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Abstract

The paper studies asset prices and capital accumulationmiargtary economy with non-
diversifiable idiosyncratic risks (incomplete markets).gévernment issued unbacked currency
is introduced into agent’s preferences in a dynamic GEI g@earEquilibrium with Incomplete
market) model with CARA preferences and normal disturbanc&osed form expressions for
equlibrium allocations and prices are derived under finité mfinite horizons. The paper ad-
dresses several monetary issues. In particular, monepwrsto be neutral but not superneutral
at the steady state. The rate of inflation is shown to adwesedtdct the steady state capital stock

under some situations. Finally the Friedman rule is showretnon-optimal for some economies.
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1 Introduction

The paper studies a heterogenous agent monetary econorhicimagents are exposed to uninsurable
idiosyncratic risks (markets are incomplete) and provedahowing results. First, the rate of money
growth affects the steady state real riskfree rate and tpigatatock - that is to say money is neutral
but not superneutral at the steady state. Second, sincedhdskfree rate is affected by the rate of
money growth or inflation, the Fisher relationship betwéderate of inflation and the nominal interest
rate is not one on one. In the general case in which the agentdfacted by uninsurable production
risks it is hard to specify whether the real riskfree ratd widle or fall - because of two opposing
effects on the real riskfree rate and capital stock. In aiapease, however, in which production is
assumed to be riskfree but agents are exposed to an exogearnnssrable endowment shock, a rise in
the inflation rate is shown to increase the real riskfreeaatehence cause a greater than proportional
increase in the nominal rate. Finally, the Friedman ruleciisiets the nominal interest rate to zero is
shown to be suboptimal for some economies, as a result ofiietary non-superneutrality.

To prove the above results we introduce a government issoigaicked currency into an agent’s
preferences in a dynamic general equilibrium model witlhinplete markets with CARA preferences
and normal disturbances, thus combining a standard Skiraeglel (Sidrauski 1967) of money with
an existing GEI (General Equilibrium with Incomplete madeset up. Closed form expressions
for equlibrium allocations and prices are derived undetdiand infinite horizons. The paper then
proceeds to address some of the standard issues in monetawyngics mentioned above in the new
set up.

In this new set up, money remains superneutral at the stéatdywehen the variance of uninsurable



risks is zero - that is markets are complete - as is to be exgdnta standard Sidrauski model.
However, when this variance is positive - that is marketsiacemplete - there exist two distinct

channels through which the rate of money growth is shownftognce the real riskfree rate and the
capital stock.

First, households resort to precautionary savings to eede variance of future consumption
which in this model is proportional to the variance of unimeglrisks with the factor of proportionality
given by the square of the marginal propensity to consume. ritéarginal propensity to consume is
shown to be inversely related to the rate of inflation, (eqaahe money growth rate at the steady
state). Consequently, the real risk free rate which is deterd by the amount of precautionary
savings (proportional to the variance of future consurm)tis affected by changes in the rate of
inflation (rate of money growth). Changes in the real risle frate through this first channel - which
we describe as the "precautionary channel” - in turn affdetssteady state capital stock.

Secondly, when the return on physical capital is subjechtoaurable production risks, the price
of capital in equilibrium is not equal to its marginal protigas it would be if markets were complete)
but to the sum of the marginal product and a risk premium wkiance again shown to be propor-
tional to the variance of uninsurable risks with the factopr@portionality depending on the marginal
propensity to consume. Given a real riskfree rate, the prficapital and hence the steady state capital
stock is therefore affected by changes in the marginal prsipeto consume as a result of changes in
the rate of inflation (rate of money growth). We describe fieisond channel as the "risk premium”
channel.

Because of these two effects discussed above, the relaifiohstween the rate of inflation and



the nominal interest rate (the Fisher egiation) is not on®m® in general, as the real riskfree rate
changes with changes in the rate of inflation. This is in diceatrast with the situation when markets
are complete. When markets are complete, a rise in the onlegite brings about an equal percentage
rise in the nominal rate of interest. It is difficult to spegcif general in this model whether a rise in
the rate of inflation brings about a rise or a fall in the reslifriee rate - hence whether the relationship
between the inflation rate and the nominal interest rate ieertttan or less than one on one - as
the two effects described above have opposite signs. Itvieber possible to be more specific in
the special case in which production is assumed to be riskdrel the uninsurable risks are to an
exogenous stochastic endowment. In this case we can seentlyathe first channel is operative
whereas the second channel is not. The rate of inflation cahden to positively affect the riskfree
rate (negatively affect the steady state capital stock)igidpecial case.

Finally the paper shows by an example that even with stanglafgrences which are separable
in consumption and money, the Friedman rule - setting theeaygnowth rate to the negative of the
real rate of interest, such that the nominal rate of intdeezéro - is not optimal for some economies
when markets are incomplete. (The rule remains optimal wharkets are complete) In fact for any
specific parameterization of the model an optimal money troate - defined as the money growth
rate which maximizes average steady state consumption notagxist, may uniquely exist or there
may be multiple such rates.

The question of how the rate of money growth influences clapitd output is an old classic
one and dates back to Tobin (Tobin 1965) at least, culmigdtirnthe more recent works of Barro

(Barro 1996) and many others (Bruno and Easterly 1998, Andnel Hernando 1999). The present



paper supplements that long literature in its attempt taldish a relationship based on certain key
features of market incompleteness. According to the Toldéte a rise in the rate of inflation reduces

the return on cash holdings and induces households to im@st of its wealth in an alternative asset,

physical capital. Although such a tradeoff exists by cardion in the present model too, the steady
state relationships between the rate of inflation, the abpibck and the real interest rate are driven
by the effect of the first on precautionary savings and themiemium rather than by the Tobin effect.

The present paper also partly vindicates Barro’s conjedfdiscussed later by many others) that the
rate of inflation and output growth are inversely related.e Tiscussion in the previous paragraph
shows that theoretically such an inverse relationshiptextbeit in the special case of uninsurable
(exogenous) endowment but no production risks.

Criticisms of the Friedman rule as the optimal monetarygyoéilso has a long history, such as
in the work of Phelps (1973), Chari, Christiano and Kehoe©19996) and others. Most of these
works assume complete markets and the essence of thesaniisiusually that the government may
have to resort to other welfare reducing, distortionaryesato make up for the loss of seigniorage
revenue under the Friedman rule. The current paper suppterttés literature too, by showing that
the Friedman rule may be suboptimal even when the governdws not have a specific objective
which requires it to impose compensatory taxes. Rathersibeptimality comes from the feature
that the steady state capital stock and consumption aretedfey the money growth rate.

Dynamic general equlibrium models with uninsurable prdiducrisks which yield closed form

solutions for equilibrium allocations (and are hence coraple) are few in numbér. In a series

1Some of the papers which discusses dynamic GEI models wiaiel tlosed form solutions in various contexts are
Magill and Quinzii, (2000), Krebs (2003a, 2003b).



of recent papers, Willen (1999), Calvet(2001), Calvet amgietos (2001, 2003) and Athanasoulis
(2005) amongst others have studied issues related to agss, apital accumulation and endoge-
nous cycles assuming CARA preferences and normal shocky. r&eently, Angeletos (2005) has
studied capital accumulation and cycles in a model with tbeenrmainstream CRRA preferences. To
the best of my knowledge however, there has been no studgeé tpecific monetary issues within a
dynamic GEI modef. The present paper seeks to fill that gap and demonstratesitimaty can have
different steady state effects when markets are incomptatgoared to when they are not.

The CARA assumption on preferences has certain known dicksbahief of which is that unlike
its more mainstream CRRA counterpart, it does not take intmant the effect of wealth on pre-
cautionary savings behavi®iThis specification is nonetheless used here for a first stticyooetary
issues within an incomplete markets framework, becauds gféat analytical convenience compared
to the CRRA specification. The equilibrium conditions ama@er and easier to interpret than they
are under CRRA assumption. The extension of the currenysisab address wealth effects using
CRRA preferences is left for the future.

In addition to assuming that agents have CARA preferencelseep the model simple, we also
assume that they maximize expected utility. This has the/ggiak that the model does not distin-
guish between risk aversion and the intertemporal elagstiisubstitution. Such distinctions are less
important in this present context given the nature of the mamative static questions we ask and are

also consequently left for future wofk.

2There are several papers however which deal with money irpatind incomplete market models - such as Gottardi
(1994), Magill and Quinzii (1992), to mention some.

3Qther important criticisms are that the CARA specificatiares not allow for balanced growth (King, Plosser and
Rebelo, (2002) and that it can lead to negative consumpsiea [(jungqvist and Sargent (2004).

4A usual method in the GEl literature to distinguish betweentivo effects is to assume that agents have non-expected
utility of the Kreps-Porteus/Epstein-Zin type (see Kimizedd Weil (2003); Angeletos (2005)).



Section 2 describes the model economy. Section 3 derivalyti@mic equilibrium path assuming
a finite horizon and discusses some of the interesting fesnfrthe monetary economy compared to
the non-monetary one. Finally Section 4 derives the infihndgzon steady state and discusses the

issues of monetary neutrality and super-neutrality, tistéirelation and the Friedman rule.

2 The Model

The economy consists of a continuum of households, indexéddH = [0, 1]. Each household lives
for T periods wherd may be finite or infinite. Each household has access to a spanifirisky pro-
duction technology which uses capital as the only input. §dmae good is used for both consumption
and investment. Capital depreciates by a constant fradterery period and the consumption good
can be costlessly converted into physical capital. Aithéhousehold’s production function is given by,
vl =nPf(K"), wheren!" is a household specific productivity shodkis the production function and
k" the undepreciated capital stock at datdhe production function is assumed to satisfy the usual
neoclassical assumptions of concavity and Inada condition

Households derive utility from consumption and from hotgdan unbacked government liability
which does not yield any return and which we call currencyashc Currency or cash can be pur-
chased at datiefor é units of the consumption good whepgis the price of the consumption good in
units of currency. Cash holdings provide utility to the hetlusids by reducing the transactions costs
of exchange (for example buying bonds) for households.

Besides being allowed to invest in physical capital, hoakihare also free to trade in a real,

one-period, riskfree bond whose payoff at diate one unit of the consumption good pr units of



money and whose price 7% units of money’

At the beginning of each periog the households have a capital std¢kand a cash stocky’
carried over from the previous period and an amount of om@geeal bondQ{Ll purchased in the
previous period. At daté, it chooses its current consumptiofy, the stock of capitakth+1 to carry
over to the next period, an amount of cagh, and an amount of real bon@. The real balances
% purchased at dateprovides current utility but the household is forced to gatrover to the next
period. History begins at date 0 with a given caph'@bnd cash stockng for each household and an
initial price pg, normalized to 1.

The household budget constraints at date 0 andtdatethus respectively given By,

%+n8f(k8)+(1—6)k8

(]
%”thf(k‘h”(l‘é)kthwthl = Cth‘f'kth+1+geth+% ®

m
CB+k'{+%98+p—l, where pp =1

5Assets may be assumed to be short lived without loss of glilyeraa CARA set up. Security prices turn out to be
non-stochastic in equilibrium under this set up which iraplthat the introduction of long lived assets does not affext
span of the assets (i.e. the market subspace) at any datetergtiplbosource of complication in any dynamic analysis of
financial markets. Since the model doesn’t change quakgtibby having long-lived assets we keep matters simple by
assuming that the bond in question is a one-period bond.

6To keep the number of symbols used to a minimum we assumegdatsain this model have no source of income other
than production using physical capital. In the body of thpgrahowever, on a couple of occasions we compare the steady
state of the present economy with risky production with tieady state of an economy in which production is riskfree but
agents have exogenous endowments which are subject tacatdhes risks. Note that with an additional exogenous (Jisky
endowment term the household’s current budget constrattrhes,

§+6P+n{‘f<k{‘)+(l6)kt"+9{‘_1=c{‘+k{‘+1+§9{‘+”&1

Wheree{1 is the endowment. Introducing exogenous endowment to tteehmerely adds another term to the defintion
of the current wealth of a household and does not change thelroothe results in any way



All households have identical preferences,additivelyasaiple in consumption and real cash bal-
ances. The state independent utility functions are CARAbfith consumption and cash balances.

The lifetime utility of thehth household is

T 1 1 rn[th
Eot;)Bt(—z\eXp(—A(f)+V(—K9XP(—AT1))) 2)

whereA is the degree of absolute risk aversion (assumed same feugmtion and cash without
loss of generality)p the discount factor anga preference parameter.

The government issues an amo(vt 1 — M) of new currency at date It consumes the seignior-
age (Mi11 — M;)/p: from the new currency at date M; is exogenously given and deterministic.

Government consumptio@; at datet is thus given by

_ M1 — M

& P

(3)

Assumption 1 n!" is normal with meam and varianceo%. N is identically and independently dis-

tributed over time and across agents.

In the present set up with a single riskfree asset, the vaeianin?, denotedc%, measures the
non-diversifiable risk for a household and hence may be usedraeasure of the extent of market
incompleteness.

We assume that idiosyncratic shocks cancel across houlsehahe aggregate, that is

“In a model with multiple assets the variance of non-diveslé risks and hence a measure of market incompleteness is
given by the variance of the OLS residufﬁl under an OLS decomposition of the productivity shocks oreeet returns.
Thus withJ risky assets and the return of tih asset given by, 1, we can express

J
o= n+ Y «dj+Af
=

wheren = E(n{"), K" = Cov(n{', dj +)/Var(dy).



Assumption 2 [, =n.

This is a crucial assumption which keeps the model matheaibtitractable because it removes

aggregative shocks and causing asset prices and totalt dotpe deterministic.

3 The dynamic equilibrium path

In this section we derive the dynamic equilibrium of the abeeconomy, assuming a finite horizon
first. Some of the interesting features of the monetary eognare identified and contrasted with
those of the non-monetary economy. In the next section wandxhe analysis to the infinite horizon
and the steady state of the economy.

We begin by defining a competitive equilibrium for the ecoyom

Definition 1 A competitive equilibrium is a set of individual allocat®{ '}, {K, 1, n" 1, 6"} ")

and a set of market pricel§ 1, }{_g such that
(i) each household takes prices to be given and maximizesul#éct to ( 1) for each t

(i) the markets for the currency, the final good and the bdedr

/H My = Mg (4)
[k ra = [@PH)+ oK) ©
/ @) = 0o (6)

.
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In the next three subsections we show that a competitivdilequim exists in which prices and

aggregate output are deterministic and consumption isedffisurrent wealth.

3.1 Individual decisions

The optimal choices df!, m{', , andk{" ; must satisfy the Euler equations for0...T — 1,

%u’é(c?) = PR, )
1 hoo1 1

“ud) = v(u&(%m)wa(uzmmpt—“) ®)
B = BERMW(, )M (K +(1-9)) ©)

whereul), ul, represents the partial derivatives of the utility functisith respect to consumption
and cash balances.

WhenT is finite, households do not invest in physical capital ordsoim the last period. Neither
do they have any demand for cash (no transactions). Therefitimal consumption at daleis given
by

h _ ~hgah h, ™
Cr :rle(kT)+(1—5)kT+E+eT71

The difference between the non-monetary GEI and the presedel is the presence of the Euler
equation ( 8) characterizing the households optimal chofceash holdings. The equation can be
interpreted in the standard way. The left hand side reptedée cost in terms of current utility

forgone of one unit of cash. The right hand side is the sume€thirent utility from holding cash and

11



the expected return next period, as the cash carried overtéd ¢ 1 is added to the datet 1 wealth.
The cost and benefit must be equal for the optimal choice d¢f oaklings.

To derive the equilibrium solutions using CARA specificatiave begin by assuming the@+1
is normally distributed. We use this assumption to derive itidividual demand functions for the

riskfree asset, physical capital and cash holdings, attdeden the Euler’'s equations.

Proposition 1 Under CARA assumption and assumirﬁ‘glds normal, the hth household’s demand

for the financial, cash and physical asséi, n{', , and K', ; are given by

Tg h h AZ h
Iog(ﬁ) = A —E(cy) + 5 Var(cl,) +logB (10)
my, 1,y h A h 1 [V
TJF = a |09(E) +E(ql,) - 5 Var(al,) - Z|09(E - E) (11)
(n=(1-8) = 1,0 ~ACO.nf,) 12)

Proof: See Appendix

Equations ( 10) and ( 12) characterizing the demand for thidoand and the physical capital have
the same forms and features here as in the CARA model withonegn(Calvet and Angeletos, 2003).
Equation ( 10) reflects that household’s demand for thenggkésset is affected by three factors - (i)
pure time preference (ii) a desire to smoothen fluctuatiorfatiure expected consumption, reflected
in the termA(c[h — Et(c[hH) and (iii) precautionary (prudence) motives demonstratethb fact that
the demand for the bond increases if \r, ) increases.

Equation ( 12) is the familiar CAPM formula requiring thaetbptimal capital stock have a return

12



(its marginal product) equal to the real riskfree rate pluislapremium (alternatively, as in the equa-
tion, the riskfree rate must equal the marginal product shihe risk premium). The risk premium is
given by the covariance of the asset return with the consompf the household in equilibrium.

Equation ( 11), the distinguishing feature of this modelssthat the demand for real balances
depends on four major factors - (i) direct utility deriveq {he level of future expected consumption
(iii) the variance of future consumption and (iv) the difface in the rates of return on bond and
money. The first dependence is straightforward - the highedirect utility derived (the higher the
V), the higher the demand for cash. The other three relatipsistie more interesting.

In a standard money-in-the-utility-function (MIU) modelirrency is a substitute for (similar to)
current consumption as both provides current utility. laliso a substitute for (similar to) bonds in
that both are ways to transfer income intertemporally. Whherlevel of expected future consumption
is high, the demand for both current consumption and realgals is high and the demand for bonds
is low. This is because agents have less need to transfenefrom the present to the future in order
to smoothen consumption over time. This accounts for théipeselationship between demand for
cash andg (. ,).

Similarly when Vatd, ;) is high, households demand both current consumption amdbedances
less and bonds more because agents need to transfer mameeificon the present to the future to
smoothen consumption across future states. Hence the ddorazash balances is negatively related
to the variance of next period’s consumption. The connadbetween the demand for real balances
and consumption variability is a novel feature of this modé&le come back to it again during the

discussion of the steady state.

13



Equation ( 11) further reveals that the demand for cash batais negatively related to the dif-
ference between the gross risk free rﬁ(&and the gross rate of inﬂation/deflati%Fh, the return on

money. This is expected since money and bonds are substisits.

3.2 Equilibrium asset prices, policy functions and output

Asset prices

We now use the asset demand functions derived above togeitiethe market clearing con-
ditions and the assumption of no aggregative shocks to piatethe equilibrium asset prices are
non-stochastic.

Denote aggregate outpytn!'f (k') = Y; and aggregate capital stogkk! = K;. We begin by
assuming thak; and hencey; are deterministic and derive the equilibrium asset prideger on in

the section we prove that in equilibrium aggregate outpirtdeed deterministic.

Proposition 2 Under CARA assumption and assuming ahd Y to be deterministic, bond and cur-

rency prices are given by,

Miiq1 —M
0g() = A+ (1K~ Kiia — L) + logB
Miio — M A2

AN+ (L= B)Kepg — Kepp— — 12—y T /Var(cthH) (13)

Pr+1 2 Jn

M 1 Miio — M

;[” = ;Iog(%) + (Y1 + (1= 8)Kea— Ky — %)

A h 1 Py, P2 1 Pr+1
—E/hVaf(CtH)—Z\log((ﬁ)(?)—l)JrKlOg(F) (14)
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Proof:Aggregating equations ( 10) and ( 11) over households, atidgithat since there are no
aggregate risks in equilibrium the covariance term becareas, we get the required expressions.

Proposition ( 2) shows that so long as there are no aggreighse reY; andM; are deterministic,
the asset price and the price of the consumption good aredateoministic. This is a special feature
of CARA preferences under which asset prices are indepémdéime income distribution and which
keeps the analysis tractable and yields closed form claization of the dynamic equilibrium.

Policy functions

For the finite horizon case, since ddteonsumption is known, the individual equilibrium policy
functions are solved for by using backward recursion frone @a® The next proposition shows that
under the CARA specification, the household’s equilibriunmsumption at dateis a simple affine
function of its wealth at dateand that both are normally distributed.

We begin by defining thath household’s current “earnings” gs= % + 0PN + (1 - 3K+
8" ,. This includes output produced, interest income from thkfrée bond and endowment of real
cash balances. We also denoteiby= n'f (k") + (1 — 8)k", the household’s income from the risky
asset - in this model, production only. A household’s wealttiatet, denoted\{", is defined as current

earnings from all sources and the present value of all fungeme from risky assets. In symbols,

W= i B O

wherev~\4h is given by the recursive relationship,

o e Y | - I
W =i+ %Et(V\é“H), and W¢ ;=1 _,+ ﬁET—l(m)

80ne can alternatively solve for it by using the Bellman opsra

15



Proposition 3 Under CARA specification{és normally distributed at each t and is of the form,

& = a W — b (15)
where
& = ! and a =
It amm) T A-5e)
1 1
B = bl o vad) K
e 1Yy Py Py gy L Pt
HL= Do (R log() — 2 log((()(5,F) — 1)+ £ log(= %))
+(1-a)((5logB+ 5 10g()). and B ~0

and a and i are non-stochastic,as uniform across households an¢g\¢ normally distributed.

Proof: see Appendix.

Equation 15 asserts that consumption is linear in wealtayety date. The marginal propensity
to consume (as a proportion of wealth) is givendyand is uniform across all households. The
constamb[h, on the other hand, is household specific and depends on deoofdactors including
very importantly the variance of consumption at datéar(cth+l).

The linear form of the consumption function is a special deatof the general HARA class of
utility functions (see Gollier (2001)) of which the CARA isspecial case. Under CARA specification
the marginal propensity to consume (henceforth, mpc) attdads a relatively (relative to CRRA for

example) simple form. In the present set apis a function ofa;,1 and in particular of the current

16



rates of return on the two riskfree assets, bonds and mornesgn& ., 1, a; is positively related to each
of the two rates of return% for the bond andp% for money (the substitution effect of an increase in
an asset return is weaker than its income effect). Thisipesitlationship is more stark in the infinite
horizon model as we are able to eliminaeg; from the expression through recursive substitution.
The difference between the model without and the model witinew is the additional inclusion of
% in the expression fog. We also see below that it is this dependence that drives ohts results
discussed in section 4 causes this model to be different fih@standard complete markets Sidrauski
model.

Since the equilibrium policy rules fcﬁ{1 andm[Lrl are not immediately relevant they are relegated
to the Appendi¥

Aggregate output

With CARA specifications the demand for risky assets is ietelent of current wealth of house-

holds, a further simplifying feature which provides us witie desired property of the model - the

absence of aggregate risks in equilibrium.
Proposition 4 Investment in physical capital by the hth household at dategiven by

(g~ (1-8) = (€)1~ Aaaf (K 1)0f) (16)
Further, investment is uniform across households.

Proof: Substitutec!!, ; = a.1W", — bf'.; into the equation ( 12) and simplify to get the required

9A slight manipulation of the policy rule for bonds revealtteeerything else constant, a rise in the inflation rate {fall
money return) increases the proportion spent of currenttivea bonds - a feature similar to the Tobin effect. As we see
later, however, other effects present in this model drive dhe out and can cause the steady state riskfree rate f{@nde
capital stock to fall) when the rate of inflation increases.

17



expression. It is also obvious from the expression kfia the same for all household.

The demand for capital (risky assets in general) dependeeondvariance between the asset re-
turns and the household’s idiosyncratic risks. In the gigentext - productivity shocks are the sole
source of such risks - this covariance reduces to the vaiafiche non-diversifiable productivity
shocks. Further, as the mpc is uniform and the idiosyncris identically distributed across house-
holds, the risk premium (for a givek) is uniform across households implyikQ = k; for all t, for all
h, in equilibrium. The demand for the bond and money (riskisgets in general), in contrast, varies
across households, being dependent on current incomeatiatis.

The following corollary is a direct consequence of Proposi{ 4) and Assumption( 2).

Corollary 1 Aggregate ouput is deterministic along the equilibriumhpat

Proof: Y; = finPf(K") = f(k) [,n" =nf(k). AndK; = [, K' = [ k = k. Note that because
we assume the set of households is a continuum dlarig the aggregate and the per capita output
(capital stock) are the same.

Finally, the variance of consumption of tih household at date has a rather simple form in

equilibrium in this model.

10The right hand side of ( 16) can be non-monotonic even wiibtstrconcavef (k) whencr% > 0 and consequently the
equation may have multiple solutions. Calvet and Angel€2691) shows however that under reasonable conditions, the
minimum solution to the equation is the optimal capital ktoc

18



Proposition 5 Along the equilibrium path, V&)1 is given by,

Var(c') = (a)%05(f(K")? (7)
and is uniform across households.

Proof: Substitute foMy", into the expression, Vég') = Var(aW" — bl") and simplify.
An important implication of equation ( 17) is that the higliee marginal propensity to consume,
the higher the variance of consumption. In particular, yeng else remaining constant, a rise in the

rate of return on money (a fall in the rate of inflation) incgese; and increases consumption variance.

3.3 The reduced form dynamic system

The equations ( 13), ( 14), ( 16) and the expressiorafonake up a computable reduced form system
of recursive dynamic equations in the variabpegt, ki anda; from which the values of the remaining

variables can be recursively computed. The reduced forrheoflynamic equilibrium is thus given

bylz’
B-1-8) = flka)n-Aaif(kia)o}) "
M 1 oy
Ft):rl Z\Iog(%)-k(ﬂf(kt+1)+(1—5)k[+1_k[+2_%)

11if agents have exogenous risky endowments in addition tpubygroduced as income, the expression for(lvfaris
given by,

Var(d) = (a)?(02 + o3(f (K)?)

whered? is the variance of the non-diversifiable endowment shoddes Galvet and Angeletos (2001).
12The expressionk, n f (k) and% in the reduced form system actually represents averagessaeouseholds. Since we
have assumed the set of households to be a continuy® Bnthe average and the aggregate magnitudes are the same.
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@31 (k) ~ g log( X~ P (19

T Pt
" IR )
09(E) = AMF(k)+ (1= S ks~ (ML)
A ) + (1= Sk k2 () logp
A )03 @

The dynamic equilibrium paths gk, 1,k anda; can be recursively computed in the following
way, given a monetary proce$b; }{_,, the initial capital stocko and pp normalized to one.

We know that at the last dafk, T%T =0, ar = 1 andkr,1 = 0. Now consider any given pair of
values ofkr, pr. From equation ( 18) we solve fd?% Substituting into ( 19), we solve fdgr%.
Substituting into equation ( 20), we solve faf_1 and from equation ( 21) we solve f&x_1. We
repeat the process till we firlg and pp. If this kg and pg are equal to the given initidy and 1, the
computed path is the equilibrium path. If not we start withfeecent kt andpy. 3

The dynamic equilibrium path in the present set up is charaetd by complex feedbacks between
the riskfree rate, capital accumulation, the rate of irdlathind the marginal propensity to consume.
Equation ( 19) adds an extra dimension to the present seuatiegs compared to the corresponding
set in the model without money and the exogenously given taoylepolicy{Mt}tT:O presents an
extra parameter. Although an analysis of the transitiomapgrties of the system ( 18)-( 21) is of

considerable interest, we relegate such exercises faefutark and focus on the steady state instead.

13The dynamic equilibrium path is always unique in the finiteixan case (for explanations, see Lucas and Stokey ().
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4 Infinite horizon and the steady state

As in the real CARA-normal set up, the optimal decision rdi¢he household-investor whéin= o

can be calculated by taking the pointwise limit of the finitarikhon optimal policy function (see
Calvet (2001), Calvet and Angeletos (2001, 2003)). To da the need the assumption of a bounded
sequence of goods prices in addition to the asumption of ademisequence of asset prices required
for a non-monetary economy. We denote the price at tafea perpetual stream of one unit of the
consumption good (perpetuity) by (t) = Z?:o%---%- Also note that the price of the perpetual

stream of gross returns on a unit of cash starting attdiatgiven byz‘f:o% ... %% and denote

1

TR0 ) under infinite horizon. For

this byt (t). Using forward recursion it follows: = 0

a, andbl’ to be well defined for all we need the following assumption.

Assumption 3 The sequences

{M ) {30 (R} (P20 {0 Moo (TR (1) 120 and {Th (1) 12

are bounded.

It can be easily checked (see Calvet and Angeletos (200B)R0et in the infinite horizon case,
under assumption ( 3), the consumption rule ( 3) is optimal.

Steady state

The remaining part of the paper focuses on the steady stdbe @conomy assuming a constant
exogenously given rate of money grovwgland an implied rate of inflation equal to it (sinbeandp

must grow at the same rate in the steady state).
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Letm= % denote the real balanceR= % the gross real interest ratethe capital stock and

the mpc, at the steady state. The steady state valuRawfa andk are given by the solution of,

1 A 2 2~2
log(z) = logB+-(a%(f(K)%03) (22)
N AN e el Rk _
o= g Rl08(E) R0 g ) (k-3
—gazoﬁ(f(k))z (23)
_ (R=1(1+g)
* T wmirg-1 o
R-(1-8) = f(k(n—Aaf(ko?) (25)

Note that equations ( 22), ( 24) and ( 25) are independenteafdyt state real balancesand
constitute a reduced form system of equations which deterrtie steady state valueslgfR and
a, given an exogenous money growth rgteFurther we can use equation ( 24) to eliminatiom

equations ( 22) and ( 25). The steady state capital stockigkfdee rate are thus given by,

A2 (R=1)(1+9)

oa(R) = loaB+ 5 (g grg ) (100)°03) (26)
R-(1-8) = F(9- Al 2 1(kod @7

The next theorem shows that the monetary economy alwayssteaay state for any non-negative

value ofg.
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Theorem 1 There exists a steady state for every economy for ever)g

Proof: see Appendix.

Note thatg > 0 ensures thad < 1 at the steady state. Solutions to the above equations fichwh
a < 1 are not guaranteed to exist for agy 0 although such solutions may exist for small negative
values ofg (see Appendix for details). We revisit this issue below ictiem 4.3 again.

Geometrically, equations ( 26) and ( 27) implicitly define ttapital stockk as two functions,
K1(R) andK?(R) of the real riskfree rate (see figure 1). The intersectiorhe$é two determine the
steady state values &fandR. It can be easily checked that bdtH(R) andK?(R) are decreasing.
This introduces the possibility of multiple steady states result carried over from the economy
without money (see Calvet and Angeletos (2001, 2003)).drettonomy without money some of these
steady states are shown to be unstable, locally indetetenarad capable of generating endogenous
fluctuations. It is a natural question to ask whether and lh@sé conditions and features generalize
to the present model with money. We leave this explorationife future however and for the present
focus on steady states which are unique and stable, in ardgudy some of the standard issues in
monetary economics in this new framework. Stability is eeduf K!(R) is steeper thak?(R) at the

point of intersection.

4.1 Monetary neutrality and super-neutrality

Given the steady state valuesloindR, equation ( 23) determines the steady state valua. @ince
k, Randa are independent af at the steady state, money is neutral.

Equation ( 23) further shows that the steady state value @fid hence utility from real balances
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KY(R)

Figure 1.

are influenced by the extent of uninsurable ris%s implications to be explored in future research.
Although money is neutral it is clearly not superneutralbat steady state becaukeR anda

depend on the rate of inflation or money growthas the equations show. The next theorem and the

following discussion makes clear that money is non-supgrakin this model because markets are

incomplete.
Theorem 2 Money is superneutral if markets are complete, i.ex%if: 0.

Proof: Whenc% = 0, the steady state capital stdclnd riskfree rate are given by,
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R—(1-8) = nf'(k

The steady state capital stock and the riskfree rate argpémdient of the rate of inflation and
money growth when markets are complete. Money is not onlyrakebut also superneutral at the
steady state as in the standard Sidrauski set-up.

When some risks are non-diversifiable - that is when marketsrewomplete - there are two
distinct factors which destroy the super-neutrality propat the steady state. First a rise in the rate
of inflation or money growth decreases the marginal propgtsiconsume, as can be checked from
equation ( 24). This is just a continuation into the steadestf the relationship between the marginal
propensity to consume and the rate of return on money (aligaty the rate of inflation) discussed
in Section 3.2. A fall ina reduces consumption variance and precautionary savirtgs.irfturn has
a positive effect on the steady state real riskfree rate andexjuently a negative effect on the steady
state capital stock (as the risk-adjusted rate of returnapitad has to be equal to the riskfree rate in
equlibrium). We described this channel of influence of thte of inflation or money growth on the
riskfree rate and capital stock as the precautionary chammtige introduction.

The second factor is that capital in this set-up is not prigecobrding to the marginal product
of capital only as in the case of complete markets. Insteadofitimal capital stock is given by

the equality of the riskfree rate and the marginal produgisidd for the risk that capital entails -
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determined by the covariance between consumption and @ity shocks, which reduces to the
term Aao%f’(k)f(k) in equilibrium. The risk premium on capital at the steadyesfalls when the
marginal propensity to consuneefalls with a rise in the rate of inflation or money growth. The
decrease in the risk premium has a positive effect (destridsethe "risk premium” effect in the
introduction) on the steady state capital stock which iseqopposite of the first precautionary effect.
The following thought experiment helps us understand h@wlo channels are distinct. Suppose
idiosyncratic risks are assumed to come from some exogesrd@vment (see footnote 5, section
2) rather than production sources - that is assume that #rer@o productivity shocks (capital is
riskfree) but that households have some other source ofmaashich is subject to non-diversifiable

idiosyncratic shocks. It is easy to check that the steadg siguations would then be given by,

A2 (R=1)(1+9)

|09(%) = |OQB+3((W)205) (28)

R—(1-38) = f'(kn (29)

wherea? represents the variance of the exogenous (non-diverd@fiabdowment shocks. The
riskfree rate would clearly be affected by the rate of inflatimoney growth and so would the capital
stock because of its dependenceRyreven if there are no non-diversifiable production risks.nNo

superneutrality breaks down because of the first but notdbersl factor in this case.
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4.2 The Fisher equation

Itis clear from the discussion in the previous section thatelationship between the nominal interest
rate and the rate of inflation is generally not one-on-onehasriskfree real rate is influenced by
changes in the rate of inflation. We explain below why it is possible to further specify how
the real riskfree rate will change because of a rise in thatiofi rate, in the general model with
production risks. But first we show that in the special singase in which there are endowment but

no productivity shocks the direction of this change is unigonbus.

Theorem 3 In an economy with endowment risk but no production riskyélaeriskfree rate is posi-

tively related and the capital stock negatively relatedhe tate of inflation.

Proof. Equation ( 28) determines the steady state real riskftedRras independent of the capital
stock but an implicitly increasing function of the rate oflation g. Equation ( 29) determines the
steady state capital stock as an inverse function of theiskditee rate but without direct dependence
ong. The steady state is thus unique. Geometrically, on(Bi&) plane the functiork!(R) is a
vertical straight line and the functiok?(R) is more gently downward sloping (see Figure 2). An
increase irg shiftsK(R) outwards, doesn’t chand€’(R) and the result follows?

In the more general case in which productivity shocks arsgmethe comparative static exer-
cise of an increase ig yields ambiguous resultskK*(R) andK?(R) are decreasing functions as in
Figure 1. Bothk1(R) andK?(R) are increasing ig. Hence as a result of a rise in the rate of infla-
tion/money growth botk*(R) andK?(R) shift outwards. The net effect on the steady state values is

thus ambiguous even when the steady state is unique.

1The theorem vindicates Barro’s conjecture that the rateftdtion and capital stock are inversely related, albeihi t
special case of endowment but no production risks.
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Figure 2:

Intuitively, a rise in the rate of inflation/money growth texs the marginal propensity to consume
which in turn reduces the precautionary savings and theptisknium. But a reduction in the risk
premium in turn has positive effects on the capital stoclpubuvhich in turn has a positive feedback
on consumption variance and precautionary savings. Thuswle take into account production
risks, there are all these positive and negative feedbaakbe precautionary savings and the risk

premium which render the net effect of a rise in the inflatiat® mmbiguous.

4.3 The optimal monetary policy

Sinceg is exogenously given, in this section we address the issiie gptimal value.

We begin by noting that in the present set up, although idd&afi household consumption along
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the steady state path is stochastic, the average consungatioss all households (or aggregate con-
sumption for that matter) is not, since there are no aggeegsis in the economy. By optimglwe
therefore denote the value gthat maximizes the steady state utility of the “average”stoner. The

average consumption along the steady state is given by,

c=nf(k)— 3k (30)

From the previous sections, it is also clear that when mar&et incomplete, the steady state
real riskfree rate, capital stock and hence consumptioertttpn the rate of money growth. We are
therefore in essence looking for a 3-tuge R(g),k(g)) which maximizes the utility of the average
consumer along a steady state path.

In addition to the two steady state equations ( 26) and ( &) optimal rate of money growth

must satisfy
ac om
= _0 31
Yeag +Wm g (31)

Note that from the Euler equation ( 8) at the steady state

)

Uc = YUm + Uc( R1+g)

Substituting for the partial derivatives ang in ( 31), using ( 30), ( 23) and the above expression

and after simple manipulation, condition ( 31) reduces to,

(1K)~ 8) 36+ (19 ~8)(1~ )~ 2 ram)) =
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Note that at the steady staig= 0, sincek is finite. Hence the optimal money growth rate is given

by the solution of g, R k) in the equations ( 26), ( 27) and

ok 1 1 1
B R(l—i—g)) B Z(R(1+g)2)

=0 (32)

Two observations are in order. Firstly, given a certain pestaic specification of the economy,
equations ( 26) ( 27) and ( 32) together may have no solutmmsnique or multiple solutions which
are meaningful. In particular a solution (if it exists) mayadlve a positive or a negativgg Secondly,
at this point, given the complex form of the equations it ficlilt to check (if not impossible) whether
a solution(s) can be found in the form of a “rule” (such as thiedfman rule) which is invariant to
parametric specifications.

The next theorem shows that the Friedman rule which sets rnib&s qiominal rate of interest

R(1+g) =1 org=~ —r (the net real riskfree rate) may be suboptimal under theepteset up.
Theorem 4 The Friedman rule is suboptimal for some economies, wheketaare incomplete.

Proof. Note that the Friedman rule is optimal when markets are det@psince the riskfree rate
(and hence capital stock) is invariant with respeaj.to

For the incomplete market case, it is sufficient to give am@a in which markets are incomplete
and a meaningful steady state exists W1+ g) = 1, g = —r but for which ( 32) is violated. We
assume the simple case once again under which endowment Ipoductivity shocks are present

(0% = 0,02 > 0). Under this situation, it is easy to check that the coadifi32) reduces to,

1 OR 1 1 1

nriag T rirg) Y T AR g2

(R—1) )=0 (33)
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We now assum&(1+g) = 1 andg = —r. Note that under these conditions, a steady state in
whichr < 1 can always be found fg8 = 1/2 andAc?Z > 8log(4/3) (see Appendix).

The expression on the left of equation ( 33), evaluatd®(at- g) = 1 andg = —r becomes,

1 AZr2 1

rlf"(k))((?lr)—i-Azcér(l—r)(1—2r) A1)

r(

which is always negative far< % Hence the optimality condition is violated for economigthw

B=1/2 andAc3 > 8log(4/3) for R(14+g) =l org~ —r.

5 Appendix

Proposition 1
To derive the demand function for the riskfree asset, wediraluate the definite integralull(cf, ;))

on the right hand side of the first Euler equation. Assumimgdh~ N(cC,c2)

w h =2
) = [ ExpAd) e )
2

= Exp(—AE(d) + A7Vart(cth))

Substituting fonl(c") = e A< on the left hand side and f&; (u?(c)) on the right hand side and

simplifying we have,

Iog(%) = Ad'— AE(d, ;) + AWVar(d,;) + logB
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The demand for real balances can be derived by dividing bidés ®f ( 8) byE (u}(ct,;)) 5 and

simplifying.

To derive the demand for physical capital not that the Eudgiagion ( 9) can be written as,

h

ug(e) = BE(Ug(ctia))(1—8)+BE(ud(ct 1)) Ee(niia f' (Kl y))

+C0\&(U2(Cth+1)a r]p+1 f,(kth+1))

Sincec!! is normal, applying Stein’s lemma to the above expressi@anhave

ui(d) = BE(U(c1))(1—8) +BE(Ud(c 1)) E (e ' (K1)

—|—E(uEC(cth+1)Cov(cth+l), r]tthl f/(ktthl)

whereull,(.) represents the derivative of(.). Dividing the above expression by ( 7), and noting

that% = —Aand simplifying yields the required expression.
E(ug(ea))

Proposition 3
To prove the normality o€ and derive the functional form we start by solving thrbackwards

from dateT,

k= 1K)+ (15K + oh_y+ O
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Sincen? is normal and prices are deterministiﬂ'}, is normal. Hence equation ( 15) is true for
dateT — 1 with ar = 1, b7 =0, andi}t =W given by the right hand side.
To solve forc? ,, we first derive the demand for cash and the risk free assetteTd- 1. From

equation ( 11), demand for real balanced at 1 must satisfy

mh

1
= R100() +Er () + (1)) 100y + T

m
Pr-1

B
A h 1 Pr-1 Pr-1
—EVar(cT) N IOQ(E - ?)
Simplifying, we get
mi i 1 Y h £ (ph hy _ Ayarich
o, — 1o P (Klog(ﬁ) +Er-a(ny f(ky) + (1 - O)ky) — 5 Var(cr)
1 Proi Pra 1
A|09(T[T71 o7 )+ 1= %eﬁl

From equation ( 10), bemand for the riskfree bond at datel must satisfy

log(T4) = Adh; ~ AE(ch) + AVar(ch) + log

Noting thatc? , =ift | — kil — % — T8, and substituting formhr—f1 from above and simpli-

fying we have,
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9?-1 = T or P ['?-1 P E(\NP)
24 (1 ) T (- Py
2 h 1+%1 Pr-1  Pr-1 1161
+(1—%)2var(CT)+1—%Klog(ﬂT—1 pr ))_ApT—l
14 P12
pr Y h
+l0gB — 13 2 0g(g)

Finally, substitute foB _, and% intoch_, =it — K1 — % — Ji=1gh; and simplify to get,

h h h
Cra=ar-Wr 1 —br

where
. To_1 it
hfj_ = Ithflﬂ-EETfl('q')
a 1
T-1 = T 71 P
At o)+ -5 %)
h Tr_1 A h h T2 Pr-1

4, = ar_i(—=Var(c})+k} +(1— ——=—=).

1 Tl(pplZ (1) +kr +( or 1 pT)
N Pr-1,, Pr Pr
~log(=)—=log((—=)(——)—1)+ = log(——
(£109(5) ~ 7 100((F=)(2) = 1)+ £log( )

1 1 Ter_1
+(1_aT_l)(KIOQB+ZIOg(E)’

Thusc?_, has the required form. Also sineg_1 andb! ; are non-stochastic aMd , is normal,

c?_, is normal.

We repeat the above steps to solve (ﬂé[z, ';Ej and c'}fz and generalize to get the required
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forms for consumption. It can also be checked in the prodessiie household’s equilibrium policy

rules for bond and cash balances are given by,

| o -~ A 0,
o = a(iM(— — ) — 25 (W",)+ —Var(c" ) +2-1L
b (it (at+1 pt+1) t(Wa) a1 (Gy1) a1

1 pe 1 Pt Pt+1 1 Pr41
(at—H‘f'm)(KbQ((E)(T)—1)4‘;\'09(?)
1 k1 10Ty _ L iogr Yy
m, 4 _ 1 ~ A
ler = (aﬁ_%)(eﬁa(wil)—EVar(c{Ll)
Bis Lo Ry Rit) gy Liog Py jogY) (35)
a1 a1 A & P A P B

Theorem 1
Note first thatg > 0 is sufficient to guarrante < 1 at the steady state (assuming we are able to

find one in whichR > 1) since in this case

(R=1)(1+9) < 2(R-1)(1+09)
= 2R(14+g)—2(1+09)

< 2R(1+g -1—a<1

Also note from ( 26), that whea? = 0, R=1/B and whero? > 0, R < 1/B. We shall therefore

look for solutions to ( 26) and ( 27) fd® € [1,1/[].
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To prove existence of steady state we manipulate the eqsadiod rewrite them as,

2109(gk) 4104, (R—1)(1+0)
fl) = ( o2 e l(2R(1+g)—1
R—(1-9)

N — op(2log( k)2

)t (36)

(37)

We get equation ( 37) by substituting

(R-1)(1+9)

op(mf(k) = (ZIOg(BiR))l/Z

from equation ( 36). The equations ( 36) and ( 37) define thedgtstate capital stodk as two
implicit functions G1(R) andG2(R) of the real riskfree rate. It can be easily checked @4tl) =
andG*(1/B) = 0. Also GA(1) = (f') (=5 Fegrrm) = k> 0 andG(1/B) = (1)L =
k> 0. Thus,G!(1) — G%(1) > 0 andG!(1) — G?(1) < 0. Hence a zero exists [a,1/p].

Theorem 4

WhenR(1+g) = 1 andg = —r, at the steady state=r. We therefore need to look for a steady

state in whichr € [0,1]. In particular note that fo = (1/2), 0% = 0, andag > 0, the steady state

equations are,

IOQ((lir)) B Azog
r2 2
r = nf'(k)—9o

36



The LHS of the first equatior> 0 asr — 0. Atr =1/2, LHS= 4log(4/3). Hence a solution to

the first equation (and also the second) exists in the re@idn2] if A%02 > 8log(4/3).
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