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Abstract

We study extinction in a commons problem in which agents have access to
capital markets. When the commons grows more quickly than the interest
rate, multiple equilibria are found for intermediate commons endowments. In
one of these, extinction is hastened and welfare decreases in the endowment, a
resource curse. An extraction tax reduces welfare in this ‘cursed’ equilibrium,
increases it in the other equilibrium in which the commons is eventually
depleted, and expands the set of commons stocks that are never depleted.
Capital market access harms societies with low commons endowments. In
the limit, as marginal extraction costs become constant, ‘jump extinctions’
occur. Finally, when the commons grows less quickly than the interest rate,
there is a unique extinction date for each endowment level.

Key words: commons, capital markets, extinction, resource curse, storage,
multiple equilibria, rational expectations equilibrium
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1 Introduction

In almost any contemporary common access problem, those drawing on the
resource also have access to capital markets. Thus, the proceeds of their
extraction need not be immediately consumed; they may be saved, or even
borrowed against. In spite of this, relatively little attention has been paid to
the effects of capital market access on commons problems. This paper seeks
to redress this. A particular interest of the present paper is effect of access
to capital markets on the ‘extinction’ of the commons.

The simplest commons analyses, dating to Gordon (1954), are static: free
entry allows the rents associated with a natural resource to be competed away
- the ‘tragedy of the commons’. In the static framework, question of access
to capital markets do not arise.

Much of the literature building on Gordon (1954) has been dynamic,
and thus concerned with intertemporal issues. To date, the bulk of this
has not allowed capital market access, forcing each agent into intertemporal
autarky. See Mirman (1979); Levhari and Mirman (1980); Benhabib and
Radner (1992); Dutta and Sundaram (1993); Dockner and Sorger (1996);
Sorger (1998) for examples of this literature. Thus, given that the commons
produces necessary consumption, it is never in anybody’s interest to ransack
to the point of extinction. Of course, the commons are often overfished or
overgrazed relative to what a benevolent planner would determine.1

More recently, the possibility of relating consumption and extraction
through a intertemporal constraint, rather than constraints in each period,
has been explored. As we outline, this has been done in a number of ways,
from simple storage technologies to access to capital markets. The present
paper focusses on this latter possibility. We argue that the possibility of pri-
vate storage can weaken the necessity of maintaining the commons, thereby
allowing extinction, and possibly even greater inefficiency.

One of the earliest examples of this literature is Sinn (1984). In this,
oligopolistic firms extract oil from underground reserves, either to sell im-
mediately or store above ground. As firms own private oil fields, which only
interact through seepage, is a problem of oligopolistic competition in the
product market rather than extraction from a commons.

1Exceptions to this result exist. Dutta and Sundaram (1993) present a discrete time
example in which under-exploitation of the commons can occur when trigger strategies
are defined on the state variable; they note that this idea is also found in Fudenberg
and Tirole (1983). Their equilibria remain inefficient. In continuous time, Benhabib
and Radner (1992) find ranges of initial conditions that allow trigger strategies yielding
efficient equilibria. Dockner and Sorger (1996) and Sorger (1998) also derive conditions
under which equilibria are efficient.
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Kremer and Morcom (2000) consider a model with genuine storage.2

Competitive poachers may kill elephants (an open access resource) and store
their ivory tusks at the opportunity cost. In contrast to the preceding liter-
ature that they cite, they argue that there may be

multiple equilibria for open-access renewable resources used in
the production of storable goods, because if others poach, the
animal will become scarce, and this will increase the price of the
good, making poaching more attractive.

In our model, there is an interval of initial commons stock levels within which
multiple equilibria are found. In particular, there are three, two involving
extinction in finite time; extinction does not occur in the remaining one.

Homans and Wilen (2001) also explore competitive equilibria. A fixed
cost of fishing restricts the number of agents to be finite. Further, access to
the commons is regulated, a framework that they regard as more consistent
with existing fisheries than open-access. Their attention is focussed on the
market for caught fish: fish caught during the fishing season must satisfy a
year’s consumer demand; that sold immediately is sold as fresh, and therefore
at a higher price than that sold after being frozen. They argue that increased
rents in the fishing industry both induce entry and shorten the fishing season,
thus causing more fish to be sold on the inferior market.3

The most recent paper in this literature is Gaudet, Moreaux, and Salant
(2002), which also considers competitive equilibria in a commons environ-
ment with private storage.4 Its motivating examples are powerful: very rapid
depletion of underground oil reserves, annual fishing quotas and groundwa-
ter. As average extraction costs become constant, their model captures these
‘jump extinctions’, which are similar to speculative attacks. We also obtain
this result as a limit case of our model: generically, the road to extinction is
smooth in our model.

Two earlier, related papers address considered the possibility not of costly
storage, but of full access to capital markets: yield-bearing storage and costly
borrowing. Tornell and Velasco (1992) ask why capital flows from poor coun-
tries to rich countries. They interpret poor countries as having not just high
rates of return, but weak property rights so that domestic returns can be

2See Bulte, Horan, and Shogren (2003) and Kremer and Morcom (2003) for further
discussion.

3Fish raised in farms are often fed fish pellets (Weiss, 2002). Such farms may therefore
be a way of converting cheaper (frozen) fish into more expensive fresh fish.

4Their suggestion that the earlier literature neglects storage uses an unfortunate ex-
ample given that cows are ruminants.
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appropriated by anyone with equal facility; thus, domestic investment is in-
vestment in a commons. Capital flight corresponds to private storage of
pillage from common property in a wealthy country, thus at lower rates of
return. With perfect international capital markets, borrowing and lending
may occur at the same rate. Their solution concept is a stationary Markov
perfect equilibrium.

A sequel, Tornell and Lane (1999), again imagines a country with weak
institutions. Now, the interest groups compete for control over government
revenues, raised by taxing the formal sector. Thus, the formal (high return)
sector becomes a commons; the informal (low return) sector is the medium
for private storage.

These papers suggest a very different interpretation of the commons prob-
lem than the standard one, in which the tragedy is that of the rents’ dissipa-
tion. In their view, the commons is associated with poorly defined property
rights, weak institutions, and poverty.5 From this point of view, the tragedy
of these commons may be their persistence, not their extinction. By contrast,
richer countries have likely enclosed their commons at some point in the past.
Thus, to the extent that extinction corresponds to enhanced property rights,
it may be a desirable outcome. The standard interpretation of the tragedy
reminds us, though, that this is not assured: the costs of enforcing property
rights may dissipate rents.

Equilibrium extinction may therefore be seen as voluntary privatization:
a self-enforcing move from common to private property. Enclosures, gold
rushes or, for that matter, the acquisition of Mesopotamian antiquities by
private collections are all pertinent examples: are such equilibrium alloca-
tions of property rights likely to lead to efficiency? If so, might this provide
a mechanism for a ‘resource curse’, whereby societies better endowed with
resources may take longer to move to private property?

A weakness of Tornell and Velasco (1992) and Tornell and Lane (1999)
in this context is that, by restricting extraction to shares of stock, they rule
out the possibility of full extinction or enclosure. As extraction is costless in
their model, an extreme version of the limit case of Gaudet et al. (2002), one
might expect this to occur instantly.

To explore these questions further, this paper looks at perhaps the sim-
plest possible representation of the problem, close to the industry standard
on tragedy of the commons, but with capital market access. A model is pre-
sented in Section 2. This closely follows the structure of the models presented
in Tornell and Velasco (1992) and Tornell and Lane (1999), generalising in
two ways. First, extraction may be costly. Second, strategies are not required

5In the popular debate, this view has been argued forcefully by de Soto (2000).
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to be shares of existing stocks. Without this latter generalisation, extinction
is not technically possible.

While our model is consistent with the interpretations given to high and
low rates of return, it is also consistent with a third variant: there is only one
rate of return, but the costs of enclosing resources to protect them against
expropriation reduce the net rate of return on privately held resources to
the lower rate. Thus, the difference between the high and low rates may be
seen as reflecting the weakness of property rights. This interpretation is very
general, encompassing situations of both economic and biological growth.

Following Gaudet et al. (2002), Kremer and Morcom (2000) and Homans
and Wilen (2001), the solution concept is a rational expectations equilibrium:
there are no barriers to entry; individuals are small and do not take account
of the impact of their actions on the evolution of aggregate capital stock.
This is introduced in Section 3. (In a companion paper, Dutta and Rowat
(2004), we evaluate the extent to which strategic, subgame perfect equilibria
inherit these extinction properties. We find that they do, even for very small
numbers of agents.)

As noted, we find the Gaudet et al. (2002) ‘jump extinction’ as a special
case. More generally, low initial commons stocks correspond to unique solu-
tions, with extinction in finite time; an intermediate range of initial commons
stock produces the multiple equilibria already mentioned; initial stocks above
this level are never exhausted.

Section 4 compares competitive outcomes with capital market access to
autarkic ones in which competitive agents do not have access to capital mar-
kets. In the example analysed, welfare under autarky is higher for low initial
stock levels. Once commons stocks are sufficient to support multiple extinc-
tion dates, superior welfare can be obtained with capital market access.

Section 5 considers the consequences of an extraction tax; it has the
effect of shrinking the interval of commons stock levels that lead to multiple
extinction dates. This shrinks the domain over which the ‘cursed’ equilibrium
can arise and expands the set of commons stocks that are never extinguished.
Its effect may be reversed, however, when the government imposing the tax
is strong.

Section 6 concludes.

2 The model

Time, indexed by t, passes continuously toward an infinite horizon. At every
point in time, a continuum of individuals, indexed by i and distributed on
the unit interval with cumulative distribution F, decides on extraction, xi =
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{xi(t)}, and consumption, ci = {ci(t)}.
There is a single consumption good, whose stock, k = {k(t)}, is common

property. It grows at rate a. At each point in time, individuals extract,
in total, x(t) =

∫
i
xi(t)dF (i) from the commons, storing it as their private

property.6 Thus, xi (t) is the (finite) extraction rate at time t of infinitesimal
agents dF (i).

The extraction path, x = {x(t)}, defines the initial value problem

k̇ (t) = ak (t)− x (t) , k(0) > 0 (1)

whose solution is the path of the capital stock whenever k(t) > 0.
An extinction date is the earliest T ≥ 0, such that k(T ) = 0. If limt→∞ k(t)

> 0, then T = ∞, which corresponds to non-extinction. Since k(T ) = 0 ⇒
x(T ) = 0, the capital stock is absorbed at 0 and

k (t) = max

{
0, k (0) eat −

∫ t

0

ea(t−τ)x (τ) dτ

}
. (2)

Equation 2 describes the unique solution to initial value problem whenever
x (t) is continuous over [0, T ) (Walter, 1998, p.28). Thus, aggregate extrac-
tion is admissible if x (t) is continuous over [0, T ).7

Goods extracted from the commons are presented to capital markets.
If saved, they earn a return of r ≤ a. Equally, future extraction may be
borrowed against, smoothing consumption, at the same rate.

Individuals choose extraction and consumption paths to maximize utility
subject to their budget constraint, 5, and to a feasibility (or non-negativity)
constraint

k(t) = 0 ⇒ xi(t) = 0. (3)

Individuals differ in their costs of extraction or access to common prop-
erty. This difference is captured by an extraction cost parameter, θ, such
that θi > θj implies i has easier access.

Their utilities are

Vi (ci, xi) =

∫ ∞

0

e−ρt

(
U (ci (t))− C (xi (t))

θi

)
dt; (4)

where utility and cost functions are

U (c) =
c1−α

1− α
, α > 0 and C (x) =

x1+γ

1 + γ
, γ > 0.

6This general specification is not generally taken advantage of. We often replace dF (i)
with the uniform di.

7Dockner, Jørgenson, Long, and Sorger (2000, p. 40, Definition 3.1) use ‘feasible’ in
place of ‘admissible’.
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Utility from consumption is concave while extraction costs are convex: U ′ >
0, C ′ > 0, U

′′ ≤ 0, C
′′ ≥ 0. Values of α > 1 yield utility function more

concave than the log, which corresponds to α = 1. As γ = 0 has an appealing
interpretation, we consider it later in the paper.

As instantaneous utility is unbounded, integral 4 may may converge as
t → ∞. To avoid comparisons of infinite valuations, we impose Uzawa
integrability conditions that ensure finite valuations:

(1− α)r < ρ < (1 + γ)r. (U)

These ensure that, respectively, the utility of consumption and the disutility
of extraction are finite.8

Without capital markets, agents are forced to set xi (t) = ci (t): con-
sumption must match extraction in every instant. Thus, agents maximise
objective function 4 by choice of a single variable.

Capital market access, however, enables them to decompose their opti-
mization problem into two separate problems. It does so by replacing the
instantaneous feasibility constraints on consumption with a single intertem-
poral budget constraint:

∫ ∞

0

e−rt (ci (t)− xi (t)) dt ≤ 0. (5)

Thus, xi(t) < ci(t) implies borrowing against future extraction. The possi-
bility of default is not considered.

It may happen, for r high enough, that individuals’ chosen paths satisfy
xi(t) > ci(t) up to some T . We do not impose this as a constraint on
individuals. We do, in Section 4, address the commons problem without
capital markets.

Finally, a rational expectations equilibrium is described by sequences {k ≥ 0, ci ≥ 0, xi ≥ 0}
and an extinction time, T, such that k(t) = 0 for all t ≥ T, where

1. individuals choose consumption and extraction paths to maximize util-
ities subject to their budget and feasibility constraints;

2. the evolution of the capital stock is determined by the aggregate ex-
traction path.

The equilibrium is competitive in the standard sense: although individu-
als’ aggregate behaviour influences the economic environment, T in this case,

8See Dockner et al. (2000, pp. 62 - 63) for a discussion of optimality criteria when
valuations are infinite.
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they disregard their individual effects on it. Thus, our agents are extinction
date takers.

In the following, we solve the model for equilibrium, and, in particular,
for extinction dates.

3 Rational expectations equilibria

The assumption that individuals can borrow and lend at rate r allows the
decomposition of their problem of determining extraction and consumption
into two separate problems:

1. the consumption-smoothing problem: choose ci(t) given total wealth
Xi(r) =

∫∞
0

e−rtxi(t)dt subject to constraint 5; and

2. the effort-smoothing problem: choose xi(t), given the extinction date
T and feasibility constraint, 3.

3.1 The consumption smoothing problem

Agents are viewed as first solving the consumption problem:

max
ci(t)

∫ ∞

0

e−ρtU (ci (t)) dt subject to equation 5. (6)

Defining

Xi(r) ≡
∫ ∞

0

e−rtxi (t) dt;

facilitates writing the Lagrangian:

L ≡
∫ ∞

0

e−ρt ci (t)
1−α

1− α
dt− λ

[∫ ∞

0

e−rtci (t) dt−Xi(r)

]
.

The ensuing Euler equation is standard:

ci (t) =
ρ− r (1− α)

α
Xi(r)e

r−ρ
α

t. (7)

This is independent of a, γ and θi. Its constant term is determined by the
constraint. Substitution into the objective function of equation 6 therefore
produces the maximized present value of utility from consumption

UB (Xi(r)) ≡ ν
(Xi(r))

1−α

1− α
; (8)
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where

ν ≡
(

α

ρ− (1− α)r

)α

=
1

(r − gc)
α .

The Uzawa finite valuation condition for consumption is ρ > r (1− α) .
This is trivially satisfied if α ≥ 1 (U (c) is more concave than log (c)). We
note that

ci (t) = ci(0)egct;

where

gc ≡ r − ρ

α
;

is the growth rate of consumption and ci(0) is chosen to satisfy (5):

ci(0) = (r − gc) Xi(r). (9)

The Uzawa condition may therefore be expressed as gc < r: consumption
growth is lower than the interest rate.

3.2 The effort smoothing problem

The agent’s problem is now to

max
xi(t)≥0

UB

(∫ ∞

0

e−rtxi (t) dt

)
− 1

θi

∫ ∞

0

e−ρtC (xi (t)) dt; (10)

subject to feasibility constraint 3.
When t < T , the ensuing Euler equation yields

xi (t) = egt [θiν]
1
γ

Xi (r)
α
γ

= egt [θiν]
1
γ

[∫ T

0
e−rtxi (t) dt

]α
γ

= egtκ;

where g = ρ−r
γ

and κ is a positive constant. Evaluating this at t = 0 produces

xi (0) = κ so that

xi (t) =

{
xi(0)egt for t < T
0 for t ≥ T

}
. (11)

This allows the term in xi (t) to be removed from the integral for

xi(0)α+γ =
θi

(
∫ T

0
exp(−(r − g)t)dt)α

ν. (12)
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Thus, extraction is smooth until the extinction date, T. More significantly,
the problem of choosing an extraction path is reduced to a choice of xi(0).
Note also that the extraction plan is a function of α: thus, full Fisher sep-
aration of extraction (production) and consumptions plans does not occur.
This is a consequence of γ > 0: extraction costs are borne as non-transferable
disutility.9

The Uzawa condition for extraction is now g < r. For now, we assume
that a > r as these situations might be expected to produce the most inter-
esting economic behaviour. (When a ≤ r maintaining the commons offers
no benefits.) Thus, for expositional purposes, we concentrate on a > g at
present. Theorem 2 treats the complementary cases as well.

Notice that g = −α
γ
gc; thus, for r > ρ, individuals extract early but

consume late. The r = ρ case yields g = gc = 0. This is a potentially
important special case (and ‘interest rate equals subjective rate of discount’
is well justified along equilibrium growth paths).

Notice also that an expression for extraction as a function of capital stock
may now be written. By equations 2 and 11,

k (t) = eat

[
k (0)− x (0)

g − a

(
e(g−a)t − 1

)]
.

Thus, when g 6= a, extraction cannot be expressed as a linear function of
capital stock.

3.3 Characterising equilibrium

Define the function

Qn (T ) =

∫ T

0

exp (−nτ) dτ =
1− exp(−nT )

n

for n 6= 0 and T ≥ 0.10 Notice that Qn (T ) increases with T and decreases
with n. This allows simplification of equation 12 to

xi(0) =
(θiν)

1
α+γ

(Qr−g(T ))
α

α+γ

. (13)

Integrating over agents then produces the first fundamental equation:
the effect of anticipated extinction on extraction:

x(0) =
µ

(Qr−g(T ))
α

α+γ

; (A)

9In the limit, as γ → 0, xi (0) ceases to depend on α by exploding to infinity. This will
also be demonstrated in Theorem 3.

10When n = 0, Qn (T ) = T .
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where µ ≡ ν
1

α+γ
∫

θ
1

α+γ

i dF (i). This equation gives us a map A : T → x(0),
monotone decreasing.

We know that x(0) determines the entire path of extractions. We now
obtain the second fundamental equation: the impact of extraction
on the possible extinction date of common property. As extinction occurs at
the lowest T such that k(T ) = 0, it represents a zero of equation 2:

k (0) eaT =

∫ T

0

ea(T−τ)x (τ) dτ.

Thus, by equation 11 and integration over agents,

k (0) = x (0)

∫ T

0

e−(a−g)τdτ. (14)

The Uzawa extraction condition ensures that r > g; thus a > g follows.
Therefore

k (0)

x (0)
=

1− e−(a−g)T

a− g
= Qa−g (T ) ≤ 1

a− g
.

This expression reaches its upper bound as T → ∞. Therefore T implicitly
solves,

Qa−g(T ) = min

{
k(0)

x(0)
,

1

a− g

}
. (I)

This equation gives us a map I : x(0) → T, also monotone non-increasing.
Here a low level of initial x(0) guarantees the perpetuation of common prop-
erty but a level higher than (a− g)k(0) results in extinction in finite time.

The discussion above tells us the likely source of multiple equilibrium
in extinction times. Both maps are decreasing: individuals choose to ex-
tract more if they believe that the commons will disappear soon; and higher
extraction rates speed up extinction.

To formalise the preceding discussion, define

Ψ(t) ≡ Qa−g(t)

[Qr−g(t)]
α

α+γ

; (15)

and ψ∗ ≡ limt→∞ Ψ(t), ψ∗ ≡ maxt Ψ(t).

Theorem 1. There exist 0 < kL ≤ kH ≤ ∞ such that the following state-
ments hold when agents have access to capital markets. Given intervals
IL = [0, kL), IM = (kL, kH), and IH = (kH ,∞):
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1. k(0) ∈ IL implies unique equilibrium with finite extinction;

2. k(0) ∈ IM implies multiple equilibria, one with non-extinction and two
with finite extinction;

3. k(0) ∈ IH implies unique equilibrium without extinction;

4. k(0) = kL = kH implies a unique equilibrium with non-extinction;

5. k(0) = either kL or kH , distinct, implies a unique equilibrium with
extinction, and a unique equilibrium with non-extinction.

The following lemmas are used to prove the theorem:

Lemma 1. limt→0 Ψ(t) = 0.

Proof. As Qn(0) = 0, assessing Ψ(0) requires use of l’Hôpital’s rule: dif-
ferentiating the numerator produces 1, while doing so to the denominator
produces

α

α + γ
[Qr−g(0)]−

γ
α+γ e−(r−g)0 =

1

0
= ∞.

Lemma 2. When the Uzawa extraction condition holds and a > g, 0 < ψ∗ <
∞.

Proof. By definition, limt→∞ Qn(t) = 1
n

when n > 0.11 Under the conditions
of the lemma,

ψ∗ =
(r − g)

α
α+γ

a− g
. (16)

The Uzawa extraction condition ensures that the numerator is strictly posi-
tive. When a > g, the denominator is as well, ensuring the results.

Lemma 3. An equilibrium with finite extinction time T satisfies Ψ (T ) =
k(0)
µ

.

Proof. Equations A and I, with Qa−g (T ) = k(0)
x(0)

, are satisfied in equilibrium.
The result follows by definition 15.

Lemma 4. An equilibrium with non-extinction exists iff

ψ∗ ≤ k(0)

µ
.

11When n ≤ 0 the limit is infinite.
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Proof. Assume that ψ∗ ≤ k(0)
µ

corresponds to a T = ∞ equilibrium. There-
fore, by definition,

k(0)

µ
≥ Qa−g (∞)

[Qr−g (∞)]
α

α+γ

= Qa−g (∞)
x (0)

µ
by equation A;

so that rearrangement produces

k (0)

x (0)
≥ Qa−g (∞) =

1

a− g
;

which satisfies equation I. Thus, the conditions for equilibrium are satisfied.
By contrast, if ψ∗ > k(0)

µ
, the final inequality above does not satisfy

equation I.

Lemma 5. For Ψ (t) to be strictly quasiconcave, either of the following are
sufficient:

1. a 6= g;

2. α > 0 and the Uzawa extraction condition holds.

Proof. Define

D (t) ≡ d ln Ψ (t)

dt
=

a− g

e(a−g)t − 1
− α

α + γ

r − g

e(r−g)t − 1
. (17)

Therefore

D′ (t) = − (a− g)2

[e(a−g)t − 1]
2 −

α

α + γ

(r − g)2

[e(r−g)t − 1]
2 .

By l’Hôpital’s rule, when a = g or r = g, the whole term in which it is
contained is zero. Thus, the stated conditions of the lemma suffice to ensure
that either the first or second term of D′ (t) is negative.

If either term is non-zero, the whole expression is strictly negative. This
suffices for ln Ψ (t) to be strictly concave and, thus, for Ψ (t) to be strictly
quasiconcave.

To prove the Theorem, define kL ≡ µψ∗ and kH ≡ µψ∗.

Proof. When k (0) ∈ IL, k (0) ≥ 0 and ψ∗ > k(0)
µ

. Lemmas 1 and 2 and the

continuity of Ψ (t) ensure that there is a single finite T such that Ψ (T ) = k(0)
µ

.
By Lemma 3, this implies a unique equilibrium with finite extinction date.
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As the inequality in ψ∗ is the reverse of the necessary and sufficient condition
in Lemma 4, there are no equilibria with infinite extinction dates.

Now consider k (0) ∈ IM ⇒ ψ∗ < k(0)
µ

< ψ∗. The first of these ensures,
by Lemma 4, the existence of an equilibrium with an infinite extinction date.
For the second inequality to hold, it must be that ψ∗ < ψ∗. By the continuity
of Ψ (t) and the definition of ψ∗, there are two finite T such that Ψ (T ) =
k(0)
µ

< ψ∗. By Lemma 3, these are equilibria with finite extinction times.

When k (0) ∈ IH , k(0)
µ

> ψ∗. Thus, by Lemma 3, there are no equilibria
with finite extinction times; by Lemma 4, there is one without extinction.

Now consider the degenerate cases. First, k (0) = kL = kH → k(0)
µ

=
ψ∗ = ψ∗. By Lemma 3, there is no equilibrium with finite extinction as ψ∗
is only reached as T →∞. Lemma 4 is satisfied with equality, producing an
equilibrium without extinction.

Finally, when kL 6= kH , Lemma 4 is satisfied. Now a single finite T
satisfies Lemma 3, tangentially when k (0) = kH .

Figure 1 shows an example. Multiplying the horizontal axis by µ allows
Ψ (t) to be replaced by k (0), easing interpretation.

Ψ (t)

1.4

2

0 100 200 300 400 t

T = ∞, no extinction
I

T finite, unique

ª

Two finite T ’s, one infinite

ψ∗

ψ∗

Figure 1: Extinction dates when α = γ = 1, ρ = 0.05, a = 0.1, r = 0.03
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To this point, it has been assumed that a > r. While this presents
the most interesting class of cases, its complement contains some canonical
cases. Non-renewable resources, for which a = 0 are the most obvious. These
cases may be analysed using the objects already developed; in some cases,
particular terms will be modified if their arguments are negative instead of
positive.

Theorem 2. When the Uzawa extraction condition holds:

1. IL is always non-empty.

2. IM is non-empty iff a > r.

3. IH is empty when a ≤ g.

Proof. 1. the continuity of Ψ (t) and Ψ (0) = 0 ensure the result if ψ∗ > 0.
When a > g, this has already been demonstrated in Lemma 2. When
a = g and r > g,

Ψ (t) = t

[
r − g

1− e−(r−g)t

] α
α+γ

. (18)

Thus, the Uzawa extraction condition ensures that ψ∗ = ∞. Finally,
when a < g, limt→∞ Qa−g (t) = ∞; as limt→∞ Qr−g (t) , ψ∗ is again infi-
nite.

2. Sufficient conditions for the existence of IM are that Ψ′ (t) = 0 for a
finite t and that Ψ (t) be strictly quasiconcave. Consider all possible
cases.

Under the Uzawa extraction condition, a = g sets

Ψ′ (t) =
1

[Qr−g (t)]
α

α+γ

[
1 +

α

α + γ

te−(r−g)t

Qr−g (t)

]
> 0∀t > 0.

Thus, r > a = g suffices for an empty IM .

Now consider a 6= g. Here

Ψ′ (t) =
egt

Qr−g (t)
α

α+γ

[
e−at − α

α + γ

Qa−g (t)

Qr−g (t)
e−rt

]
. (19)

Thus, a stationary point sets the square bracketed term to zero. Equiv-
alently, it solves

ert − egt

eat − egt
=

α

α + γ

r − g

a− g
. (20)
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To simplify analysis, define

ξ (t) ≡ ert − egt

eat − egt
.

Thus, ξ (t) is continuous for all t ≥ 0 and, by l’Hôpital’s rule, ξ (0) =
r−g
a−g

. As this is greater in absolute value than the right hand side of
equation 20 for all γ > 0, a sufficient condition for an empty IM is that
(a− g) ξ′ (t) ≥ 0∀t.
Calculation yields

ξ′ (t) =
(r − a) e(a+r)t − (r − g) e(r+g)t + (a− g) e(a+g)t

(eat − egt)2 . (21)

When r > a > g, this is positive.

Now consider r > g > a. By Lemma 5, Ψ (t) is strictly quasicon-

cave. As t → ∞, its denominator tends to
(

1
r−g

) α
α+γ

, a positive finite

number. Its numerator, however, tends to infinity. This, by strict qua-
siconcavity, precludes a maximum in finite t. Thus, IM is empty under
these conditions.

Now consider a = r > g. In this case, the square bracketed term in
equation 21 is identically zero, so that ξ′ (t) = 0∀t. This suffices, from
above, for an empty IM .

Finally, consider a > r > g, the case considered above. In this case, the
denominator of ξ (t) grows more quickly than the numerator, so that
ξ (t) asymptotes to zero as t →∞.

3. from the first steps in the proof, ψ∗ = ∞ when a ≤ g. With the Uzawa
extraction condition, this suffices for an infinite ψ∗.

The non-extinction equilibrium may be explicitly eliminated by noting
that allowing for a < g replaces equation I with

Qa−g (T ) = min

{
k (0)

x (0)
, max

{
1

a− g
, 0

}}
.

Thus, the final inequality in Lemma 4 requires x (0) = 0. Equation A, in
turn, then requires µ = 0, a contradiction by definition of µ and ν.

In closing, consider the limit case of γ = 0, linear extraction costs. This
may be interpreted as a situation in which there is a competitive market for
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the inputs (e.g. a labour market) into a CRS extraction function. Further,
this corresponds to the case studied in Gaudet et al. (2002).

When γ = 0, extraction costs reflect only total extraction, rather than
the rate of extraction. Thus, pulse extraction is no more costly than smooth
extraction. Thus, “the extraction contest is so fierce that the common is
drained in the instant storage is initiated” (Gaudet et al., 2002).

Theorem 3 (Gaudet et al. (2002) ‘jump extinction’). The extinction
date, T , goes to zero with γ.

The first condition includes a = r, the costless storage of Gaudet et al.
(2002).

Proof. Assume that T is finite. Then, under the stated conditions, equations
A and I combine to yield

Ψ (T ) =
k (0)

µ
=

Qa−g (T )

Qr−g (T )
α

α+γ

.

This may be rearranged and rewritten in terms of primitives for

k (0)

µ

r + aγ − ρ

[(1 + γ) r − ρ]
α

α+γ

γ−
γ

α+γ =
[
1− e−

r+aγ−ρ
γ

T
] [

1− e−
(1+γ)r−ρ

γ
T
]− α

α+γ

;

so that, as limγ→0 γ−
γ

α+γ ,

k (0)

µ
= lim

γ→0

[
1− e−

r+aγ−ρ
γ

T
] [

1− e−
(1+γ)r−ρ

γ
T
]− α

α+γ

.

If T remained positive as γ → 0, then the right hand side of the equation
would converge to unity, a contradiction. Thus, T → 0 as γ does.

Thus, jump extinctions only require that extraction costs become linear.
Unlike Gaudet et al. (2002), there is no condition on the cost of storage. The
difference between these results does not seem reflect the difference between
storage alone and full capital market access: agents are not taking advantage
of their ability to borrow against future income here. Instead, they are
banking and saving it all initially.

4 The commons without capital markets

This section compares the RE equilibria with capital market access to those
without such access.
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When individuals do not have access to capital markets, their consump-
tion and effort smoothing problems are addressed as a unit. Intertemporal
budget constraint 5 is replaced by ci (t) = xi (t); feasibility constraint 3 re-
mains the same. Thus, agents maximise

∫ ∞

0

e−ρt

[
xi (t)

1−α

1− α
− 1

θi

xi (t)
1+γ

1 + γ

]
dt subject to constraint 3.

Maximising produces

x̃i (t) =

{
θ

1
α+γ

i for t < T
0 for t ≥ T

}
. (22)

Integrating over all agents yields aggregate extraction

x̃ (t) =

{
µν−

1
α+γ for t < T

0 for t ≥ T

}
. (23)

The tilde distinguishes this solution from that with capital market access.
As agents are unable to intertemporally smooth, they maximise myopically,
extracting at the instantaneously optimal rate without consideration of the
stock consequences. Thus, extraction is also independent of the initial capital
stock.

Extinction dates without capital market access may be compared to the
results derived in Theorem 1 for capital market access:

Theorem 4. When agents do not have access to capital markets, there is a
unique, finite extinction date iff

k (0) <
µ

aν
1

α+γ

.

Otherwise, the unique equilibrium has no extinction.

Proof. Substitution of equation 23 into equation of motion 2 yields

e−aT̃ = 1− aν
1

α+γ

µ
k (0)

when k (t) is set to zero. Under the conditions of the theorem, this has the
unique, finite solution

T̃ =
1

a

{
ln µ− ln

[
µ− aν

1
α+γ k (0)

]}
. (24)

Thus, as k (0) ↗ µ

aν
1

α+γ
, T̃ approaches infinity asymptotically.

17



Thus, T̃ is convex in k (0). Again, the Uzawa conditions derived earlier
are assumed to hold.

Lemma 6. A necessary condition for initial extraction without capital mar-
kets to exceed that with capital markets is

γ

(1 + γ) r − ρ
>

[
α

ρ− (1− α) r

]α

.

Given any parameter values, initial extraction without capital markets will be
less than that with capital markets for at least some commons stocks.

Proof. By equations A and 23, x̃ (0) > x (0) requires

[Qr−g (T )]α > ν > 0.

The right hand side is constant in k (0); it is positive by the Uzawa consump-
tion condition and the assumption that α > 0. The left hand side increases
in T . Thus, a necessary condition for the inequality to hold is that it hold at

T = ∞⇒ Qr−g (∞) =
1

r − g
.

The condition follows from the definitions of g and ν.
The second part of the lemma follows from noting that

k (0) = 0 ⇒ T = 0 → Qr−g (0) = 0 < ν;

when the Uzawa consumption condition holds.

Figure 2 displays an example of the effect of capital market access on ex-
tinction dates.12 The curve referring to capital market access is that in Figure
1. Here, low levels of commons stock are preserved for longer by individuals
without access to capital markets. Above k (0) = µψ∗, an intermediate zone
is entered. In this, the extinction date without capital market access lies
between the two finite extinction dates with capital market access. At the
same time, there is an equilibrium with no extinction when individuals have
access to capital markets.

Finally, above a higher level of k (0), the extinction date without capital
market access is greater than both of the finite dates with access. Again,
though, there is a non-extinction equilibrium with capital market access.

Extinction dates are poor proxies for welfare: late extinction dates are
obtained by low extraction rates. Consider a situation in which the commons

12Maple code available from the authors upon request.
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Figure 2: Extinction dates varying in k (0) when α = γ = 1, ρ = 0.05, θi =
e∀i, a = 0.1, r = 0.03

is exhausted one period earlier under capital market access than it is without
it. In this case, one period of returns at rate a are lost, but the privately
stored extraction in that period then grows at rate r. By contrast, in the
situation without capital market access, the extra period of a growth is not
balanced by future r growth. Thus, we now compare welfare directly.

The equilibrium welfare obtained by the infinitesimal agents di with ac-
cess to capital markets may be expressed in terms of initial extraction, xi (0)
by substitution of equations 8, 11 and 12 into equation 4:

Wi =
α + γ

(1− α) (1 + γ)
θ

1−α
α+γ

i ν
1+γ
α+γ [Qr−g (T )]

1−α
α+γ

γ . (25)

As T is not generally a function of k (0), this cannot be expressed as a function
of k (0) directly.

The welfare obtained by individuals di without access to capital markets
may also be calculated:

W̃i =
1

ρ

α + γ

(1− α) (1 + γ)
θ

1−α
α+γ

i

[
1− e−ρT̃

]
. (26)
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In the special case of α = 1, this becomes

W̃i =
ln θi − 1

1 + γ

1− e−ρT̃

ρ
. (27)
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Figure 3: Welfare varying in k (0) when α = γ = 1, ρ = 0.05, θi = e∀i, a =
0.1, r = 0.03

Figure 3 displays the results for the same parameter values as those used
above. These have been selected to ‘normalise’ welfare under autarky to zero
for all commons endowments. This has a nice interpretation: all rents are
dissipated regardless of initial commons stock.

When α = 1, equation 27 shows that welfare may increase or decrease
in k (0) under finite extinction. We identify this latter case as a form of ‘re-
source curse’: higher levels of endowment support equilibria in which agents
correctly expect that they will deplete the commons more energetically, extin-
guishing it too quickly. These cursed equilibria correspond to high extraction
costs: θ < e.

The rising curve, becoming a horizontal line, represents welfare with ac-
cess to capital markets. It also exhibits a cursed equilibrium. Nevertheless,
this still yields higher welfare than does the more intuitive upward sloping
segment.
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Comparing the levels of welfare under autarky and with capital market
access, it may be seen that the autarkic equilibrium dominates for all k (0) <
µψ∗. Below that point, agents with capital market access expect such a
rapid extinction that they undertake very rapid, thus expensive, extraction
themselves, banking the proceeds.

Beyond that point, there are equilibria with capital market access that
dominate the autarkic. At the point at which the equilibrium with most
rapid extinction comes to dominate the autarkic, its extinction date is still
much shorter than the autarkic’s, justifying our earlier conjecture.

5 Taxation

Suppose now that the government imposes an extraction tax, δ, so that
infinitesimal agents di retain xδ

i = (1− δ) xi after having extracted quantity
xi.

In the case of literal commons, tax revenue earned might be spent pro-
viding public goods. We, however, follow the Tornell and Velasco (1992)
interpretation, and consider institutional commons. Tax revenue, δx, is re-
turned to the commons. Thus, taxes both reduce agents’ productivity from
θi and replenish the commons.

The equations in Section 3 may largely be rewritten in terms of xδ
i in-

stead of xi. The consumption smoothing problem is subject to the feasibility
constraint

Xδ
i (r) =

∫ ∞

0

e−rtxδ
i (t) dt;

which replaces Xi in subsequent calculations. The consumption calculations
are otherwise unchanged.

As to extraction, first order condition 12 becomes

xδ
i (0)α+γ =

θiν

[Qr−g (T δ)]α
(1− δ)1−α ;

while the first fundamental equation, A, is now

xδ (0) =
µ

[Qr−g (T δ)]
α

α+γ

(1− δ)
1−α
α+γ .

The extraction rate relative to the situation without a tax therefore depends
on two factors: a direct effect, and an indirect effect through the extinction
date.
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The second fundamental equation, I, becomes

Qa−g

(
T δ

)
= min

{
1

1− δ

k (0)

x (0)
,

1

a− g

}
.

Thus, for finite T δ, the effect of an extraction tax is to ‘inflate’ k (0). Whether
this increases or decreases the extinction date depends on the equilibrium
selected.

Theorem 1 goes through when kL and kH are replaced by kδ
L ≡ µψ∗ (1− δ)

1+γ
α+γ

and kδ
H ≡ µψ∗ (1− δ)

1+γ
α+γ . This, in turn, alters the conditions in Lemmas 3

and 4. Otherwise, the remaining results go through unchanged.

As (1− δ)
1+γ
α+γ < 1 for all δ > 0, the effect of an extraction tax is to

reduce toward zero the boundaries of the intervals defined in Theorem 1.
Some initial capital stocks that, without taxation, were in IL (resp. IM) are,
with taxation, in IM (resp. IH). Thus, taxation increases the set of k (0)
over which non-extinction is possible.

The welfare calculations in equation 25 may be altered for

W δ
i = θ

1−α
α+γ

i ν
1+γ
α+γ

{
1

1− α
(1− δ)

(1−α)2

α+γ
[
Qr−g

(
T δ

)]− 1−α
α+γ

α

− 1

1 + γ
(1− δ)

(1−α)(1+γ)
α+γ

[
Qr−g

(
T δ

)] 1−α
α+γ

γ
}

. (28)

The effect of taxation appears in both the consumption and extraction terms.
Figure 4 displays the welfare consequences of an extraction tax. This is

set at δ = .5 for illustrative purposes; the other parameters are as they were
in earlier figures.

In the equilibria without extinction, the tax does not alter welfare in
this example. This is a consequence of α = 1, which reduces the difference
between equations 28 and 25 to one of extinction dates. Without extinction,
these are the same when α = 1.

Taxation is welfare improving in the example: for any k (0), the worst
equilibrium dominates the best corresponding one without taxation. It can
be seen to do this through two channels. First, it makes the non-extinction
equilibrium feasible for lower levels of k (0). Second, the finite extinction
equilibrium in which welfare increases in k (0) dominates that without an
extraction tax. In this case, the replenishment effect of the extraction tax
seems to dominate its reduced productivity effect.

Finally, note that the domain over which the cursed equilibrium is possible
is reduced by taxation. In the extreme, at δ = 1, the IM interval disappears,
eliminating the cursed equilibrium.
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Figure 4: Welfare consequences of δ = .5; other parameters as before

A consumption tax may also be considered using similar techniques. Sup-
posing that the tax that reduces consumption to cε

i = (1− ε) ci modifies
equation 1 for

k̇ (t) = ak (t)− x (t) + εc (t) , k(0) > 0.

All the steps taken above may be repeated. As the equation of motion is
now more complicated, so is the new version of equation I.

Savings taxes are more difficult to consider. These would reduce xi − ci

when this difference was positive, but not otherwise, introducing a kink into
agents’ problems. Such a tax corresponds most closely to capital controls.

6 Discussion

We have analysed extraction from a commons when agents have access to
capital markets. Comparison to the standard in the literature, in which
agents do not have such access, shows that the results can differ significantly.
Qualitatively, the difference appears to be largest when the resource in the
commons grows quickly. A further comparison that may be of interest, given
the existing literature, would be to the situation with storage.
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We do not attempt to test these results empirically. Instead, we merely
note some of the challenges that doing so presents. First, some proxy for
the presented discounted value of utility is necessary. A measure like GDP
may be a reasonable proxy. Finding a measure of k (0) is more difficult, for
at least two reasons. First, data refer to t > 0: savings and borrowing have
begun. Second, communally owned resources do not seem to correspond to
a clear category: measures of natural capital, for example, may overestimate
(if some natural capital is privately owned) or underestimate them (if other
resources are also weakly owned).

The extraction tax considered above may be thought of as decreasing
individuals’ θi, increasing their extraction costs. At the outset of the taxation
discussion, it was noted that a literal understanding of the commons might
not return tax revenue raised to the commons. Under this interpretation,
governments may spend it on public goods of various sorts. Within the
framework of this model, the one parameter that might be influenced by
such expenditures is individuals’ productivity, θi. If tax revenue increased
θi, then the welfare consequences of the tax might be the opposite of those
developed above.

Five directions for future research seem fairly natural. First, the spec-
ification of the constant a is, in general, an over-simplification. Biological
models typically allow the growth rates to be functions of the stock (q.v.
Dockner and Sorger, 1996; Kremer and Morcom, 2000), a (k) in this case.
This generalisation leaves equation A unchanged. Equation 2, however, be-
comes

k (t) = max

{
0, e

∫ t
0 a(k(τ))dτ

[
k (0)−

∫ t

0

e−
∫ τ
0 a(k(σ))dσx (τ) dτ

]}
.

Thus, equation 14 becomes

k (0) = x (0)

∫ T

0

egt−∫ t
0 a(k(τ))dτdt.

Integrability requires a new Uzawa extraction condition; the equivalent of
equation I will no longer be a clear expression of Qa−g (T ).

Second, the present analysis has not considered strategic agents, as in
Tornell and Velasco (1992) and Tornell and Lane (1999). Strategic analy-
sis requires calculating optimal strategies for every combination of private
savings and commons stock that can be reached from the problem’s initial
conditions. Thus, the Hamilton-Jacobi-Bellman equation is a PDE in private
savings and commons stock.

Technically, this seems related to how relaxation of the commons assump-
tion could be approached. In an environment with weak property rights, it
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may be more costly nonetheless to access the surplus generated by others
than it is one’s own. Again, this suggests differentiated commons stocks, and
PDEs.

Fourth, the capital stock is not an argument in the utility function in this
model. This seems more consistent with an interpretation of k as physical
capital than as natural capital. In the latter case, k might provide eco-
system services directly. Allowing k to enter directly into the utility function
would allow re-analysis of the problem as the marginal rate of substitution
between k and ci varied. This might contribute to the ‘weak’ and ‘strong’
sustainability debate.

Finally, the absence of default provisions is an obvious limitation of the
present analysis.
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