income distribution

in the base year as poor. The corresponding simulation results are shown in

Figure 1.
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[please insert Figure 1 about here]

The first line (Simulation 1) of Figure 1 shows that for a death rate of

3% and a relatively important unobserved heterogeneity component the Gini-

coefficient decreases by roughly one percentage point if we decrease λ from 0 to

-1. A value for -1 for λ implies that an increase of y by one percent decreases

the risk factor of death by also one percent. If λ is 0, i.e. there is no differential

mortality, the Gini-coefficient corresponds of course to that of the baseline.

If mortality was positively correlated with income, i.e. λ between zero and

one, inequality tends also to decrease. In both cases, negative and positive

correlation between mortality and income, inequality decreases, because in

each case we ‘eliminate’ persons at the lower or upper end of the income

distribution. In contrast, a scenario, where in particular individuals of the

middle class faced higher mortality could lead to an increase of inequality. If

we increase the death rate to 0.06 (Simulation 2) or decrease the importance of

the error term (Simulation 3) or both (Simulation 4), we can state, as one can

expect, that variations in inequality become correspondingly stronger. The

effects on inequality are not symmetric for negative and positive values of λ.

This is due to the fact that the initial distribution is skewed to the left, i.e. is

normal in ln(y), not in y.

The second and third row in Figure 1 show, that the poverty rate reacts

also strongly to the degree of differential mortality. Assuming a death rate

of 0.03 (Simulation 1 and 3) and strong negative differential mortality, results

in a decrease of the poverty headcount-index by roughly 2 percentage points,

which corresponds in the case of the lower poverty line to roughly 20%. Again,

the effect is stronger if the death rate increases (Simulation 2), the error term

becomes less important (Simulation 3), or both (Simulation 4). For instance

in Simulation 4, the headcount-index for the 10% poverty line decreases by

roughly 50%. For positive values of λ and the lower poverty line the headcount-

index is of course less affected than with the higher poverty line.

These simple simulations illustrate the potential and pure demographic

effect of differential mortality on income distribution, and in particular the

distinct effects on inequality and poverty measures. In the next section, we try

18



to isolate this effect from the total changes in inequality observed in Indonesia

during the periods 1993 to 1997 and 1997 to 2000. The empirical application

poses of course a lot of additional problems, such as the fact that individuals

are grouped in households taking joint decisions on labor supply, household

production and expenditures.

4.3 Results for Indonesia for the period 1993 to 2000

4.3.1 Estimates of the direct arithmetical impact of mortality

In what follows we construct ‘without individual deaths’ counterfactuals of

the Indonesian distribution of log income per capita for 1997 and 2000 using

the methods outlined in Section 3.

We begin with the estimation of the sx,t(x) and Ψx,t(x) weights, for t =

1993 and t = 1997. For each sex, we first estimate a (by cross-section sam-

ple weights weighted) probit model of surviving between 1993 and 1997 and

between 1997 and 2000,9 depending on a set of individual attributes: a third

degree polynomial of age in the initial year, the size of the household, dum-

mies for the education level of the individual and of the household head, sex

of the household head, a third degree polynomial for the age of the household

head, and a dummy for urban areas. Table A2 (Appendix) shows the probit

estimates of the sx,t(x) function, for both sexes and for both periods. In both

periods for women, differentials linked to individual education and to house-

hold size are significant. We also estimated probit models for ‘being present in

1997 rather than in 1993’ and for ‘being present in 2000 rather than in 1997’,

in order to compute the Ψx,t(x) weights (see Table A3). Estimations show

that, over time, the sample population gets a bid older, a bid more educated,

lives more often in urban areas and in households of smaller sizes (see also

Table A1). These probabilities reflect overall demographic changes including

migration and the educational expansion having occurred during both periods.

They may also reflect some sampling bias linked to the panel structure of the

IFLS surveys (attrition).

We then first compute density estimates (gaussian kernels with band-
9We also tested duration models to estimate survival rates. However, this did not change

significantly the following results. Therefore we kept the simple probit model.
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width=0.2) of f93, f97 and f00, for the actual distributions of log income

(Figure 2). Figure 2a reveals that the income distribution has substantially

improved between 1993 and 1997, with a large reduction in poverty and in-

equality. The vertical line corresponds to a constant poverty line used through-

out the analysis.10 In 2000, that is after the macro-economic crisis, the income

distribution came only back to its shape of 1997, in line with the results al-

ready found by Strauss et al. (2002). Figure 2b shows the corresponding

differences of the density distributions.

[please insert Figure 2 about here]

We next compute (weighted by cross-section sample weights) kernel esti-

mates of f∗
93 and f∗

97 for the ‘direct mortality impact’ counterfactual distri-

butions. We also compute a f
(0)
93 (resp. f

(0)
97 ) density estimated on the 1993

(resp. 1997) population from which (future) dead individuals between 1993

and 1997 (resp. 1997 and 2000) have been removed (Figures 3a and 3b).11 Fig-

ure 3a compares the two counterfactual impacts of individual deaths: f
(0)
93 −f93

(without dead individuals) and f ∗
93−f93 (1993 reweighted). Figure 3b does the

same for the 1997-2000 period. The ‘without dead individuals’ impacts take

into account individual mortality differentials linked to unobservable factors

like for instance transient components of income. For both periods, the ab-

sence of significant differences between these latter counterfactuals and the two

others gives confidence in our choice to compute mortality impacts through

reweighing techniques based on observables that are exogenous to income. In

all cases, individual mortality directly contributes to a decrease in poverty, as

argued by Kanbur and Mukherjee (2003). This result could also be forecast

from the positive correlation between initial income and survival probabilities,

i.e. the extend of differential mortality with respect to income, that is shown

for selected age groups in Figure 4. However, the magnitude of all these coun-

terfactual impacts is very small when compared to the magnitude of observed
10This poverty line was determined such that we matched exactly the headcount-index

computed by Strauss et al. (2002) using the IFLS data of 1997, i.e. 32,041 Rupiahs per
month in 1994 Jakarta prices.

11Whenever we measure an impact by a difference in densities we smooth this difference
again by a gaussian kernel of bandwidth 0.2.
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changes in the distribution between 1993 and 1997 (compare the scale of the

vertical axis in Figures 2a and 3a). To see how the observable determinants of

mortality are related directly to income one can also refer to Table A5, which

presents income per capita regressions using the same exogenous variables as

the equations used to estimate the survival probabilities in Table A2.

[please insert Figures 3 and 4 about here]

Next, we compute kernel estimates of g∗93 and g∗97 for the ‘constant dis-

tribution of attributes’ DiNardo el al. (1996) counterfactual distributions.

Remember that these ‘all observable attributes’ counterfactuals also include

the impact of individual mortality on the distribution of observable attributes

in the population. In Figure 5, we then present the corresponding differences

g∗93 − f93 and g∗97− f97 and compare them to the direct mortality impacts

f∗
93 − f93, and to the difference f ∗

97 − f97 that we have just described. The

comparison shows that individual mortality plays only a minor role for the

distributional changes that can be imputed to demographic changes. The

mortality impacts are ten (in the case of 1993-97) to twenty times (1997-2000)

lower in magnitude than overall demographic (including education) impacts.

However, it is interesting to see that overall changes in the distribution of

observable attributes go in the same direction than the effects of individual

mortality, i.e. they are unambiguously poverty decreasing.

[please insert Figure 5 about here]

Finally, Figures 6a and 6b summarize the results by sequentially discount-

ing from the f97 − f93 (resp. f00 − f97) density difference, first the impact

of mortality, and second the impact of all changes in the distribution of at-

tributes (including mortality). Obviously, changes in mortality and in the

population structure do not contribute to the explanation of the change in

the distribution of income per capita between 1993 and 1997. In contrast for

the period 1997-2000, the distributional impact of demographic changes other

than mortality has the same order of magnitude than the observed distribu-

tional changes. Reweighing indicates that demographic changes induce a shift
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towards the right of the distribution of income, i.e. without such changes the

poverty rate would have been a bid worse than those observed in 2000. In a

way, overall demographic changes have contributed to the observed recovery

from the 1997/98 crisis, but do not explain much of the changes in inequality.

Indeed, the income regressions presented in Table A5 confirm that households

with more educated members, with smaller sizes and living in urban areas

have higher real expenditures per capita. It is therefore not surprising to find

that the main demographic changes that we underlined above led to some

(counterfactual) poverty reduction.

[please insert Figure 6 about here]

4.3.2 Estimates of the direct and indirect impact of changes in
mortality patterns

We now integrate in our analysis the indirect impact of mortality on the

income of household survivors using the methodology described in Section

3. We therefore add to our estimates of individual survival probabilities es-

timates of the conditional individual probability (conditional on household

observables) of having experienced a death in the household of origin be-

tween 1993 and 1997 or between 1997 and 2000 respectively, i.e. estimates

of Pr(z = 1|x, tz|x = 1997) and Pr(z = 1|x, tz|x = 2000). This estimation is

performed using a probit model (weighted by cross-section sampling weights)

for both sexes and both periods. The results are given in Table A4. All esti-

mates show that households headed by a woman have more often experienced

a death event, which can easily be understood. Like in the case of individual

survival probabilities, education and household size differentials also play a

role in explaining the probability of death events.12

Between 1993/97 and 1997/2000, overall individual mortality rates de-

crease. The mortality gradients also change, as can be seen in Table A2.

Likewise, the occurrence of death events in households decreases between the

two periods; there are also some changes in the probability functions of being

a household survivor, as can be seen in Table A4. Using the ratio of survival
12Even if measured at the end of the period, the household size is positively correlated

with the probability of having experienced a death.
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probability estimates measured for both periods, we compute kernel estimates

of the direct effect of changes in mortality patterns on the evolution of the

distribution of income (f ∗∗
97 − f97). With the ratio of the household survivors

probability functions, we compute the indirect effect of changes in mortal-

ity (f indir
97 − f97). The impact of such such changes in mortality levels and

gradients are assessed in Figure 7.

[please insert Figure 7 about here]

The direct effect of the change in mortality patterns (f ∗∗
97 − f97) is unam-

biguously poverty increasing, but has again a very small order of magnitude.

All happens as if the mortality decrease between 1993/97 and 1997/2000 had

not modified the correlation between the distribution of income and the dis-

tribution of death events (income inequalities in front of death). Put differ-

ently, poor individuals have not benefited more than others from mortality

improvements. Or, the direct effect of the mortality decline increases mone-

tary poverty!

Conversely, the indirect effect of the change in mortality patterns (f indir
97 −

f97) is unambiguously poverty decreasing, although still with a very small

order of magnitude. In contrast to the direct impact, the indirect impact of

mortality changes (f indir
97 − f97) indeed contributes to a decrease in the weight

of the poorest. All happens as if households of ‘survivors’, controlling for all

other observables, were poorer than their ‘unaffected’ counterparts. In other

words, a decrease in mortality rather makes the poorest households richer and

improves the distribution of income. Or, the indirect effect of the mortality

decline decreases monetary poverty!

Hence, when the direct and indirect impact of changes in mortality pat-

terns are summed together (f∆
97 − f97), the result is more ambiguous. The

overall changes in mortality patterns seem to have contributed to a slight de-

crease in the inequality of the income distribution rather than to the change

in poverty. This implies, that the overall effect of the mortality decline on

monetary poverty is ambiguous.

Finally, we assess the impact of all changes in the population structure, in-
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cluding survivor’s status (g∆
97−g97). Figure 8 shows that the mortality effects,

whether direct or indirect, are completely dominated by other demographic

effects. Here again, demographic changes influence the distribution of income

in the same direction than the direct arithmetic effect of mortality, but at a

higher level of magnitude. The changes in the evolution of the population

structure in terms of age, education and place of residence (urban/rural) have

again a slight poverty increasing effect. If the speed of demographic changes

had remained the same in the period 1997/2000 than in the period 1993/97,

then the resulting distribution of income in the year 2000 would have shown a

bid lower poverty and inequality. Instead, some deceleration of positive demo-

graphic changes occurred, which worsened the impact of the 1997/98 economic

crisis.

[please insert Figure 8 about here]

However, Figure 9 shows that the overall impact of these changes in the

demographic structure is rather small, i.e. without any variation in the pop-

ulation structure, the observed evolution between 1997 and 2000 would not

have been very different.

[please insert Figure 9 about here]

5 Conclusion

We have presented a general methodology designed to study the counterfac-

tual impact of mortality and changes in mortality on income distribution.

This methodology is inspired by the work of DiNardo et al. (1996). It relies

on the non-parametric reweighing of income distributions using functions of

individual observable attributes. Like Kanbur and Mukherjee (2003), we are

able to deal with the direct arithmetic effect of individual deaths on poverty

changes,13 which is most important when individual deaths are unevenly dis-

tributed across the income distribution. But we are also able to correct for

the indirect effect of an individual death on the income of survivors pertaining
13However, Kanbur and Mukherjee (2003) did not implement their approach empirically.)
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to the same household, which might be as much important. If the mortal-

ity risk is negatively correlated with income, then, when mortality increases

(resp. decreases) over time, the direct effect is usually poverty decreasing

(resp. increasing). Conversely, if mortality is negatively correlated with in-

come and if a death in a household decreases household income, then, when

mortality increases over time (resp. decreases), the indirect effect should be

poverty increasing (resp. decreasing). In our empirical part we show for the

case of Indonesia, that the direct and indirect effects of a mortality decline on

the distribution of income have indeed opposite signs and show roughly the

same order of magnitude, so that they almost cancel out each other. We also

show that the effect of other demographic changes, like changes in the pat-

tern of fertility, migration, and educational attainment, dominate the effects

of mortality, whether direct or indirect. We however find that none of these

demographic developments are large enough to explain a significant part of

the changes in income distribution, whether the pre-crisis period (1993-1997)

or the post-crisis period (1997-2000) is considered.

Appendix

Descriptive statistics of the variables used

[please insert Table A1 about here]

Estimated equations for survival probabilities (sx,t(x))

[please insert Table A2 about here]

Estimated equations for ‘being present’ probabilities

[please insert Table A3 about here]

Estimated equations for living in a household in which no death
occurred during past period

[please insert Table A3 about here]

Estimated coefficients for correlates of household income per capita

[please insert Table A3 about here]
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Tables

Table 1
The effects of differential mortality

on standard income distribution indicators
(some illustrative simulations)

d = 0.03 d = 0.06

µγ = ln(yi)
σγ = σln(yi)

Sim. 1 Sim. 2
−1 ≤ λ ≤ 1

µγ = 0.5ln(yi)
σγ = 0.5σln(yi)

Sim. 3 Sim. 4
−1 ≤ λ ≤ 1

Notes: For λ = −1, the constellation of the noted parameters yields the following correlation coef-

ficients, ϕ(ri, yi), between the risk factor ri and income yi: Simulation 1 and 2: ϕ(ri, yi|λ = −1)=

-0.333; Simulation 3 and 4: ϕ(ri, yi|λ = −1)= -0.441.
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Table A1
Descriptive statistics of the variables used

1993 1997 2000
BOYS/MEN
Age 25.9 27.3 27.5
Education

No education 0.216 0.188 0.182
Elementary educ. 0.500 0.460 0.435
Junior High. 0.130 0.155 0.155
Senior High./Coll./Univ 0.154 0.197 0.228

HH-head male 0.921 0.908 0.915
Age HH-head 45.4 46.9 46.0
Education of HH-head

No education 0.179 0.144 0.110
Elementary educ. 0.560 0.535 0.504
Junior High. 0.106 0.120 0.132
Senior High./Coll./Univ 0.155 0.201 0.254

HH-size 5.549 5.407 5.189
Urban 0.352 0.401 0.440
Death in HH in 1993-97. 1997-2000 0.102 0.072
No. of observations 16,058 16,325 20,966

Tracking status (shares) 1993-1997 1997-2000
Survivors 0.969 0.977
Deaths 0.031 0.023

GIRLS/WOMEN
Age 26.6 27.8 28.6
Education

No education 0.302 0.254 0.241
Elementary educ. 0.486 0.455 0.443
Junior High. 0.104 0.136 0.139
Senior High./Coll./Univ 0.108 0.154 0.178

HH-head male 0.852 0.840 0.834
Age HH-head 45.5 47.0 46.3
Education of HH-head

No education 0.202 0.161 0.126
Elementary educ. 0.539 0.522 0.495
Junior High. 0.101 0.115 0.128
Senior High./Coll./Univ 0.158 0.202 0.251

HH-size 5.415 5.309 5.095
Urban 0.357 0.403 0.444
Death in HH in 1993-97. 1997-2000 0.105 0.073

No. of observations 16,970 17,487 21,985

Tracking status (shares) 1993-1997 1997-2000
Survivors 0.976 0.978
Deaths 0.024 0.022

Source: IFLS1, IFLS2 and IFLS3; computations by the authors.
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Table A2
Estimated probit model for survival probabilities (sx,t(x))

(marginal probabilities computed at sample means)

Dependent variable 1993—1997 1997—2000
Survived (binary) Coeff. Std. Err. Coeff. Std. Err.
BOYS/MEN
Age 4.35E-04 0.001 0.001 4.40E-04
Age2 -1.68E-05 1.98E-05 -2.30E-05 ** 1.14E-05
Age3 -4.20E-08 1.59E-07 9.64E-08 8.25E-08
Education

No education Ref. Ref.
Elementary educ. 0.003 0.005 0.003 2.94E-03
Junior High. -0.003 0.008 0.005 0.003
Senior High./Coll./Univ 0.005 0.007 0.003 0.004

HH-head male -0.007 0.005 0.004 0.004
Age HH-head 0.002 * 0.001 1.49E-04 0.001
Age2 HH-head -5.92E-05 ** 2.95E-05 -9.12E-06 2.23E-05
Age3 HH-head 4.68E-07 ** 2.14E-07 1.06E-07 1.41E-07
Education of HH-head

No education Ref. Ref.
Elementary educ. 0.003 0.005 -0.002 3.05E-03
Junior High. 0.008 0.005 -0.002 0.005
Senior High./Coll./Univ 0.006 0.006 -0.008 0.006

ln HH-size -0.003 0.003 0.002 0.002
Urban -0.004 0.003 -0.001 0.002
No. of observations 13,548 14,490
Pseudo R2 0.192 0.196

GIRLS/WOMEN
Age 8.02E-05 4.03E-04 0.001 *** 2.82E-04
Age2 -9.20E-06 1.09E-05 -2.54E-05 *** 7.00E-06
Age3 -9.15E-09 8.12E-08 1.08E-07 ** 4.72E-08
Education

No education Ref. Ref.
Elementary educ. 0.009 *** 0.003 0.001 0.002
Junior High. 0.008 ** 0.002 0.004 0.002
Senior High./Coll./Univ 0.010 *** 0.002 0.008 *** 0.002

HH-head male 9.73E-05 0.003 -0.003 * 0.002
Age HH-head 0.001 0.001 -1.38E-04 0.001
Age2 HH-head -1.64E-05 1.79E-05 -2.78E-06 2.04E-05
Age3 HH-head 9.28E-08 1.15E-07 4.25E-08 1.25E-07
Education of HH-head

No education Ref. Ref.
Elementary educ. -0.002 0.003 -4.20E-04 0.002
Junior High. 0.002 0.004 0.002 0.003
Senior High./Coll./Univ 0.004 0.003 0.001 0.003

ln HH-size -0.008 *** 0.002 -0.005 *** 0.002
Urban 1.67E-04 0.002 0.002 0.001
No. of observations 14,429 15,583
Pseudo R2 0.204 0.246

Notes: *** coefficient significant at the 1% level, ** 5% level, * 10% level.

Source: IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Table A3
Estimated probit model for ‘being present’ probabilities

(marginal probabilities computed at sample means)

Dependent variable 1993/1997 1997/2000
being present (binary) Coeff. Std. Err. Coeff. Std. Err.
BOYS/MEN
Age -1.08E-04 0.002 -0.011 *** 0.001
Age2 2.11E-05 4.69E-05 3.01E-04 *** 4.09E-05
Age3 -2.36E-07 3.84E-07 -2.15E-06 *** 3.28E-07
Education

No education Ref. Ref.
Elementary educ. -0.010 0.012 0.038 *** 0.011
Junior High. 0.038 ** 0.015 0.055 *** 0.014
Senior High./Coll./Univ 0.016 0.017 0.071 *** 0.015

HH-head male -0.050 *** 0.012 0.001 0.010
Age HH-head 0.007 0.005 -0.004 0.004
Age2 HH-head -9.01E-05 9.93E-05 1.30E-05 7.43E-05
Age3 HH-head 5.63E-07 6.60E-07 2.47E-07 4.95E-07
Education of HH-head

No education Ref. Ref.
Elementary educ. 0.074 *** 0.011 0.035 *** 0.010
Junior High. 0.098 *** 0.014 0.058 *** 0.013
Senior High./Coll./Univ 0.141 *** 0.014 0.076 *** 0.013

ln HH-size -0.046 *** 0.008 -0.052 *** 0.007
Urban 0.021 *** 0.007 0.019 *** 0.006
No. of observations 33,383 37,291
Pseudo R2 0.011 0.009

GIRLS/WOMEN
Age -0.004 *** 0.001 -0.014 *** 0.001
Age2 1.03E-04 *** 3.90E-05 4.02E-04 *** 3.91E-05
Age3 -5.05E-07 * 3.04E-07 -2.79E-06 *** 3.11E-07
Education

No education Ref. Ref.
Elementary educ. 0.043 *** 0.009 0.062 *** 0.009
Junior High. 0.116 *** 0.013 0.083 *** 0.012
Senior High./Coll./Univ 0.123 *** 0.014 0.100 *** 0.012

HH-head male -0.020 ** 0.009 -0.001 0.008
Age HH-head 0.009 ** 0.005 -0.007 * 0.004
Age2 HH-head -1.16E-04 9.66E-05 5.52E-05 7.30E-05
Age3 HH-head 5.68E-07 6.26E-07 1.73E-08 4.75E-07
Education of HH-head ***

No education Ref. Ref. ***
Elementary educ. 0.065 *** 0.010 0.039 *** 0.009
Junior High. 0.089 *** 0.013 0.064 *** 0.012
Senior High./Coll./Univ 0.110 *** 0.012 0.080 *** 0.011

ln HH-size -0.034 *** 0.008 -0.042 *** 0.007
Urban 0.005 0.007 0.018 *** 0.006
No. of observations 34,457 39,472
Pseudo R2 0.013 0.011

Notes: *** coefficient significant at the 1% level, ** 5% level, * 10% level.

Source: IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Table A4
Estimated probit model for living in a household
in which no death occurred during past period

(marginal probabilities computed at sample means)

Dependent variable 1993—1997 1997—2000
survivor (binary) Coeff. Std. Err. Coeff. Std. Err.
BOYS/MEN
Age 4.26E-04 0.001 0.002 0.001
Age2 -1.07E-05 3.63E-05 -2.85E-05 3.30E-05
Age3 5.11E-08 2.86E-07 1.10E-07 2.56E-07
Education

No education Ref. Ref.
Elementary educ. -0.004 0.010 -0.012 0.008
Junior High. -0.020 * 0.011 -0.014 0.010
Senior High./Coll./Univ -0.014 0.013 -0.024 * 0.010

HH-head male -0.156 *** 0.013 -0.144 *** 0.010
Age HH-head -0.005 0.003 -0.005 0.003
Age2 HH-head 1.68E-05 5.85E-05 2.24E-05 5.36E-05
Age3 HH-head 3.44E-07 3.91E-07 2.86E-07 3.53E-07
Education of HH-head

No education Ref. Ref.
Elementary educ. -8.85E-04 0.009 0.004 0.008
Junior High. 0.004 0.012 0.009 ** 0.011
Senior High./Coll./Univ 0.015 0.013 0.015 0.011

ln HH-size 0.015 ** 0.007 0.038 0.006
Urban -0.002 0.006 0.001 ** 0.005
No. of observations 16,325 20,966
Pseudo R2 0.029 0.021

GIRLS/WOMEN
Age -0.001 0.001 0.001 0.001
Age2 2.16E-05 2.70E-05 -2.01E-05 2.21E-05
Age3 -5.38E-08 2.11E-07 7.23E-08 1.64E-07
Education

No education Ref. Ref.
Elementary educ. 0.008 0.008 -0.008 0.006
Junior High. 0.011 0.011 -0.006 0.008
Senior High./Coll./Univ 0.019 ** 0.012 -0.010 0.008

HH-head male -0.104 *** 0.010 -0.093 *** 0.007
Age HH-head -3.65E-04 ** 0.002 0.007 *** 0.002
Age2 HH-head 1.94E-05 4.46E-05 -1.20E-04 *** 4.43E-05
Age3 HH-head -1.87E-07 2.93E-07 6.84E-07 ** 2.69E-07
Education of HH-head

No education Ref. Ref.
Elementary educ. 0.011 0.007 0.018 *** 0.007
Junior High. 0.022 0.011 0.032 *** 0.010
Senior High./Coll./Univ 0.002 0.009 0.008 0.009

ln HH-size -0.002 *** 0.005 0.010 ** 0.004
Urban -0.008 0.004 -0.006 0.004
No. of observations 17,487 21,985
Pseudo R2 0.035 0.029

Notes: *** coefficient significant at the 1% level, ** 5% level, * 10% level.

Source: IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Table A5
Estimated household income per capita regressions

(Pooled sample 1993, 1997, 2000)

Dependent variable Boys/Men Girls/Women
ln HH-expend. per capita Coeff. Std. Err. Coeff. Std. Err.
Age -0.006 *** 0.001 -0.011 *** 0.001
Age2 1.45E-04 *** 4.15E-05 3.22E-04 *** 3.89E-05
Age3 -9.58E-07 *** 3.35E-07 -2.40E-06 *** 3.05E-07
Education

No education Ref. Ref.
Elementary educ. 0.076 *** 0.011 0.123 *** 0.010
Junior High. 0.164 *** 0.015 0.260 *** 0.014
Senior High./Coll./Univ 0.293 *** 0.017 0.382 *** 0.016

HH-head male 0.063 *** 0.018 0.064 *** 0.016
Age HH-head 0.037 *** 0.010 0.032 *** 0.009
Age2 HH-head -4.04E-04 ** 1.90E-04 -3.31E-04 * 1.82E-04
Age3 HH-head 7.23E-07 1.21E-06 5.38E-07 1.15E-06
Education of HH-head

No education Ref. Ref.
Elementary educ. 0.150 *** 0.020 0.189 *** 0.017
Junior High. 0.386 *** 0.026 0.429 *** 0.023
Senior High./Coll./Univ 0.667 *** 0.026 0.744 *** 0.023

ln HH-size -0.467 *** 0.016 -0.435 *** 0.014
Urban 0.220 *** 0.013 0.195 *** 0.013
IFLS 1993 dummy Ref. Ref.
IFLS 1997 dummy 0.246 *** 0.011 0.243 *** 0.010
IFLS 2000 dummy 0.220 *** 0.011 0.213 *** 0.010
Intercept 10.200 *** 0.148 10.179 *** 0.142
No. of observations 53,349 56,442
R2 0.299 0.301

Notes: *** coefficient significant at the 1% level, ** 5% level, * 10% level. Huber/White/sandwich

estimators used for standard errors to account for dependent observations within households.

Source: IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Figures

Figure 1
The effects of differential mortality on standard income distribution indicators

(some illustrative simulations)
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(a) Effects on inequality
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(b) Effects on poverty (10% line)
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(c) Effects on poverty (50% line)

Source : Simulations by the authors.

Figure 2
Income per capita (ln) kernel densities in 1993, 1997 and 2000
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(b) Changes in income distributions

Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Figure 3
Smoothed impact of individual deaths
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(b) Period 1997−2000

Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.

Figure 4
Smoothed survival probabilities by income per capita percentile

for men and women and selected age groups
(means of predicted values for the 1993 sample using the model of Table A2, col. 1)
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(a) Men (younger)
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(b) Men (older)
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(c) Women (younger)
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(d) Women (older)

Source : IFLS1 and IFLS2; estimations by the authors.
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Figure 5
Smoothed impact of individual mortality

compared to impact of changes in all observable attributes
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Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.

Figure 6
Smoothed impact of individual mortality and of changes in all observable attributes

on the overall change of the income per capita distributions
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Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Figure 7
Smoothed impact of changes in mortality patterns

between 1993/1997 and 1997/2000 on the 2000 income distribution
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Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.

Figure 8
Smoothed impact of changes in mortality patterns

on the income distribution in 2000:
Changes in mortality patterns between 1993/1997 and 1997/2000

compared to other changes in the evolution of the population structure
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Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.
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Figure 9
Smoothed impact of changes in mortality patterns and other observables

on the overall change of the income per capita distribution between 1997 and 2000
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Source : IFLS1, IFLS2 and IFLS3; estimations by the authors.
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