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Abstract 
 

This paper looks at the linkages between growth and business cycles by bringing together two strands of 

literature.  We incorporate a quality ladders engine of growth into an otherwise standard real business cycle model.    

Our fundamental question is, can Schumpeter’s creative destruction process which leads to technological 

improvement over time also generate realistic business cycles?  We use a standard real business cycle approach to 

solve for rules of motion in our state variables and proceed to generate artificial time series.  We compare the 

statistical properties of these series with their historical counterparts to determine if the model mimics the real world 

closely. 

One advantage our approach has over the standard approach is that the trend component is included in our 

artificial series just as it is in the data.  Hence, we are not tied to any particular filtering method when we compare 

simulations with the real world data.  Quantitative analysis reveals the model is at least as capable of accounting for 

key features of fluctuations at various frequencies as a model with exogenous technology shocks.  Moreover, the 

model can do so without relying as heavily on a highly persistent generating process for such exogenous shocks as 

standard models must. 

. 
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1. Introduction 

Dynamic general equilibrium models have proved to be valuable tools for examining both economic 

growth and fluctuations.  One class of these models – the Schumpeterian or “quality ladders” models – focuses on 

explaining observed smooth growth trends.  Segerstrom, Anant & Dinopoulos (1990), Grossman & Helpman 

(1991), and Aghion & Howitt (1992) first introduced this literature in their seminal papers.  In addition, there have 

been numerous extensions of the basic quality ladders model, focusing on innovation versus imitation, North-South 

trade patterns, and other related topics.1 

Schumpeterian models have the advantages that they are rigorously based in microeconomic theory and 

have a great deal of intuitive appeal.  In this literature, growth is driven endogenously by attempts to innovate and 

climb up the quality ladder to capture a stream of monopoly profits.  Attention is normally focused on the steady 

state, where growth is smooth over time due to a large number of independent, but identical innovators each 

targeting a unique good. Growth for any given good, proceeds in a lumpy fashion with discrete jumps in quality 

occurring randomly over time, but the law of large numbers leads to smooth aggregate growth. 

A second class of models focuses on explaining the behavior of economic aggregates over the course of the 

business cycle.  Usually referred to as real business cycle (RBC) models, early work began with seminal papers by 

Kydland & Prescott (1982) and Long & Plosser (1983).  Again, numerous papers have extended this literature to the 

examination of aggregate labor behavior, monopolistic competition, monetary aggregates, and various other topics.2 

The RBC methodology generally involves building a general equilibrium model, with changes in 

productivity (and, more recently, other economic fundamentals) driving aggregate behavior.  These models are 

capable of generating artificial data that mimic observed business cycles.  Unlike the Schumpeterian literature, 

attention is focused on the off-steady-state high-frequency behavior of aggregate economic variables.   

In practice, RBC models are typically transformed into a stationary variant and solved numerically to yield 

stationary laws of motion for endogenous variables as functions of endogenous states and exogenous driving 

processes.  A stationary model economy is then simulated and evaluated by comparing properties of data drawn 

                                                           

1 For an extensive overview of this literature see Grossman and Helpman (1991) and Aghion and Howitt 

(1998). 

2 For an excellent overview of the RBC literature see Cooley (1995). 
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from the model with data drawn from actual economies.  Since the focus of RBC models is on high-frequency 

fluctuations and not on economic growth, the growth component is usually ignored.  However, in order to compare 

the artificial economy with real world data it is necessary to remove the growth component from the real world data; 

i.e. to detrend it.  While many business cycle stylized facts are invariant to the filter used, there are some important 

facts that are not3.   

Generally in RBC models, the source of shocks is an exogenously imposed sequence of large and volatile 

productivity shocks.  A common specification of such shocks is a simple AR(1), and there is little or no economic 

theory involved in the specification of the driving process.  Moreover, there is increasing skepticism that technology 

shocks, measured by Solow residuals, are a major source of business cycle fluctuations.  As King and Rebelo (1998) 

point out “A key difficulty is that typical estimates of Solow residuals imply a probability of technical regress on the 

order of 40%, which seems implausible to most economists.”   

This paper integrates the two branches of literature identified above: the RBC literature, which focuses on 

detrended, high frequency fluctuations; and the Schumpeterian literature, which focuses on low-frequency growth 

trends.  The objective is to construct a dynamic general equilibrium model with an endogenous driving process for 

business cycles derived from microeconomic primitives, and with high- and low-frequency movements in economic 

aggregates that mimic those observed in the U.S. economy. 

The endogenous growth component of the model is included in simulations, which create artificial data.  

Properties of the artificial data are then compared to like properties of their real data counterparts to evaluate the 

model’s performance.4 

An important feature of the model is that growth and cyclical properties of data stem from a common 

source – endogenous innovations to technology.  Technical regress is not necessary for business cycle fluctuations in 

the model.  Rather, the endogenous movements of resources between goods production and technological 

advancement gives rise to cyclical fluctuations, as well as lower frequency movements in key macroeconomic 

                                                           

3 See Canova (1998). 

4 Note that since growth is endogenous in the model, the choice of which particular detrending method to 

use is less critical than in a protoypical RBC model.   
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variables.  In principle, the model does not require large and variable technology shocks that imply high likelihoods 

of technical regress to explain business cycles.   Rather, endogenous improvements in technology and the diffusion 

of the improvements into production of final goods can help explain both growth and cycles.   

Methodology 

Our methodology is as follows.  We incorporate features of the Schumpeterian growth literature into a real 

business cycle model of the macroeconomy.  We interpret what are usually called increases in quality in the 

Schumpeterian literature as increases in productivity, and we keep the quality of goods constant over time.  If a 

small number of industries are assumed, this gives rise to aggregate growth in technology that is "lumpy" and can 

therefore serve as a driving process for business cycles. 

The model is evaluated by: linearizing agents’ Euler equations, with market clearing conditions imposed; 

numerically solving the model for endogenous variables as functions of endogenous states and exogenous shocks; 

simulating the model to generate sequences of macroeconomic aggregates; comparing properties of data generated 

by the model with properties of data drawn from the U.S. economy at both high- and low- frequencies.  

There are two sources of shocks in the model.  One (denoted A) is a sequence of random draws to 

determine success or failure of potential innovators who invest resources in basic research and development (R&D) 

to influence their success probabilities.  In aggregate the size of this shock goes to zero as the number of 

independent industries assumed is increased.  A second source of shocks (denoted z) is innovations to labor 

productivity governed by a process typically used in RBC models.  This set-up has the advantage of nesting both the 

pure RBC model and the Schumpeterian model as special cases.  To examine the dynamics of the RBC model we 

can set the number of intermediate goods to a very large number (like 1,000,000) and virtually all fluctuations will 

come from the exogenous shocks.  Similarly, we can set the variance of the exogenous shocks to zero and the 

number of industries to a small number to examine the dynamics of the pure Schumpeterian case. 

A Comparison with Other Dynamic Schumpeterian Models 

Our approach is related to recent papers by Andolfatto & MacDonald (1998), Collard (1999), Freeman, 

Hong & Peled (1999), and Ozlu (1996) which also focus on dynamic implications of endogenous growth models.  

There is also an expanding literature on “Schumpeterian waves”, which looks at the behavior of the economy in 

response to large but infrequent movements in basic technology.  Early work by Cheng & Dinopoulos (1992 & 

1996) looked at these longer-run fluctuations.  Aghion & Howitt (1998) devote a portion of their book to this 
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phenomenon as well5.  Wälde (2002) examines the implications of Schumpeterian growth in a continuous time 

framework, but does not calibrate or compare model generated data with real world data. 

Collard and Ozlu each consider extensions of a standard RBC model to include endogenous growth through 

human capital accumulation effects of learning-by-doing.  Ozlu considers labor market implications of allowing 

learning-by-doing effects on human capital, while Collard considers implications for the autocorrelation of output 

growth and impulse response functions in the trend-reverting component in output.  These authors find 

improvements in quantitative implications of RBC models augmented to include learning-by-doing effects over 

standard RBC models without human capital features.  Our analysis is similar to those performed by Collard and 

Ozlu in two respects.  First, we also consider business cycle implications of an RBC model augmented to include an 

endogenous growth mechanism.  Second, as in Collard’s analysis, we consider implications of our model for 

fluctuations in key variables at various frequencies including, but not limited to, business cycle frequencies.  Our 

model differs from theirs, however, in an important way.  While Collard and Ozlu essentially provide a model of an 

endogenous mechanism for the propagation of exogenous technology shocks, we model both propagation of shocks 

and the shocks themselves.  That is, we present a model that accounts for how shocks to technology arise, as well as 

how they may be propagated and diffused through time. 

Closer to the spirit of our analysis is the work by Andolfatto & MacDonald, and by Freeman, Hong & 

Peled.  The latter set of authors construct a model of large and costly technological changes which give rise to 

deterministic cycles and long run growth.  Their economy requires a sufficiently large amount of capital, diverted 

from consumption and physical investment, for birth of a technological innovation.  Then, when an innovation 

occurs, capital is more highly valued in physical investment than in R&D investment.  Consequently, resources flow 

away from R&D and toward final goods production.  As the marginal product of capital using existing technology 

fades through time, resources subsequently flow back toward consumption and the production of R&D innovations.  

These flows of capital give rise to endogenous movements in consumption and investment patterns within each 

fixed-length innovation cycle. Our analysis similarly accounts for endogenous movements in key macroeconomic 

                                                           

5   Chapter 8, especially section 8.4. 
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variables within innovation cycles, but also explicitly models innovation cycles of random durations.6  In addition, 

when exploring quantitative predictions of our model relative to quantitative properties of actual data, we explicitly 

consider movements in key macroeconomic variables at well-defined frequencies. In contrast, Freeman, Hong, and 

Peled are agnostic about the frequency one should look at in actual data for the innovation-driven cyclical patterns 

of movements that their model predicts.     

The analysis of Andolfatto & MacDonald is close to that in this paper in that they consider fluctuations and 

growth in key macroeconomic aggregates arising from the discovery and diffusion of technological innovations.  As 

in our model, Andolfatto & MacDonald have growth arising from technological discovery and use, and fluctuations 

arising from diffusion of applied, or frontier, research.  Some type of diffusion mechanism is required in each model 

to smooth out what would otherwise be unrealistic spikes in economic aggregates from infrequent, possibly large, 

technological innovations springing up from applied research.  

Andolfatto & MacDonald consider a diffusion mechanism involving imitation and learning how to use new 

technology, which diverts resources from production.  Agents choose the amount of resources to devote to various 

imitation and learning possibilities available to them, the outcomes of which are random.  With such a mechanism, 

the authors compare Hodrick-Prescott filtered series (in levels, not deviations from filtered series) from actual data 

with like series drawn from their model.  

The model in this paper has no such mechanism for innovation and diffusion, though previous work has 

focused on a similar diffusion process.  Our analysis differs from Andolfatto & MacDonald’s in the frequencies of 

movements in macroeconomic variables considered.  Our model is an attempt at simultaneously accounting for 

growth and business cycle fluctuations.  Consequently, we consider movements in macroeconomic variables at 

various frequencies, including those that arise at business cycle frequencies.  We do not restrict attention to data 

movements at frequencies at or below those at which major innovations diffuse, as do Andolfatto & MacDonald.  

2. A Dynamic General Equilibrium Schumpeterian Model 

                                                           

6 Another difference between our model and the one constructed by Freeman, Hong, and Peled is that our 

model considers labor, rather than capital, as the input to the R&D process.  We include only labor to simplify the 

analysis but are free to enter capital into the R&D process as well. 
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In this section, insights of the Schumpeterian or “quality ladders“ growth models are incorporated into a 

discrete-time stochastic general equilibrium model of the real business cycle tradition.  Since it is well known that 

the equilibrium from Schumpeterian growth models is socially suboptimal, we proceed to examine the competitive 

equilibrium.  First, we examine the behavior of households, then that of production firms, and finally the behavior of 

research firms.  Imposing aggregate resource constraints and market clearing conditions closes the model.7   

The model contains households, production firms, and research firms.  Each infinitely lived household is 

endowed with one unit of labor each period supplied to firms at wage wt.  Households also accumulate physical 

capital, K, over time, which they rent to firms each period at rental rate rt.  In addition to physical capital, 

households buy and sell equity shares in two types of existing firms-production and research firms-in I different 

intermediate industries.  These shares influence the household’s budget by generating dividends and capital gains or 

losses.  There is also a final goods sector, which we assume is perfectly competitive and generates no profits.  For 

simplicity, we abstract from buying and selling of these firms' equities8. 

In each period there is a single production firm in each intermediate industry with an exclusive right to a 

particular level of production technology, Ai, that is some factor θ >1 better than the closest competitor.  This 

production firm enjoys monopoly power and earns monopoly rents during the current period, and possibly many 

future periods, until a firm with even better technology replaces it.  The production firms hire labor and rent capital 

to produce intermediate goods, and pay out profits as dividends to shareholders each period.  Final goods are 

produced by combining intermediate goods. 

There also exists a single new research firm for each intermediate industry, which incorporates with the 

intent of displacing the current production firm in its role of monopolist.  The research firm issues equity shares and 

uses the proceeds to hire units of labor to attempt an innovation.  If successful, the research firm discovers a 

technology that is a factor θ better than the current production firm and begins production as the monopolist next 

period. If unsuccessful, the firm ceases to exist and its equity shares become worthless.  We account for successes 

and failures across the i industries with an I-dimensional vector S', with element iS ′ = 1 if a research firm succeeds 

                                                           

7 A listing of notation and variables used in the model is contained in Table 1. 

 

8 The assumption is innocuous because these equities would have zero prices. 
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in the current period and iS ′ = 0 if not.  If iS ′ = 1, then today’s research firm in industry i becomes the production 

firm tomorrow with technology iA′ that is a factor θ  better than its predecessor.9   

There is also an aggregate random shock to productivity in the model, unrelated to any of the Ai's which we 

denoted z.  This exogenous shock is to the productivity of labor in the intermediate goods producing firms’ 

production functions.  We include such shocks to allow for shocks to productivity unrelated to actual movements in 

technology, such as oil price shocks, changes in marginal tax rates, changes in government regulation of production 

processes, or similar non-technology shocks.  This shock to productivity, assumed to be common to all I 

intermediate good producers, is of the form used in standard RBC models.  One of our interests will be the extent to 

which, by allowing for random innovations in R&D, the model does not require productivity shocks that are as 

persistent and volatile as those typically employed in RBC models to explain business cycle fluctuations.   

The timing of information, shocks, and activities in the economy is as follows.  Agents begin a period with 

capital stock K knowing research and shock realizations A10, and z.  At the beginning of the period, factor and equity 

markets open and clear.  Firms rent capital from households, and real rental rate r is determined.  Firms also hire 

labor from households, and a real wage w is determined. Research firms issue shares, and prices of those shares, qR 

(also a vector), are determined, and production firms issue shares, and their prices, qP, are determined.  Following 

input and funding acquisitions, production of goods and research occurs and the research results and random shocks 

A', and z′ are revealed.  Subsequently, at the end of the period, factor payments w and rK are made, production-firm 

profits π are distributed to shareholders, next period’s capital stock K' is chosen, and consumption occurs. We now 

turn to decisions made by the household, production firms, and research firms.  

The Household's Problem 

                                                           

9 We adopt the notation convention that variables without a prime denote current period values and 

variables with a prime denote next-period values.  Additionally, bold letters are used to denote i-dimensional vectors 

of variables. 

10  This is a vector containing all the Ai shocks 
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A representative household enters a period with capital K carried over from the previous period and a 

normalized unit labor endowment.11    The household also owns stocks of equity shares in last period's production 

and research firms, denoted by share vectors P and R.  The household knows the following: the current levels of 

technology, A, to be employed by this period's production firms, the current random productivity shock, z, and 

whether last period's research firms succeeded or failed, the vector S.  Taking prices r, w, qP , qR, and the 

probabilities of success by the current research firms, ρ, as given, the household chooses new stocks of equities P' 

and R' to carry over to next period.   

After production is completed and next period's values for technology, A', and z', are revealed, the 

household chooses a level of capital, K', to carry into next period.  Consumption then occurs according to the 

household’s choices and budget constraint. 

The value function for the household is thus: 
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momentary utility function, β is the discount factor, },A,,,,,{ zrw PR SqqΩ ρ,= is an information set, and E is 

the expectation operator given information available at the beginning of the period.  ρ in the information set 

represents the vector of industry R&D success probabilities. S represents the vector of industry R&D success 

indicator variables, taking values of 1 if a success occurs, and 0 if failure occurs. 

 For industry i, iρ  is the probability of an applied research firm successfully innovating in the 

current period to become next period’s intermediate goods producer with an improved technology.  We explicitly 

model the innovation probabilities below in the discussion of the research firms’ problems.  What is relevant for the 

household’s decision is that with probability iρ  a share in today’s industry i research firm will pay off next period.  

If today’s research firm pays off next period, then a share in that industry’s current intermediate goods producing 

                                                           

11 The household supplies its endowment inelastically and therefore receives wages w*1.  The labor 

endowment is divided between research and production firms’ activities. 
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firm will not pay off next period because it is replaced by the current period’s successful innovator.  

Correspondingly, with probability iρ−1 , industry i’s current research firm is unsuccessful and won’t pay off next 

period.  In that case, the current intermediate goods producer remains as next period’s producer providing payoffs on 

its shares. 

The envelope conditions from the household’s problem consist of I conditions each for the shares iP  and 

iR , and a condition for capital stock K given, respectively, by: 

)1)()}(({);,,( i
P
iiC

i
P SqCuEKV −+= πΩRP  i= 1,2,…,I 

i
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iiC

i
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)1)}(({);,,( rCuEKV CK +−= δΩRP  

The Euler equations corresponding to the household’s choices consist of I conditions each for next period shares 

′
iP and ′

iR , and a condition for next period’s capital stock K ′  given by: 
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Combining envelope and Euler equations gives the following 2I+1 system of equations: 
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where expectation operator }y  |x{E  denotes the expectation of x given all the information available at the 

beginning of the period, plus additional information revealed after the beginning of the period that is contained in y. 

The laws of motion governing each industry’s applied technology level Ai, applied research success index 

Si, exogenous technology shock z, and basic technology level Bi, known to the household, are: 
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'' ηψ += zz ; where η' is distributed Normal (0,σ2) (2.5) 

The endogenous choices and random shocks governing the applied R&D success probabilities iρ  are discussed in 

detail below when the R&D firms’ choice problems are discussed.  The z shocks are the productivity shocks 

discussed earlier.   

Production of Final Goods 

Final goods production is an Armington aggregator of all intermediate goods, and uses no capital or labor.12   

∏
=

=
I

i

I
iYIY

1

/1    (2.6) 

Firms view the prices of intermediate goods as fixed, and a typical firm maximizes profits: 
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First-order conditions for the firm’s problem yield: 

I
YYp ii = ,    (2.8) 

This shows that all intermediate firms earn the same amount of real revenue.  Alternatively stated, regardless of the 

amount produced, expenditures on each intermediate good are equal. 

Production of Intermediate Goods 

The production firm produces output using a Cobb-Douglas production function with two sources of 

productivity variation, both of which are assumed to be labor augmenting: 

αα −= 1][ ii
z

ii NAeKY   (2.9) 

Productivity variations come from productivity shocks, z, along with the endogenous growth shocks iA .  

                                                           

12 We could take the usual approach and use this aggregator as a utility function expressing a preference for 

variety across the I intermediate goods.  Interpreting it as a final good, however, has the advantage of yielding a 

natural numeraire good for the calculation of real values. 
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The monopolistic production firm faces a downward sloping demand curve defined by (2.8).  However, 

there is a potential competitor that places limits on the price the monopolist will charge.  The previous producer of 

the good has access to a technology that is 1/θ   as productive as the current firm's.  The current firm will never 

charge a price that exceeds its marginal cost by more than a factor of αθ −1 .  To do so would be to surrender 

production to the previous producer.  It can easily be shown that the marginal cost for the current firm is: 
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Similarly, the marginal cost for its closest competitor is: 
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Hence, the optimal price for the firm is to charge a multiplicative markup of αθ −1 over marginal cost.   

 Standard optimality conditions for the firm reveal that it divides revenues between payments to 

labor, capital, and dividends according to: 
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These distribution equations show that capital, labor, and profits are identical for all intermediate firms regardless of 

the level of technology they use.  The aggregate values are, then, iIKK = , iINN =  and iIππ = .  Substituting 

these values into (2.9) and (2.6), the production of final goods can be written as an aggregate production function of 

the form: 
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This shows how we can collapse the production of intermediate and final goods into a single aggregate production 

function. 

Given the manner in which the iA  evolve in (2.4), and the aggregation in (2.11), aggregate technology, 

A , evolves according to the following Binomial law of motion: 

IJAA /' θ=  ; with J distributed as Binomial (I,ρ) (2.12) 

The Research Firm’s Problem 

Each period, a single research firm springs into existence in each industry.13  It sells equity shares, 

normalized to a quantity of one, to the household at price R
iq and uses the proceeds to hire labor.  Taking prices w 

and R
iq  as fixed, the firm chooses the amount of labor to hire by solving: 

R
ii

i
iR

i

qwLtsS
r

VE
L

Max ≤






 =

+
=Π ..1'

1
'ρ  (2.13) 

where ''' P
iii qV += π  is the reward for a successful innovation, and ρι is the probability of success. 

The reward for success consists of the expected present value of the stream of profits given that a success 

occurs, which happens with probability iρ .  Appendix 1 shows that this reward can be written as: 
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where isd is a discount factor defined in the appendix.  The right side of equation (2.14) is simply the discounted 

sum of all future profits in the industry, with discounting inclusive of time and probabilities of loss of the profit 

stream in future periods. 

We model the research firm as hiring labor inputs that are used to produce research tries.  In the limit, with 

a continuous measure for the tries, the probability of success comes from a Poisson distribution.   As shown in 

Lambson and Phillips (1999), this gives the following functional form for an industry’s applied R&D success 

probability: 

                                                           

13 For s discussion of the issues involved with assuming more that one R&D firm in such a discrete time 

framework see Lambson & Phillips (2003). 
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}exp{1 ii Lκρ −−=   (2.15) 

where κ is the "ease" of doing research.  For the sake of tractability we are assuming that all industries have the 

same level of ease of R&D, i.e. that there is no advantage or disadvantage to doing R&D in an industry that is higher 

or lower on the quality ladder than the average. 

In a symmetric equilibrium, arising when all firms have the same probability function for iρ , the reward 

for success in (2.14) will be the same for all firms.  All firms then face an identical problem.  The solution to the 

problem is for the firm to hire the amount of labor it can afford, given the constraint from equity sales.  

Consequently, i
R
i wLq =  for each industry and aggregate employment by all research firms is iILL = .  In 

addition, since the expected revenue streams for all intermediate goods producers are the same, the prices of equities 

for all research and production firms are equal.   

Market-Clearing Conditions 

In addition to the Euler equations from the household and firms' problems, market clearing conditions must 

be satisfied.  Clearing of the labor and capital markets requires: 
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and clearing of equity markets requires: 

1'== PP    (2.18) 

1' == RR    (2.19) 

With these conditions, Walras' law ensures goods market clearing. 

3. The Transformed Model 

The model economy experiences growth in consumption and output per household due to the increases in 

A  over time.  It will be convenient to work with a transformed model where the endogenous variables are all 

stationary.  Since transformations to induce stationarity are commonly used, we delegate details to Appendix 2 and 

hereafter consider a transformed version of the model.  Variables growing at the same rate as A  are transformed 

with division by A , and the transformed variables will be denoted with a caret so that, for example, AKK /ˆ ≡ . 
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The transformed law of motion for A is: 

'1)1(/'' εθρ ++−=≡ AAg A   (3.1) 

where )1]()/[(' −−= θρε IJ , J is distributed Binomial (I,ρ), 0}'{ =εE , and  2)1()1(}'{ −
−

= θρρε
I

Var . 

 The law of motion for z remains: 

'' ηψ += zz    (3.2) 

with η' distributed N(0,σ2). 

 We use a standard CES momentary utility function of the form, 
γ

γ

−
−

=
−

1
1)(

1CCu .  Substituting 

for marginal utility and transforming household optimality conditions (2.1) - (2.3) gives: 

)}'ˆ'ˆ('ˆ]')1)((1{[)1(ˆ}ˆ{ 1111 P
I

I
II

IP qCEqCE ++−++−= −−−−− πεθρρβ γγγ   (3.3) 

)}'ˆ'ˆ('ˆ]')1(1{[ˆ}ˆ{ 111 P
I

I
I

IR qCEqCE ++−+= −−−−− πεθρβρ γγγ  (3.4) 

)}'1('ˆ]')1(1{[ˆ rCEC +−+−+= −−− δεθρβ γγγ  (3.5) 

Substituting (2.16), (2.18) and (2.19) into the household's budget constraint and taking expectations gives: 

R
A qgKKrwC ˆ''ˆˆˆ)1(ˆˆ −−++−+= πδ   (3.6) 

The additional transformed equations from firms’ decisions are: 

αα −−= 1)]1([ˆˆ LeKY z   (3.7) 

YLw ˆ1)1(ˆ 1 αθ
α

−

−
=−   (3.8) 

YKr ˆˆ
1 αθ
α

−=
   (3.9)

 

Ŷ1ˆ 1

1

α

α

θ
θπ −

− −
=   (3.10) 

}exp{1 Lκρ −−=   (3.11) 

LwqR ˆˆ =    (3.12) 
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Equations (3.1) – (3.12) define the dynamic model that we solve, parameterize, and simulate.  Because the highly 

nonlinear nature of the system makes closed form solutions intractable, we consider a linear approximation of the 

system about its steady state.  

4. Calibration and Simulation 

    We solve the system using the method of undetermined coefficients developed in Christiano (1990).  Because we 

approximate about the model’s steady state, we first need to solve for the steady state.  The parameters and their 

values are listed in table 2.  There are six parameters which define the steady state: α, β, γ, δ, κ, and θ.  For 

consistency with existing RBC-model parameterizations, we set capital’s share in output, α, to .3, the quarterly 

discount factor, β, to.995, and the quarterly depreciation rate, δ, to .02.  We also set the autocorrelation coefficient 

on the z shocks, ψ , to .95.  

 θ, the jump up the technology ladder, is set to 1.04877, a value which sets the variance of A 

innovations to the variance of z innovations needed to drive a pure RBC version of our model.  κ and γ are chosen to 

exactly fix two steady state values, the average quarterly growth rate of real output, and the user cost of capital, r-δ.  

We set average quarterly real growth equal to .00834, and r-δ to .0062, or 2.5% per annum, by setting κ and γ  equal 

the appropriate values.14   Given the parameter values we have assigned, the steady state probability of success in 

applied R&D is ρ =.056, which we take to be an empirically plausible and conservative value.  

 The standard deviation of technology shocks is set at .0184, similar to the value used in most RBC 

analyses.  For example, using data from the U.S. economy in the post Bretton Woods era, Schlagenhauf and Wrase 

(1995) use a value of .014.  Our objective is to see how the model, with substantially less reliance on auto-correlated 

productivity shocks than standard RBC models, performs in accounting for business cycle fluctuations observed in 

key macroeconomic variables.  Given the parameter values we use the standard deviation of the innovations to R&D 

in (3.1) is .0184 when I=1.  We are not, however, simply assuming the variability of the R&D innovations.  The 

variability of innovations to the evolution of A in (3.1) depends on the probability of success in R&D.  In turn, the 

success probability depends endogenously on labor choices made by R&D firms and households in the model.  We 

                                                           

14 To see how γ is chosen, consider the steady state version of equation (3.6): )1()'(1 rg A +−= − δβ γ .  

Note that it is necessary to pick a value of β sufficiently large if we are to generate positive values for γ. 
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cannot simply choose the standard deviation of innovations in applied R&D without restriction.  One restriction is 

that the probability of success in the model must be an empirically plausible value. 

Note that the model generates a series of growth rates.  We can use these to construct a series for the level 

of technology, the A’s, and then convert all the stationary, caret-bearing, variables to their non-stationary 

counterparts.  Hence, simulation of the model generates data with both cyclical and growth components. 

The model was simulated 1000 times using a sample of 200 observations, corresponding to 50 years of 

data.  We filter both actual data drawn from the U.S. economy and model-generated data using two filters: the 

Hodrick-Prescott (HP) filter; and, to consider movements of variables at other than simply business cycle 

frequencies, a band-pass filter. We then compute statistical properties of the data, and compare properties of model-

generated data with like properties of actual data.  We focus on standard RBC measures of variability, cyclicality, 

and persistence, but consider more than the business cycle frequencies that are the sole focus of RBC analyses. 

5. Quantitative Results 

Table 3 presents business cycle moments summarizing behaviors of key macroeconomic aggregates for the 

U.S. economy over a sample period 1957:Q1 to 1998:Q2.15  We define output as real GDP, consumption as real 

consumption of services and non-durables, and investment as real investment in non-residential structures and 

equipment.  As is well known, and as revealed in the table, investment is close much more variable than output, with 

variability measured by standard deviations.  Consumption has only three-quarters the variability of output.  In 

addition, output is highly serially correlated, consumption is highly correlated with output contemporaneously and at 

one to two period leads and lags, and investment is not strongly correlated with output contemporaneously or at 

leads and lags. 

The purpose of this paper is not necessarily to match all of these business cycle facts.  While it would 

certainly be desirable to do so, our primary question is how well a model with endogenized shocks from a 

Schumpeterian framework performs relative to standard exogenous shock models.  It is well-known that simple 

versions of such models cannot replicate all business cycle facts and require additional modeling details.  With the 

exception of the endogenous R&D process, our model is quite basic and lacks many features needed to conform to 

                                                           

15 The data are real GDP, real consumption, and real gross fixed investment taken from the Bureau of 

Economic Analysis. 
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measured movements.  To answer our fundamental question, therefore, we proceed to solve and simulate several 

different versions of our model and compare them. 

The first model we simulate is a simple RBC model with no R&D process and a fixed supply of labor.  

Here there is only one source of shocks.  In all other respects we treat the model exactly as the one outlined above.  

We assume a fixed rate of growth for A, rather than a stochastic one, for example, and add this trend into the 

simulated model when creating artificial data series.  These series are then detrended using the same filters as table 

3.  The results of 1000 simulations of this model with 224 observations are reported in table 4.  The table shows the 

usual sorts of problems with such simple models.  The volatility of consumption is too high, and the volatility of 

investment is too low.  The auto-correlations of output over time are not too different from the US data, but the 

correlations of consumption and investment with leads and lags of output are very poor matches regardless of the 

filtering method used.  We also report measures of business cycle asymmetry, since the shocks from the A process 

have the potential of being highly skewed, especially in our parameterization of the model.  We use Sichel’s (1993) 

measures of deepness and steepness, which are the skewness of the series and the skewness of its first-difference, 

respectively.  In this case, of course, the shocks are not skewed, since the innovations to z are normally distributed, 

and with a few exceptions, the deepness and steepness measures are not significantly different from the US 

measures. 

There are two sources of aggregate fluctuations in our model:  an aggregate effect working through 

technology in each sector that will be non-zero if there are a small number of sectors, A, and other shocks to 

productivity which could proxy for a variety of things, z.  Our next attempt is to see how well a model driven only 

by the Schumpeterian source of shocks does in fitting the US moments.  The results of this model, where we set I to 

the extreme value of one, and σ equal to zero, are presented in table 5.  As that table shows, the fit is considerably 

worse than the simple exogenous shock model.  The volatility of consumption is ridiculously high for all filtering 

methods.  In addition, the model matches the business cycle asymmetries only for very low frequency movements.  

In terms of other moments it does no better than the exogenous shock case.  We conclude that our model as 

presently setup is not any an improvement in terms of its ability to match business cycle moments. 

We next consider a version of our model driven entirely by exogenous shocks.  This is not the same as the 

model in table 4, however, since our model allows for these exogenous shocks to influence the allocation of labor or 

production and R&D.  There is an additional transmission mechanism that is missing in the first case.  The results of 
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setting I equal to 1 million and σ to the same value as table 4, are reported in table 6.  The only substantive 

difference this model yields is a drop in the volatility of investment at all frequencies.  Since investment volatility is 

already too small, this is not an encouraging development. 

Finally, we consider a version of the model where shocks come from both sources.  We set I to ten and σ to 

.0175.  In terms of the volatility, the exogenous shocks are by far the most important source of variation., but the 

contribution of endogenous shocks is still nontrivial.  These results are in table 7.  Consumption volatility is still too 

high, and higher than the first model.  Investment volatility is too low and lower than the first model.  This model 

does just as well in terms of asymmetries, and slightly better in terms of matching correlations with leads and lags of 

output.  But the overall fit is not overwhelmingly better or worse. 

In order to formalize our comparison of moments across we compute measures of the percentage deviations 

of the models moments from the US data moments.  We report both the root mean squared deviation (RMSD), and 

the mean absolute deviations (MAD) for two sets of moments. 

The first set of moments is the volatility of output, the relative volatility of consumption, the relative 

volatility of investment, and the contemporaneous correlations of consumption and investment with output.  These 

are reported in the top panel of table 8.  As can be seen the simple exogenous shock model with no R&D is clearly 

the best fitting model.  The version of our model with only exogenous shocks fits almost as well.  The two shock 

model is a bit worse and the model with only Schumpeterian shocks has a very bad fit. 

If we use all the reported moments we get the values in the bottom panel.  Here the results are identical to 

the first table when the HP-filter is used.  Surprisingly, the results are different if one uses the band pass filter.  In 

this case the two-shock version fits best, the exogenous shock version with R&D is generally second best, and the 

no-R&D model is third best.  The Schumpeterian shocks only model is fourth, though it is not bad in relative terms 

as in the top panel. 

 

 6. Conclusions 

In this paper, we are trying to discover if the process of creative destruction used in Schumpeterian models 

of growth is a reasonable source for the technology shocks used to drive business cycles, particularly in the context 

of RBC models.  We conclude that the process alone is not appropriate.  In our simple model with no labor-leisure 

choice and no diffusion mechanism for these technology shocks, we find that in order to generate realistic 
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volatilities for output we also generate highly counterfactual volatilities of consumption and investment, and that we 

fail to match observed business cycle asymmetries. 

We also show that versions of our model which rely heavily on exogenous symmetric shocks fail to match 

consumption and investment movements any better than an equivalent RBC model with no Schumpeterian 

mechanism. 

On the other hand, we do find that when we consider correlations of consumption and investment with 

output leads and lags, our model matches moments better than the simple RBC model, at least when a band pass 

filtering method is used. 

As a result we conclude that further exploration of the potential contribution of Schumpeterian shocks to 

business cycle and other aggregate fluctuations is worth considering.  While this model cannot fit the US moments 

as well as many RBC models, it is likely that this failure can be attributed in large part, to the lack of sophistication 

in modeling the non-Schumpeterian aspects of the model.  In particular, we do not have any sort of labor-leisure 

decision in our model.  Allowing for this type of substitution would go a long way in dampening the volatility of 

consumption our model generates.  In addition, our model does not incorporate any sort of R&D spillovers or 

technological diffusion of innovations across sectors.  These may well be important and will undoubtedly change the 

aggregate behavior of output, investment & consumption. 

Because of this lack of diffusion we are forced to drive changes in aggregate output by assuming a small 

number of intermediate goods sectors.  It may be more profitable to build a model with a large number of 

intermediate sectors generating approximately smooth growth, and consider innovations which affect all industries 

equally as coming from some other source.  In earlier related work, we were able to generate more realistic models 

when we allowed for movements in basic research to be distinct from movements in applied research, for example. 
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Table 1 

Definition of Variables 

Endogenous variables that change over time: 
Ai level of applied knowledge in intermediate industry i 
A aggregate level of applied knowledge 
z aggregate RBC-style productivity shock 
K capital stock owned by household 
Ki capital employed in industry  
Pi shares of production firm i owned by household (1 in equilibrium) 
Ri shares of research firm i owned by household (1 in equilibrium) 
Si state of research success for industry i; 1 is success, 0 is failure 
w real wage 
r real interest rate 
Li labor hired by research firm i (same for all i in equilibrium) 
L aggregate labor hired by all R&D firms 
Ni labor hired by production firm i (same for all i in equilibrium) 
N aggregate labor hired by all production firms 
Yi output of intermediate good i 
Y output of final goods 
pi price of intermediate good i 
πi profits earned by current production firm i  (same for all i in equilibrium) 

P
iq  price of one share in the current production firm i  (same for all i in equilibrium) 
R
iq  price of one share in the current research firm i  (same for all i in equilibrium) 

ρi probability that Si'=1 (same for all i in equilibrium) 
I number of industries in the economy 
J number of industries that successfully innovate; J≤I 
η random innovations to z 
 
Parameters: 
α capital share in output from a Cobb-Douglas production function; 0<α<1. 
β time discount factor; β<1. 
γ CES parameter from momentary utility function; γ>0. 
δ rate of depreciation; δ>0. 
θ growth factor for Ai when Si=1; θ>1. 
κ sensitivity of ρ to R&D inputs; κ>0. 
ψ autocorrelation parameter for z. 
σ2 variance of innovations in z. 
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Table 2 

Values of Parameters Used in Simulations 

 
Parameter Description Value 

α Capital share in GDP 0.30 

β Time discount factor for utility 0.995 

δ Depreciation rate 0.02 

θ Size of rungs on the applied technology ladder 1.04877 

γ Elasticity of substitution 0.1397 

κ Ease of R&D 3.390 

ψ Autocorrelation for z shocks 0.95 

Ι Number of Intermediate Goods Sectors 1 to 1,000,000 

σ Standard deviation of z innovations 0 to .01836 
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Table 3 
Moments from U.S. Data (1947:I-2002:IV)* 

 
HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0135 0.1025 Standard deviation 0.0149 0.0121 0.0759 
Relative to Y 1 0.7724 5.8523 Relative to Y 1 0.8140 5.1020 
Steepness -0.6060 -0.2555 0.1292 Steepness -0.4496 -0.3064 0.3299 
Deepness -0.0847 -0.2262 0.0004 Deepness -0.2630 0.2352 1.3217 
Correlation with Y+4 0.0747 0.2480 0.0107 Correlation with Y+4 0.0399 0.1787 0.1318 
Correlation with Y+3 0.3249 0.3997 0.2105 Correlation with Y+3 0.3373 0.4087 0.3317 
Correlation with Y+2 0.6030 0.5494 0.4047 Correlation with Y+2 0.6568 0.6140 0.5252 
Correlation with Y+1 0.8449 0.6319 0.5310 Correlation with Y+1 0.9054 0.7146 0.6123 
Correlation with Y 1 0.5880 0.5382 Correlation with Y 1 0.6545 0.5217 
Correlation with Y-1 0.8450 0.3698 0.2738 Correlation with Y-1 0.9054 0.4394 0.2704 
Correlation with Y-2 0.6020 0.0964 -0.0400 Correlation with Y-2 0.6568 0.1293 -0.0610 
Correlation with Y-3 0.3238 -0.1774 -0.3093 Correlation with Y-3 0.3373 -0.1830 -0.3595 
Correlation with Y-4 0.0758 -0.3532 -0.4781 Correlation with Y-4 0.0399 -0.4081 -0.5298 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0041 0.0045 0.0336 Standard deviation 0.0133 0.0084 0.0365 
Relative to Y 1 1.0819 8.1586 Relative to Y 1 0.6335 2.7418 
Steepness -0.2638 0.1477 -0.0905 Steepness -0.0763 0.0329 0.2348 
Deepness 0.2261 -0.1537 -0.0754 Deepness -0.6442 -0.7053 -0.6322 
Correlation with Y+4 0.1619 0.2376 0.0341 Correlation with Y+4 0.6288 0.6416 0.5880 
Correlation with Y+3 -0.1730 -0.1468 0.0344 Correlation with Y+3 0.7754 0.6968 0.6141 
Correlation with Y+2 -0.4161 -0.1535 -0.3033 Correlation with Y+2 0.8922 0.7158 0.6011 
Correlation with Y+1 -0.0955 -0.0079 -0.1409 Correlation with Y+1 0.9695 0.6974 0.5461 
Correlation with Y 1 0.2879 0.5004 Correlation with Y 1 0.6435 0.4516 
Correlation with Y-1 -0.0955 0.0093 -0.0243 Correlation with Y-1 0.9695 0.5451 0.3216 
Correlation with Y-2 -0.4161 -0.0613 -0.0808 Correlation with Y-2 0.8922 0.4222 0.1774 
Correlation with Y-3 -0.1730 0.0028 -0.1034 Correlation with Y-3 0.7754 0.2867 0.0324 
Correlation with Y-4 0.1619 -0.2520 -0.2141 Correlation with Y-4 0.6288 0.1503 -0.1007 

 
 

                                                           

* Source: Bureau of Economic Analysis. 
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 Table 4 
Moments from a pure exogenous shock version of our model (Model 1) 

018364.,95.,02.,1397.,995.,3. ====== σψδγβα  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0251*** 0.0625*** Standard deviation 0.0145 0.0157** 0.0516*** 
Relative to Y 1 1.4457*** 3.5830*** Relative to Y 1 1.0854*** 3.5579*** 
Steepness 0.0010*** -0.0687 -0.2119 Steepness 0.0073 -0.0396 -0.1734* 
Deepness 0.0035 0.0045 -0.0086 Deepness 0.0079 0.0083*** -0.0124*** 
Correlation with Y+4 0.1115 -0.3136*** 0.3613*** Correlation with Y+4 0.0282 -0.6116*** 0.4164*** 
Correlation with Y+3 0.2741 -0.3495*** 0.5332*** Correlation with Y+3 0.3012 -0.6929*** 0.7075*** 
Correlation with Y+2 0.4755* -0.3778*** 0.7329*** Correlation with Y+2 0.6241 -0.5821*** 0.9188*** 
Correlation with Y+1 0.7174*** -0.3946*** 0.9585*** Correlation with Y+1 0.8921 -0.2664*** 0.9503*** 
Correlation with Y 1 0.3246*** 0.5915 Correlation with Y 1 0.1603*** 0.7705*** 
Correlation with Y-1 0.7173*** 0.3810 0.2997 Correlation with Y-1 0.8921 0.5373*** 0.4346*** 
Correlation with Y-2 0.4756* 0.3999*** 0.0752 Correlation with Y-2 0.6241 0.7380*** 0.0724* 
Correlation with Y-3 0.2745 0.3900*** -0.0898*** Correlation with Y-3 0.3012 0.7354*** -0.2070* 
Correlation with Y-4 0.1123 0.3601*** -0.2045*** Correlation with Y-4 0.0282 0.5983*** -0.3565** 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0067*** 0.0174*** 0.0255*** Standard deviation 0.0136 0.0126** 0.0433 
Relative to Y 1 2.6093*** 3.8161*** Relative to Y 1 0.9303*** 3.1866*** 
Steepness -0.0095 -0.0377 -0.0931 Steepness -0.0016 -0.0075 -0.0901 
Deepness 0.0073 -0.0039 0.0058 Deepness 0.0421 -0.0306*** 0.0558*** 
Correlation with Y+4 0.1800 0.1791 -0.1092 Correlation with Y+4 0.6539 -0.4095*** 0.8891*** 
Correlation with Y+3 -0.0922 0.2155*** -0.3842*** Correlation with Y+3 0.7903 -0.2707*** 0.9367*** 
Correlation with Y+2 -0.3918 -0.1014 -0.1764 Correlation with Y+2 0.8987 -0.1053*** 0.9407*** 
Correlation with Y+1 -0.2081* -0.8058*** 0.9879*** Correlation with Y+1 0.9709 0.0799*** 0.8974*** 
Correlation with Y 1 0.7406*** -0.2484*** Correlation with Y 1 0.2765*** 0.8053*** 
Correlation with Y-1 -0.2081* 0.1640* -0.4029*** Correlation with Y-1 0.9709 0.4596** 0.6647*** 
Correlation with Y-2 -0.3918 -0.1669 -0.0806 Correlation with Y-2 0.8987 0.6199*** 0.4963*** 
Correlation with Y-3 -0.0922 -0.1844** 0.1879*** Correlation with Y-3 0.7903 0.7497*** 0.3114*** 
Correlation with Y-4 0.1800 -0.0274*** 0.1860*** Correlation with Y-4 0.6539 0.8434*** 0.1214*** 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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 Table 5 
Moments from our model driven only by A shocks (Model 2) 

0,95.,1,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0185 0.1043*** 0.0613*** Standard deviation 0.0154 0.0543*** 0.0326*** 
Relative to Y 1 5.6600*** 3.3293*** Relative to Y 1 3.5279*** 2.1166*** 
Steepness -0.0733*** -1.6703*** 1.6070*** Steepness -0.0643 -0.5754 0.5042 
Deepness 1.6699*** 0.0342*** 0.2487*** Deepness 0.4825** 0.0251 0.1385*** 
Correlation with Y+4 0.1198 -0.2193*** 0.2602*** Correlation with Y+4 0.0430 -0.5836*** 0.6270*** 
Correlation with Y+3 0.2799 -0.2570*** 0.3326** Correlation with Y+3 0.3115 -0.6582*** 0.7897*** 
Correlation with Y+2 0.4775* -0.2915*** 0.4090 Correlation with Y+2 0.6294 -0.5127*** 0.7376*** 
Correlation with Y+1 0.7134*** -0.3369*** 0.5043 Correlation with Y+1 0.8935 -0.1525*** 0.4443*** 
Correlation with Y 1 0.4154*** -0.2408*** Correlation with Y 1 0.2943*** 0.0107*** 
Correlation with Y-1 0.7134 0.3599 -0.2375*** Correlation with Y-1 0.8935 0.6380*** -0.3825*** 
Correlation with Y-2 0.4774* 0.3090*** -0.2321*** Correlation with Y-2 0.6294 0.7544*** -0.5882*** 
Correlation with Y-3 0.2798 0.2560*** -0.2168* Correlation with Y-3 0.3115 0.6462*** -0.5768*** 
Correlation with Y-4 0.1195 0.2045*** -0.1952*** Correlation with Y-4 0.0430 0.4231*** -0.4302 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0072*** 0.0821*** 0.0478*** Standard deviation 0.0149 0.0288*** 0.0178*** 
Relative to Y 1 11.4759*** 6.6875*** Relative to Y 1 1.9417*** 1.2008*** 
Steepness -0.0055*** -0.8764*** 0.8835*** Steepness -0.0307 -0.1070 0.0880 
Deepness 0.8699*** 0.0202*** 0.1019*** Deepness -0.0059 -0.0224 -0.0992 
Correlation with Y+4 0.1771 0.1705 -0.1654 Correlation with Y+4 0.6707 -0.4034*** 0.7902*** 
Correlation with Y+3 -0.0838 0.1869*** -0.2090*** Correlation with Y+3 0.8005 -0.2545*** 0.7093** 
Correlation with Y+2 -0.3784 -0.1101 0.0808*** Correlation with Y+2 0.9036 -0.0786*** 0.5858 
Correlation with Y+1 -0.2170** -0.7738*** 0.8100*** Correlation with Y+1 0.9722 0.1166*** 0.4233*** 
Correlation with Y 1 0.7823*** -0.7433*** Correlation with Y 1 0.3224*** 0.2276*** 
Correlation with Y-1 -0.2170** 0.1115 -0.1388 Correlation with Y-1 0.9722 0.5022* 0.0273*** 
Correlation with Y-2 -0.3784 -0.1913* 0.1677*** Correlation with Y-2 0.9036 0.6498*** -0.1628*** 
Correlation with Y-3 -0.0838 -0.1710** 0.1745*** Correlation with Y-3 0.8005 0.7597*** -0.3334*** 
Correlation with Y-4 0.1771 -0.0048*** 0.0224*** Correlation with Y-4 0.6707 0.8283*** -0.4768*** 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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Table 6 
Moments from our model driven only by z shocks (Model 3) 

018364.,95.,000,000,1,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0175 0.0247*** 0.0169*** Standard deviation 0.0145 0.0154** 0.0129*** 
Relative to Y 1 1.4171*** 0.9678*** Relative to Y 1 1.0589*** 0.8877*** 
Steepness 0.0098*** -0.0694 -0.0381 Steepness 0.0065 -0.0408 -0.0633 
Deepness 0.0041 0.0125 0.0329 Deepness -0.0100 0.0075 0.0091*** 
Correlation with Y+4 0.1169 -0.3051*** 0.3877*** Correlation with Y+4 0.0359 -0.6043*** 0.5218*** 
Correlation with Y+3 0.2783 -0.3315*** 0.5286*** Correlation with Y+3 0.3074 -0.6687*** 0.7835*** 
Correlation with Y+2 0.4763 -0.3537*** 0.6912*** Correlation with Y+2 0.6275 -0.5430*** 0.9264*** 
Correlation with Y+1 0.7168*** -0.3638*** 0.8716*** Correlation with Y+1 0.8930 -0.2192*** 0.8647*** 
Correlation with Y 1 0.3569*** 0.3449*** Correlation with Y 1 0.2061*** 0.5982*** 
Correlation with Y-1 0.7170*** 0.4019 0.1025*** Correlation with Y-1 0.8930 0.5732*** 0.2157 
Correlation with Y-2 0.4767 0.4102*** -0.0735 Correlation with Y-2 0.6275 0.7601*** -0.1402 
Correlation with Y-3 0.2788 0.3962*** -0.1980* Correlation with Y-3 0.3074 0.7453*** -0.3723 
Correlation with Y-4 0.1174 0.3632*** -0.2785*** Correlation with Y-4 0.0359 0.6010*** -0.4614 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0067*** 0.0172*** 0.0089*** Standard deviation 0.0137 0.0125* 0.0104*** 
Relative to Y 1 2.5603 1.3242*** Relative to Y 1 0.9156*** 0.7582*** 
Steepness -0.0089 -0.0348 0.0062 Steepness -0.0116 -0.0439 -0.0227 
Deepness 0.0023 0.0003 0.0190 Deepness -0.0545 -0.0066 -0.0213 
Correlation with Y+4 0.1799 0.1754 -0.1392 Correlation with Y+4 0.6551 -0.3636*** 0.8877*** 
Correlation with Y+3 -0.0860 0.2144*** -0.3288*** Correlation with Y+3 0.7912 -0.2194*** 0.8902*** 
Correlation with Y+2 -0.3920 -0.1057 -0.0630*** Correlation with Y+2 0.8992 -0.0508*** 0.8475*** 
Correlation with Y+1 -0.2101** -0.7993*** 0.9522*** Correlation with Y+1 0.9711 0.1352*** 0.7582*** 
Correlation with Y 1 0.7495*** -0.4796*** Correlation with Y 1 0.3299*** 0.6234*** 
Correlation with Y-1 -0.2101** 0.1569* -0.3147*** Correlation with Y-1 0.9711 0.5080 0.4504*** 
Correlation with Y-2 -0.3920 -0.1758 0.0311 Correlation with Y-2 0.8992 0.6615*** 0.2596*** 
Correlation with Y-3 -0.0860 -0.1798** 0.1932*** Correlation with Y-3 0.7912 0.7830*** 0.0627 
Correlation with Y-4 0.1799 -0.0189*** 0.1173*** Correlation with Y-4 0.6551 0.8675*** -0.1287 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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Table 7 
Moments from our model driven by a combination of A & z shocks (Model 4) 

0175.,95.,10,04877.1,02.,1397.,995.,3. ======== σψθδγβα I  
 

HP Filter (λ=1600) Y C I Band Pass (6,32) Y C I 
Standard deviation 0.0177 0.0394*** 0.0258*** Standard deviation 0.0148 0.0221*** 0.0163*** 
Relative to Y 1 2.2379*** 1.4645*** Relative to Y 1 1.5018*** 1.1089*** 
Steepness -0.0051*** -0.3345 0.1751 Steepness -0.0053 -0.1159 -0.0160 
Deepness 0.0170 0.0068* 0.0641 Deepness 0.0021 0.0091 0.0193*** 
Correlation with Y+4 0.1161 -0.2332*** 0.2990*** Correlation with Y+4 0.0348 -0.5274*** 0.5115*** 
Correlation with Y+3 0.2788 -0.2548*** 0.3978*** Correlation with Y+3 0.3071 -0.5845*** 0.7321*** 
Correlation with Y+2 0.4764* -0.2778*** 0.5143** Correlation with Y+2 0.6278 -0.4677*** 0.8208*** 
Correlation with Y+1 0.7164*** -0.2941*** 0.6433*** Correlation with Y+1 0.8933 -0.1741*** 0.7115*** 
Correlation with Y 1 0.3126*** 0.1401*** Correlation with Y 1 0.2039*** 0.4264 
Correlation with Y-1 0.7162*** 0.3242 -0.0026*** Correlation with Y-1 0.8933 0.5202 0.0682** 
Correlation with Y-2 0.4762* 0.3155*** -0.1049 Correlation with Y-2 0.6278 0.6679*** -0.2310** 
Correlation with Y-3 0.2787 0.2937*** -0.1743*** Correlation with Y-3 0.3071 0.6333*** -0.3951 
Correlation with Y-4 0.1163 0.2625*** -0.2177*** Correlation with Y-4 0.0348 0.4874*** -0.4269 
        
Band Pass (2,6)    Band Pass (20,80)    
Standard deviation 0.0068*** 0.0298*** 0.0179*** Standard deviation 0.0139 0.0148*** 0.0115*** 
Relative to Y 1 4.3853*** 2.6319*** Relative to Y 1 1.0699*** 0.8279*** 
Steepness -0.0021 -0.2002 0.1751 Steepness -0.0138 -0.0220 -0.0367 
Deepness 0.0108 0.0024 0.0295 Deepness -0.0713 -0.0386 0.0081 
Correlation with Y+4 0.1825 0.1378 -0.1095 Correlation with Y+4 0.6553 -0.3572*** 0.8561*** 
Correlation with Y+3 -0.0824 0.1694*** -0.2146*** Correlation with Y+3 0.7913 -0.2179*** 0.8443*** 
Correlation with Y+2 -0.3932 -0.0885 -0.0015*** Correlation with Y+2 0.8992 -0.0545*** 0.7883*** 
Correlation with Y+1 -0.2114** -0.6310*** 0.6645*** Correlation with Y+1 0.9710 0.1259*** 0.6876*** 
Correlation with Y 1 0.6069*** -0.4326*** Correlation with Y 1 0.3151*** 0.5441* 
Correlation with Y-1 -0.2114** 0.1141 -0.1839 Correlation with Y-1 0.9710 0.4860 0.3692 
Correlation with Y-2 -0.3932 -0.1457 0.0638* Correlation with Y-2 0.8992 0.6316*** 0.1817 
Correlation with Y-3 -0.0824 -0.1422* 0.1401*** Correlation with Y-3 0.7913 0.7451*** -0.0071 
Correlation with Y-4 0.1825 -0.0103*** 0.0590*** Correlation with Y-4 0.6553 0.8222*** -0.1867 

 
* significantly different from the corresponding US data moment at 90% confidence 
** significantly different from the corresponding US data moment at 95% confidence 
*** significantly different from the corresponding US data moment at 99% confidence 
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Table 8 
Comparison of Fit Various Models 

 
Based on Five Key Moments 

),,,,( YIYCY Y

C

Y

C ρρσ σ
σ

σ
σ

 

 

  Model 1 Model 2 Model 3 Model 4 
HP Filter (λ=1600) RMSD 0.529 3.256 0.647 1.110 
 MAD 0.903 1.446 1.220 1.277 
      
Band Pass (2,6) RMSD 1.322 5.036 1.498 1.903 
 MAD 1.330 1.844 1.562 1.588 
      
Band Pass (6,32) RMSD 0.500 1.783 0.562 0.677 
 MAD 0.800 1.282 1.116 1.143 
      
Band Pass (20,80) RMSD 0.544 1.126 0.525 0.562 
 MAD 0.605 0.921 0.829 0.832 

 
 

Based on all Reported Moments 
 

  Model 1 Model 2 Model 3 Model 4 
HP Filter (λ=1600) RMSD 7.280 111.668 15.957 29.031 
 MAD 2.831 23.048 4.713 6.882 
      
Band Pass (2,6) RMSD 22.329 21.129 21.940 17.256 
 MAD 7.999 8.071 7.865 6.333 
      
Band Pass (6,32) RMSD 1.853 2.537 1.863 1.741 
 MAD 1.283 1.678 1.236 1.207 
      
Band Pass (20,80) RMSD 2.002 2.556 1.210 1.140 
 MAD 1.181 1.370 0.807 0.768 
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Appendix 1 

The reward for success can be written as the expected present value of the profit stream, where this stream 

is discounted both by the real interest rate and by the probability of losing the monopoly to a newly successful 

research firm. 
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where the second subscript, used in the summation and product, indicates the time period. 

Future profits are a constant fraction, (θ1-α-1)/θ 1-α, of production.  The level of technology, θ‘Ai, does not 

change as long as the firm is the monopoly producer.  Consequently, we can rewrite the success reward as: 
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Since M changes as aggregate output rises, with large I large the expected effects of success or failure by 

any given research firm on M will be small.  Note also that M will be the same for all research firms as long as ρ is 

the same.  There may be more than one solution to the system of equations that jointly determine the M's and ρ's for 

all firms, but one solution is the symmetric one, where M and ρ are constant over time. 
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Appendix 2 

In order to induce stationarity, we take all the variables which grow at the same rate as A in the previous 

section and divide them by A.  This gives the following stationary variables: 

ACC /ˆ ≡     AKK /ˆ ≡     Aww /ˆ ≡     Aqq RR /ˆ ≡     Aqq PP /ˆ ≡     A/ˆ ππ ≡  

AAg A /'~' ≡ . 

The transformed law of motion for A  can be written: '1)1(/'' εθρ ++−=≡ AAg A , where 

)1]()/[(' −−= θρε IJ , and J is distributed Binomial (I,ρ). Note that 0}'{ =εE  and  2)1()1(}'{ −
−

= θρρε
I

Var .   

Substituting (2.18) and (2.19) into the household's budget constraint, and transforming variables,  gives: 

R
A qgKKrwC ˆ)'1('ˆˆˆ)1(ˆˆ −+−++−+= πδ , with expected consumption when the household makes its share 

decisions given by: R
A qgKEKrwCECE ˆ)}'1('ˆ{ˆˆ)1(ˆ}ˆ{ˆ −+−++−+=≡ πδ . 
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