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Abstract

The paper studies asset prices and capital accumulation in amonetary economy with non-

diversifiable idiosyncratic risks (incomplete markets). Agovernment issued unbacked currency

is introduced into agent’s preferences in a dynamic GEI (General Equilibrium with Incomplete

market) model with CARA preferences and normal disturbances. Closed form expressions for

equlibrium allocations and prices are derived under finite and infinite horizons. The paper ad-

dresses several monetary issues. In particular, money is shown to be neutral but not superneutral

at the steady state. The rate of inflation is shown to adversely affect the steady state capital stock

under some situations. Finally the Friedman rule is shown tobe non-optimal for some economies.
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1 Introduction

The paper studies a heterogenous agent monetary economy in which agents are exposed to uninsurable

idiosyncratic risks (markets are incomplete) and proves the following results. First, the rate of money

growth affects the steady state real riskfree rate and the capital stock - that is to say money is neutral

but not superneutral at the steady state. Second, since the real riskfree rate is affected by the rate of

money growth or inflation, the Fisher relationship between the rate of inflation and the nominal interest

rate is not one on one. In the general case in which the agents are affected by uninsurable production

risks it is hard to specify whether the real riskfree rate will rise or fall - because of two opposing

effects on the real riskfree rate and capital stock. In a special case, however, in which production is

assumed to be riskfree but agents are exposed to an exogenousuninsurable endowment shock, a rise in

the inflation rate is shown to increase the real riskfree rateand hence cause a greater than proportional

increase in the nominal rate. Finally, the Friedman rule which sets the nominal interest rate to zero is

shown to be suboptimal for some economies, as a result of thismonetary non-superneutrality.

To prove the above results we introduce a government issued unbacked currency into an agent’s

preferences in a dynamic general equilibrium model with incomplete markets with CARA preferences

and normal disturbances, thus combining a standard Sidrauski model (Sidrauski 1967) of money with

an existing GEI (General Equilibrium with Incomplete markets) set up. Closed form expressions

for equlibrium allocations and prices are derived under finite and infinite horizons. The paper then

proceeds to address some of the standard issues in monetary economics mentioned above in the new

set up.

In this new set up, money remains superneutral at the steady state when the variance of uninsurable
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risks is zero - that is markets are complete - as is to be expected in a standard Sidrauski model.

However, when this variance is positive - that is markets areincomplete - there exist two distinct

channels through which the rate of money growth is shown to influence the real riskfree rate and the

capital stock.

First, households resort to precautionary savings to reduce the variance of future consumption

which in this model is proportional to the variance of uninsured risks with the factor of proportionality

given by the square of the marginal propensity to consume. The marginal propensity to consume is

shown to be inversely related to the rate of inflation, (equalto the money growth rate at the steady

state). Consequently, the real risk free rate which is determined by the amount of precautionary

savings (proportional to the variance of future consumption) is affected by changes in the rate of

inflation (rate of money growth). Changes in the real risk free rate through this first channel - which

we describe as the ”precautionary channel” - in turn affectsthe steady state capital stock.

Secondly, when the return on physical capital is subject to uninsurable production risks, the price

of capital in equilibrium is not equal to its marginal product (as it would be if markets were complete)

but to the sum of the marginal product and a risk premium whichis once again shown to be propor-

tional to the variance of uninsurable risks with the factor of proportionality depending on the marginal

propensity to consume. Given a real riskfree rate, the priceof capital and hence the steady state capital

stock is therefore affected by changes in the marginal propensity to consume as a result of changes in

the rate of inflation (rate of money growth). We describe thissecond channel as the ”risk premium”

channel.

Because of these two effects discussed above, the relationship between the rate of inflation and
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the nominal interest rate (the Fisher eqiation) is not one onone in general, as the real riskfree rate

changes with changes in the rate of inflation. This is in direct contrast with the situation when markets

are complete. When markets are complete, a rise in the inflation rate brings about an equal percentage

rise in the nominal rate of interest. It is difficult to specify in general in this model whether a rise in

the rate of inflation brings about a rise or a fall in the real riskfree rate - hence whether the relationship

between the inflation rate and the nominal interest rate is more than or less than one on one - as

the two effects described above have opposite signs. It is however possible to be more specific in

the special case in which production is assumed to be riskfree and the uninsurable risks are to an

exogenous stochastic endowment. In this case we can see thatonly the first channel is operative

whereas the second channel is not. The rate of inflation can beshown to positively affect the riskfree

rate (negatively affect the steady state capital stock) in this special case.

Finally the paper shows by an example that even with standardpreferences which are separable

in consumption and money, the Friedman rule - setting the money growth rate to the negative of the

real rate of interest, such that the nominal rate of interestis zero - is not optimal for some economies

when markets are incomplete. (The rule remains optimal whenmarkets are complete) In fact for any

specific parameterization of the model an optimal money growth rate - defined as the money growth

rate which maximizes average steady state consumption - maynot exist, may uniquely exist or there

may be multiple such rates.

The question of how the rate of money growth influences capital and output is an old classic

one and dates back to Tobin (Tobin 1965) at least, culminating in the more recent works of Barro

(Barro 1996) and many others (Bruno and Easterly 1998, Andres and Hernando 1999). The present
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paper supplements that long literature in its attempt to establish a relationship based on certain key

features of market incompleteness. According to the Tobin effect, a rise in the rate of inflation reduces

the return on cash holdings and induces households to investmore of its wealth in an alternative asset,

physical capital. Although such a tradeoff exists by construction in the present model too, the steady

state relationships between the rate of inflation, the capital stock and the real interest rate are driven

by the effect of the first on precautionary savings and the risk premium rather than by the Tobin effect.

The present paper also partly vindicates Barro’s conjecture (discussed later by many others) that the

rate of inflation and output growth are inversely related. The discussion in the previous paragraph

shows that theoretically such an inverse relationship exists albeit in the special case of uninsurable

(exogenous) endowment but no production risks.

Criticisms of the Friedman rule as the optimal monetary policy also has a long history, such as

in the work of Phelps (1973), Chari, Christiano and Kehoe (1991, 1996) and others. Most of these

works assume complete markets and the essence of the criticism is usually that the government may

have to resort to other welfare reducing, distortionary taxes to make up for the loss of seigniorage

revenue under the Friedman rule. The current paper supplements this literature too, by showing that

the Friedman rule may be suboptimal even when the governmentdoes not have a specific objective

which requires it to impose compensatory taxes. Rather, thesuboptimality comes from the feature

that the steady state capital stock and consumption are affected by the money growth rate.

Dynamic general equlibrium models with uninsurable production risks which yield closed form

solutions for equilibrium allocations (and are hence computable) are few in number.1 In a series

1Some of the papers which discusses dynamic GEI models which have closed form solutions in various contexts are
Magill and Quinzii, (2000), Krebs (2003a, 2003b).
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of recent papers, Willen (1999), Calvet(2001), Calvet and Angeletos (2001, 2003) and Athanasoulis

(2005) amongst others have studied issues related to asset prices, capital accumulation and endoge-

nous cycles assuming CARA preferences and normal shocks. Very recently, Angeletos (2005) has

studied capital accumulation and cycles in a model with the more mainstream CRRA preferences. To

the best of my knowledge however, there has been no study of these specific monetary issues within a

dynamic GEI model.2 The present paper seeks to fill that gap and demonstrates thatmoney can have

different steady state effects when markets are incompletecompared to when they are not.

The CARA assumption on preferences has certain known drawbacks, chief of which is that unlike

its more mainstream CRRA counterpart, it does not take into account the effect of wealth on pre-

cautionary savings behavior.3 This specification is nonetheless used here for a first study of monetary

issues within an incomplete markets framework, because of its great analytical convenience compared

to the CRRA specification. The equilibrium conditions are simpler and easier to interpret than they

are under CRRA assumption. The extension of the current analysis to address wealth effects using

CRRA preferences is left for the future.

In addition to assuming that agents have CARA preferences, to keep the model simple, we also

assume that they maximize expected utility. This has the drawback that the model does not distin-

guish between risk aversion and the intertemporal elasticity of substitution. Such distinctions are less

important in this present context given the nature of the comparative static questions we ask and are

also consequently left for future work.4

2There are several papers however which deal with money in twoperiod incomplete market models - such as Gottardi
(1994), Magill and Quinzii (1992), to mention some.

3Other important criticisms are that the CARA specification does not allow for balanced growth (King, Plosser and
Rebelo, (2002) and that it can lead to negative consumption (see Ljungqvist and Sargent (2004).

4A usual method in the GEI literature to distinguish between the two effects is to assume that agents have non-expected
utility of the Kreps-Porteus/Epstein-Zin type (see Kimball and Weil (2003); Angeletos (2005)).
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Section 2 describes the model economy. Section 3 derives thedynamic equilibrium path assuming

a finite horizon and discusses some of the interesting features of the monetary economy compared to

the non-monetary one. Finally Section 4 derives the infinitehorizon steady state and discusses the

issues of monetary neutrality and super-neutrality, the Fisher relation and the Friedman rule.

2 The Model

The economy consists of a continuum of households, indexed by h∈ H = [0,1]. Each household lives

for T periods whereT may be finite or infinite. Each household has access to a specific and risky pro-

duction technology which uses capital as the only input. Thesame good is used for both consumption

and investment. Capital depreciates by a constant fractionδ every period and the consumption good

can be costlessly converted into physical capital. Thehth household’s production function is given by,

yh
t = ηh

t f (kh
t ), whereηh

t is a household specific productivity shock,f is the production function and

kh
t the undepreciated capital stock at datet. The production function is assumed to satisfy the usual

neoclassical assumptions of concavity and Inada conditions.

Households derive utility from consumption and from holding an unbacked government liability

which does not yield any return and which we call currency or cash. Currency or cash can be pur-

chased at datet for 1
pt

units of the consumption good wherept is the price of the consumption good in

units of currency. Cash holdings provide utility to the households by reducing the transactions costs

of exchange (for example buying bonds) for households.

Besides being allowed to invest in physical capital, households are also free to trade in a real,

one-period, riskfree bond whose payoff at datet is one unit of the consumption good orpt units of
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money and whose price isπt units of money.5

At the beginning of each periodt, the households have a capital stockkh
t and a cash stockmh

t

carried over from the previous period and an amount of one-period real bondsθh
t−1 purchased in the

previous period. At datet, it chooses its current consumptionch
t , the stock of capitalkh

t+1 to carry

over to the next period, an amount of cashmh
t+1 and an amount of real bondsθh

t . The real balances

mh
t+1
pt

purchased at datet provides current utility but the household is forced to carry it over to the next

period. History begins at date 0 with a given capitalkh
0 and cash stockmh

0 for each household and an

initial price p0, normalized to 1.

The household budget constraints at date 0 and datet are thus respectively given by,6

mh
0

p0
+ ηh

0 f (kh
0)+ (1−δ)kh

0 = ch
0 +kh

1 +
π0

p0
θh

0 +
mh

1

po
, where p0 = 1

mh
t

pt
+ ηh

t f (kh
t )+ (1−δ)kh

t + θh
t−1 = ch

t +kh
t+1+

πt

pt
θh

t +
mh

t+1

pt
(1)

5Assets may be assumed to be short lived without loss of generality in a CARA set up. Security prices turn out to be
non-stochastic in equilibrium under this set up which implies that the introduction of long lived assets does not affectthe
span of the assets (i.e. the market subspace) at any date - a potential source of complication in any dynamic analysis of
financial markets. Since the model doesn’t change qualitatively by having long-lived assets we keep matters simple by
assuming that the bond in question is a one-period bond.

6To keep the number of symbols used to a minimum we assume that agents in this model have no source of income other
than production using physical capital. In the body of the paper, however, on a couple of occasions we compare the steady
state of the present economy with risky production with the steady state of an economy in which production is riskfree but
agents have exogenous endowments which are subject to uninsurable risks. Note that with an additional exogenous (risky)
endowment term the household’s current budget constraint becomes,

mh
t

pt
+eh

t +ηh
t f (kh

t )+(1−δ)kh
t +θh

t−1 = ch
t +kh

t+1 +
πt

pt
θh

t +
mh

t+1

pt

whereeh
t is the endowment. Introducing exogenous endowment to the model merely adds another term to the defintion

of the current wealth of a household and does not change the model or the results in any way
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All households have identical preferences,additively separable in consumption and real cash bal-

ances. The state independent utility functions are CARA forboth consumption and cash balances.

The lifetime utility of thehth household is

E0

T

∑
t=0

βt(− 1
A

exp(−Ach
t )+ γ(− 1

A
exp(−A

mh
t+1

pt
))) (2)

whereA is the degree of absolute risk aversion (assumed same for consumption and cash without

loss of generality),β the discount factor andγ a preference parameter.

The government issues an amount(Mt+1−Mt) of new currency at datet. It consumes the seignior-

age(Mt+1 −Mt)/pt from the new currency at datet. Mt is exogenously given and deterministic.

Government consumptionGt at datet is thus given by

Gt =
Mt+1−Mt

pt
(3)

Assumption 1 ηh
t is normal with meanη and varianceσ2

p. ηh
t is identically and independently dis-

tributed over time and across agents.

In the present set up with a single riskfree asset, the variance of ηh
t , denotedσ2

p, measures the

non-diversifiable risk for a household and hence may be used as a measure of the extent of market

incompleteness.7

We assume that idiosyncratic shocks cancel across households in the aggregate, that is

7In a model with multiple assets the variance of non-diversifiable risks and hence a measure of market incompleteness is
given by the variance of the OLS residualη̃h

t under an OLS decomposition of the productivity shocks on theasset returns.
Thus withJ risky assets and the return of thej th asset given byd j,t , we can express

ηh
t = η+

J

∑
j=1

κh
j d j,t + η̃h

t

whereη = E(ηh
t ), κh

j = Cov(ηh
t ,d j,t )/Var(d j,t).
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Assumption 2
∫

H ηh
t = η.

This is a crucial assumption which keeps the model mathematically tractable because it removes

aggregative shocks and causing asset prices and total output to be deterministic.

3 The dynamic equilibrium path

In this section we derive the dynamic equilibrium of the above economy, assuming a finite horizon

first. Some of the interesting features of the monetary economy are identified and contrasted with

those of the non-monetary economy. In the next section we extend the analysis to the infinite horizon

and the steady state of the economy.

We begin by defining a competitive equilibrium for the economy.

Definition 1 A competitive equilibrium is a set of individual allocations ({ch
t }T

t=0,{kh
t+1,m

h
t+1,θ

h
t }T−1

t=0 )

and a set of market prices{pt+1,πt}T−1
t=0 such that

(i) each household takes prices to be given and maximizes ( 2)subject to ( 1) for each t

(ii) the markets for the currency, the final good and the bond clear,

∫
H

mh
t+1 = Mt+1 (4)

∫
H
(ch

t +kh
t+1)+gt =

∫
H
(ηh

t f (kh
t )+ (1−δ)kh

t ) (5)

∫
H
(θh

t ) = 0 (6)
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In the next three subsections we show that a competitive equilibrium exists in which prices and

aggregate output are deterministic and consumption is affine in current wealth.

3.1 Individual decisions

The optimal choices ofθh
t , mh

t+1 andkh
t+1 must satisfy the Euler equations fort = 0. . .T −1,

πt

pt
uh

c(c
h
t ) = βEt(u

h
c(c

h
t+1) (7)

1
pt

uh
c(c

h
t ) = γ(uh

m(
mh

t+1

pt
)

1
pt

)+ βEt(u
h
c(c

h
t+1

1
pt+1

) (8)

uh
c(c

h
t ) = βEt(u

h
c(c

h
t+1)(η

h
t+1 f ′(kh

t+1)+ (1−δ))) (9)

whereuh
c,u

h
m represents the partial derivatives of the utility functionwith respect to consumption

and cash balances.

WhenT is finite, households do not invest in physical capital or bonds in the last period. Neither

do they have any demand for cash (no transactions). Therefore optimal consumption at dateT is given

by

ch
T = ηh

T f (kh
T)+ (1−δ)kh

T +
mh

T

pT
+ θh

T−1

The difference between the non-monetary GEI and the presentmodel is the presence of the Euler

equation ( 8) characterizing the households optimal choiceof cash holdings. The equation can be

interpreted in the standard way. The left hand side represents the cost in terms of current utility

forgone of one unit of cash. The right hand side is the sum of the current utility from holding cash and
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the expected return next period, as the cash carried over to datet +1 is added to the datet +1 wealth.

The cost and benefit must be equal for the optimal choice of cash holdings.

To derive the equilibrium solutions using CARA specification, we begin by assuming thatch
t+1

is normally distributed. We use this assumption to derive the individual demand functions for the

riskfree asset, physical capital and cash holdings, at datet from the Euler’s equations.

Proposition 1 Under CARA assumption and assuming ch
t+1 is normal, the hth household’s demand

for the financial, cash and physical assets,θh
t , mh

t+1 and kht+1 are given by

log(
πt

pt
) = A(ch

t −Et(c
h
t+1))+

A2

2
Var(ch

t+1)+ logβ (10)

mh
t+1

pt
=

1
A

log(
γ
β
)+Et(c

h
t+1)−

A
2

Var(ch
t+1)−

1
A

log(
pt

πt
− pt

pt+1
) (11)

(
pt

πt
− (1−δ)) = f ′(kh

t+1)(η−ACov(ch
t+1,η

h
t+1)) (12)

Proof: See Appendix

Equations ( 10) and ( 12) characterizing the demand for the real bond and the physical capital have

the same forms and features here as in the CARA model without money (Calvet and Angeletos, 2003).

Equation ( 10) reflects that household’s demand for the riskfree asset is affected by three factors - (i)

pure time preference (ii) a desire to smoothen fluctuations in future expected consumption, reflected

in the termA(ch
t −Et(ch

t+1) and (iii) precautionary (prudence) motives demonstrated by the fact that

the demand for the bond increases if Var(ch
t+1) increases.

Equation ( 12) is the familiar CAPM formula requiring that the optimal capital stock have a return
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(its marginal product) equal to the real riskfree rate plus arisk premium (alternatively, as in the equa-

tion, the riskfree rate must equal the marginal product minus the risk premium). The risk premium is

given by the covariance of the asset return with the consumption of the household in equilibrium.

Equation ( 11), the distinguishing feature of this model says that the demand for real balances

depends on four major factors - (i) direct utility derived (ii) the level of future expected consumption

(iii) the variance of future consumption and (iv) the difference in the rates of return on bond and

money. The first dependence is straightforward - the higher the direct utility derived (the higher the

γ), the higher the demand for cash. The other three relationships are more interesting.

In a standard money-in-the-utility-function (MIU) model,currency is a substitute for (similar to)

current consumption as both provides current utility. It isalso a substitute for (similar to) bonds in

that both are ways to transfer income intertemporally. Whenthe level of expected future consumption

is high, the demand for both current consumption and real balances is high and the demand for bonds

is low. This is because agents have less need to transfer income from the present to the future in order

to smoothen consumption over time. This accounts for the positive relationship between demand for

cash andEt(ch
t+1).

Similarly when Var(ch
t+1) is high, households demand both current consumption and cash balances

less and bonds more because agents need to transfer more income from the present to the future to

smoothen consumption across future states. Hence the demand for cash balances is negatively related

to the variance of next period’s consumption. The connection between the demand for real balances

and consumption variability is a novel feature of this model. We come back to it again during the

discussion of the steady state.
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Equation ( 11) further reveals that the demand for cash balances is negatively related to the dif-

ference between the gross risk free ratept
πt

and the gross rate of inflation/deflationpt
pt+1

, the return on

money. This is expected since money and bonds are substituteassets.

3.2 Equilibrium asset prices, policy functions and output

Asset prices

We now use the asset demand functions derived above togetherwith the market clearing con-

ditions and the assumption of no aggregative shocks to provethat the equilibrium asset prices are

non-stochastic.

Denote aggregate output
∫

h ηh
t f (kh

t ) = Yt and aggregate capital stock
∫

hkh
t = Kt . We begin by

assuming thatKt and henceYt are deterministic and derive the equilibrium asset prices.Later on in

the section we prove that in equilibrium aggregate output isindeed deterministic.

Proposition 2 Under CARA assumption and assuming Kt , and Yt to be deterministic, bond and cur-

rency prices are given by,

log(
πt

pt
) = A(Yt +(1−δ)Kt −Kt+1−

Mt+1−Mt

pt
)+ logβ

−A(Yt+1 +(1−δ)Kt+1−Kt+2−
Mt+2−Mt+1

pt+1
)+

A2

2

∫
h
Var(ch

t+1) (13)

Mt+1

pt
=

1
A

log(
γ
β
)+ (Yt+1 +(1−δ)Kt+1−Kt+2−

Mt+2−Mt+1

pt+1
)

−A
2

∫
h
Var(ch

t+1)−
1
A

log((
pt

πt
)(

pt+1

pt
)−1)+

1
A

log(
pt+1

pt
) (14)

14



Proof:Aggregating equations ( 10) and ( 11) over households, and noting that since there are no

aggregate risks in equilibrium the covariance term becomeszero, we get the required expressions.

Proposition ( 2) shows that so long as there are no aggregate risks, i.eYt andMt are deterministic,

the asset price and the price of the consumption good are alsodeterministic. This is a special feature

of CARA preferences under which asset prices are independent of the income distribution and which

keeps the analysis tractable and yields closed form characterization of the dynamic equilibrium.

Policy functions

For the finite horizon case, since dateT consumption is known, the individual equilibrium policy

functions are solved for by using backward recursion from date T.8 The next proposition shows that

under the CARA specification, the household’s equilibrium consumption at datet is a simple affine

function of its wealth at datet and that both are normally distributed.

We begin by defining thehth household’s current “earnings” asiht =
mh

t
pt

+ ηh
t f (kh

t )+ (1− δ)kh
t +

θh
t−1. This includes output produced, interest income from the riskfree bond and endowment of real

cash balances. We also denote byĩht = ηh
t f (kh

t )+ (1− δ)kh
t , the household’s income from the risky

asset - in this model, production only. A household’s wealthat datet, denotedWh
t , is defined as current

earnings from all sources and the present value of all futureincome from risky assets. In symbols,

Wh
t = iht +

πt

pt
Et(W̃

h
t+1)

whereW̃h
t is given by the recursive relationship,

W̃h
t = ĩht +

πt

pt
Et(W̃

h
t+1), and W̃h

T−1 = ĩhT−1 +
πT−1

pT−1
ET−1(ĩ

h
T)

8One can alternatively solve for it by using the Bellman operator.
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Proposition 3 Under CARA specification, ch
t is normally distributed at each t and is of the form,

ch
t = atW

h
t −bh

t (15)

where

at =
1

(1+ 1
at+1

πt
pt

)+ (1− πt
pt

pt
pt+1

)
, and aT = 1

bh
t = at(b

h
t+1

1
at+1

πt

pt
+

1
at+1

πt

pt

A
2

Var(ch
t+1)+kh

t+1

+(1− πt

pt

pt

pt+1
)(

1
A

log(
γ
β

)− 1
A

log((
pt

πt
)(

pt+1

pt
)−1)+

1
A

log(
pt+1

pt
)))

+(1−at)((
1
A

logβ+
1
A

log(
πt

pt
)), and bh

T = 0

and at and bh
t are non-stochastic, at is uniform across households and Wh

t is normally distributed.

Proof: see Appendix.

Equation 15 asserts that consumption is linear in wealth, atevery date. The marginal propensity

to consume (as a proportion of wealth) is given byat and is uniform across all households. The

constantbh
t , on the other hand, is household specific and depends on a complex of factors including

very importantly the variance of consumption at datet, Var(ch
t+1).

The linear form of the consumption function is a special feature of the general HARA class of

utility functions (see Gollier (2001)) of which the CARA is aspecial case. Under CARA specification

the marginal propensity to consume (henceforth, mpc) at date t has a relatively (relative to CRRA for

example) simple form. In the present set up,at is a function ofat+1 and in particular of the current
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rates of return on the two riskfree assets, bonds and money. Givenat+1, at is positively related to each

of the two rates of return -pt
πt

for the bond and pt
pt+1

for money (the substitution effect of an increase in

an asset return is weaker than its income effect). This positive relationship is more stark in the infinite

horizon model as we are able to eliminateat+1 from the expression through recursive substitution.

The difference between the model without and the model with money is the additional inclusion of

pt
pt+1

in the expression forat . We also see below that it is this dependence that drives mostof the results

discussed in section 4 causes this model to be different fromthe standard complete markets Sidrauski

model.

Since the equilibrium policy rules forθh
t andmh

t+1 are not immediately relevant they are relegated

to the Appendix.9

Aggregate output

With CARA specifications the demand for risky assets is independent of current wealth of house-

holds, a further simplifying feature which provides us withthe desired property of the model - the

absence of aggregate risks in equilibrium.

Proposition 4 Investment in physical capital by the hth household at date t, is given by

(
pt

πt
− (1−δ)) = f ′(kh

t+1)(η−Aat+1 f (kh
t+1)σ

2
p) (16)

Further, investment is uniform across households.

Proof: Substitutech
t+1 = at+1Wh

t+1−bh
t+1 into the equation ( 12) and simplify to get the required

9A slight manipulation of the policy rule for bonds reveal thet everything else constant, a rise in the inflation rate (fallin
money return) increases the proportion spent of current wealth on bonds - a feature similar to the Tobin effect. As we see
later, however, other effects present in this model drive this one out and can cause the steady state riskfree rate to rise(and
capital stock to fall) when the rate of inflation increases.
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expression. It is also obvious from the expression thatkh
t is the same for all households.10

The demand for capital (risky assets in general) depends on the covariance between the asset re-

turns and the household’s idiosyncratic risks. In the givencontext - productivity shocks are the sole

source of such risks - this covariance reduces to the variance of the non-diversifiable productivity

shocks. Further, as the mpc is uniform and the idiosyncraticrisks identically distributed across house-

holds, the risk premium (for a givenk) is uniform across households implyingkh
t = kt for all t, for all

h, in equilibrium. The demand for the bond and money (riskfreeassets in general), in contrast, varies

across households, being dependent on current income realizations.

The following corollary is a direct consequence of Proposition ( 4) and Assumption( 2).

Corollary 1 Aggregate ouput is deterministic along the equilibrium path.

Proof: Yt =
∫

h ηh
t f (kh

t ) = f (kt)
∫

h ηh
t = η f (kt). And Kt =

∫
hkh

t =
∫

hkt = kt . Note that because

we assume the set of households is a continuum along[0,1], the aggregate and the per capita output

(capital stock) are the same.

Finally, the variance of consumption of thehth household at datet, has a rather simple form in

equilibrium in this model.

10The right hand side of ( 16) can be non-monotonic even with strictly concavef (k) whenσ2
p > 0 and consequently the

equation may have multiple solutions. Calvet and Angeletos(2001) shows however that under reasonable conditions, the
minimum solution to the equation is the optimal capital stock.
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Proposition 5 Along the equilibrium path, Var(ch
t )

11 is given by,

Var(ch
t ) = (at)

2σ2
p( f (kh

t ))
2 (17)

and is uniform across households.

Proof: Substitute forWh
t , into the expression, Var(ch

t ) = Var(atWh
t −bh

t ) and simplify.

An important implication of equation ( 17) is that the higherthe marginal propensity to consume,

the higher the variance of consumption. In particular, everything else remaining constant, a rise in the

rate of return on money (a fall in the rate of inflation) increasesat and increases consumption variance.

3.3 The reduced form dynamic system

The equations ( 13), ( 14), ( 16) and the expression forat make up a computable reduced form system

of recursive dynamic equations in the variablespt ,πt ,kt andat from which the values of the remaining

variables can be recursively computed. The reduced form of the dynamic equilibrium is thus given

by12,

(
pt

πt
− (1−δ)) = f ′(kt+1)(η−Aat+1 f (kt+1)σ2

p) (18)

Mt+1

pt
=

1
A

log(
γ
β
)+ (η f (kt+1)+ (1−δ)kt+1−kt+2−

Mt+2−Mt+1

pt+1
)

11If agents have exogenous risky endowments in addition to output produced as income, the expression for Var(ch
t ) is

given by,

Var(ch
t ) = (at)

2(σ2
e +σ2

p( f (kh
t ))

2)

whereσ2
e is the variance of the non-diversifiable endowment shocks (see Calvet and Angeletos (2001).

12The expressionsk, η f (k) and M
p in the reduced form system actually represents averages across households. Since we

have assumed the set of households to be a continuum on[0,1], the average and the aggregate magnitudes are the same.
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−A
2
(at+1)

2σ2
p( f (kt+1))

2− 1
A

log(
pt

πt
− pt

pt+1
) (19)

at =
1

(1+ 1
at+1

πt
pt

)+ (1− πt
pt

pt
pt+1

)
(20)

log(
π0,t

pt
) = A(η f (kt)+ (1−δ)kt −kt+1− (

Mt+1−Mt

pt
))

−A(η f (kt+1)+ (1−δ)kt+1−kt+2− (
Mt+2−Mt+1

pt+1
))+ logβ

+
A2

2
(at+1)

2( f (kt+1))
2σ2

p (21)

The dynamic equilibrium paths ofpt ,πt ,kt andat can be recursively computed in the following

way, given a monetary process{Mt}T
t=0, the initial capital stockk0 andp0 normalized to one.

We know that at the last dateT, pT
π0,T

= 0, aT = 1 andkT+1 = 0. Now consider any given pair of

values ofkT , pT . From equation ( 18) we solve forπ0,T−1
pT−1

. Substituting into ( 19), we solve forpT−1
pT

.

Substituting into equation ( 20), we solve foraT−1 and from equation ( 21) we solve forkT−1. We

repeat the process till we findk0 and p0. If this k0 and p0 are equal to the given initialk0 and 1, the

computed path is the equilibrium path. If not we start with a different kT andpT . 13

The dynamic equilibrium path in the present set up is characterized by complex feedbacks between

the riskfree rate, capital accumulation, the rate of inflation and the marginal propensity to consume.

Equation ( 19) adds an extra dimension to the present set of equations compared to the corresponding

set in the model without money and the exogenously given monetary policy {Mt}T
t=0 presents an

extra parameter. Although an analysis of the transitional properties of the system ( 18)-( 21) is of

considerable interest, we relegate such exercises for future work and focus on the steady state instead.

13The dynamic equilibrium path is always unique in the finite horizon case (for explanations, see Lucas and Stokey ( ).
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4 Infinite horizon and the steady state

As in the real CARA-normal set up, the optimal decision rule of the household-investor whenT = ∞

can be calculated by taking the pointwise limit of the finite horizon optimal policy function (see

Calvet (2001), Calvet and Angeletos (2001, 2003)). To do this, we need the assumption of a bounded

sequence of goods prices in addition to the asumption of a bounded sequence of asset prices required

for a non-monetary economy. We denote the price at datet of a perpetual stream of one unit of the

consumption good (perpetuity) byπL(t) = ∑∞
j=0

πt
pt

. . .
πt+ j

pt+ j
. Also note that the price of the perpetual

stream of gross returns on a unit of cash starting at datet is given by∑∞
j=0

πt
pt

. . .
πt+ j

pt+ j

pt+ j

pt+ j+1
and denote

this byπML(t). Using forward recursion it follows,at = 1
(1+πL(t))+(1−πML(t))

under infinite horizon. For

at andbh
t to be well defined for allt we need the following assumption.

Assumption 3 The sequences

{πt}∞
t=0, {πt

pt
}∞

t=0, {Rt}∞
t=0, {pt}∞

t=0, { pt
pt+1

}∞
t=0, {πL(t)}∞

t=0 and{πML(t)}∞
t=0

are bounded.

It can be easily checked (see Calvet and Angeletos (2001, 2003)) that in the infinite horizon case,

under assumption ( 3), the consumption rule ( 3) is optimal.

Steady state

The remaining part of the paper focuses on the steady state ofthe economy assuming a constant

exogenously given rate of money growthg and an implied rate of inflation equal to it (sinceM andp

must grow at the same rate in the steady state).
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Let m= M
p denote the real balances,R= p

π the gross real interest rate,k the capital stock anda

the mpc, at the steady state. The steady state values ofR, m, a andk are given by the solution of,

log(
1
R

) = logβ+
A2

2
(a2( f (k))2σ2

p) (22)

m =
1

1+g
(
1
A

log(
γ
β
)− 1

A
log(

R(1+g)−1
(1+g)

)+ η f (k)−δk

−A
2

a2σ2
p( f (k))2 (23)

a =
(R−1)(1+g)

2R(1+g)−1
(24)

R− (1−δ) = f ′(k)(η−Aa f(k)σ2
p) (25)

Note that equations ( 22), ( 24) and ( 25) are independent of steady state real balancesm and

constitute a reduced form system of equations which determine the steady state values ofk, R and

a, given an exogenous money growth rateg. Further we can use equation ( 24) to eliminatea from

equations ( 22) and ( 25). The steady state capital stock and riskfree rate are thus given by,

log(
1
R

) = logβ+
A2

2
((

(R−1)(1+g)

2R(1+g)−1
)2( f (k))2σ2

p) (26)

R− (1−δ) = f ′(k)(η−A(
(R−1)(1+g)

2R(1+g)−1
) f (k)σ2

p) (27)

The next theorem shows that the monetary economy always has asteady state for any non-negative

value ofg.
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Theorem 1 There exists a steady state for every economy for every g≥ 0.

Proof: see Appendix.

Note thatg≥ 0 ensures thata < 1 at the steady state. Solutions to the above equations for which

a < 1 are not guaranteed to exist for anyg < 0 although such solutions may exist for small negative

values ofg (see Appendix for details). We revisit this issue below in section 4.3 again.

Geometrically, equations ( 26) and ( 27) implicitly define the capital stockk as two functions,

K1(R) andK2(R) of the real riskfree rate (see figure 1). The intersection of these two determine the

steady state values ofk andR. It can be easily checked that bothK1(R) andK2(R) are decreasing.

This introduces the possibility of multiple steady states -a result carried over from the economy

without money (see Calvet and Angeletos (2001, 2003)). In the economy without money some of these

steady states are shown to be unstable, locally indeterminate and capable of generating endogenous

fluctuations. It is a natural question to ask whether and how these conditions and features generalize

to the present model with money. We leave this exploration for the future however and for the present

focus on steady states which are unique and stable, in order to study some of the standard issues in

monetary economics in this new framework. Stability is ensured if K1(R) is steeper thanK2(R) at the

point of intersection.

4.1 Monetary neutrality and super-neutrality

Given the steady state values ofk andR, equation ( 23) determines the steady state value ofm. Since

k, R anda are independent ofmat the steady state, money is neutral.

Equation ( 23) further shows that the steady state value ofm and hence utility from real balances
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1

k

R1
β

K2(R)

K1(R)

Figure 1:

are influenced by the extent of uninsurable risksσ2
p - implications to be explored in future research.

Although money is neutral it is clearly not superneutral at the steady state becausek, R and a

depend on the rate of inflation or money growthg, as the equations show. The next theorem and the

following discussion makes clear that money is non-superneutral in this model because markets are

incomplete.

Theorem 2 Money is superneutral if markets are complete, i.e. ifσ2
p = 0.

Proof: Whenσ2
p = 0, the steady state capital stockk and riskfree rater are given by,
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1
R

= β

R− (1−δ) = η f ′(k)

The steady state capital stock and the riskfree rate are independent of the rate of inflation and

money growth when markets are complete. Money is not only neutral but also superneutral at the

steady state as in the standard Sidrauski set-up.

When some risks are non-diversifiable - that is when markets are incomplete - there are two

distinct factors which destroy the super-neutrality property at the steady state. First a rise in the rate

of inflation or money growth decreases the marginal propensity to consumea, as can be checked from

equation ( 24). This is just a continuation into the steady state of the relationship between the marginal

propensity to consume and the rate of return on money (alternatively the rate of inflation) discussed

in Section 3.2. A fall ina reduces consumption variance and precautionary savings. This in turn has

a positive effect on the steady state real riskfree rate and consequently a negative effect on the steady

state capital stock (as the risk-adjusted rate of return on capital has to be equal to the riskfree rate in

equlibrium). We described this channel of influence of the rate of inflation or money growth on the

riskfree rate and capital stock as the precautionary channel in the introduction.

The second factor is that capital in this set-up is not pricedaccording to the marginal product

of capital only as in the case of complete markets. Instead the optimal capital stock is given by

the equality of the riskfree rate and the marginal product adjusted for the risk that capital entails -
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determined by the covariance between consumption and productivity shocks, which reduces to the

term Aaσ2
p f ′(k) f (k) in equilibrium. The risk premium on capital at the steady state falls when the

marginal propensity to consumea falls with a rise in the rate of inflation or money growth. The

decrease in the risk premium has a positive effect (described as the ”risk premium” effect in the

introduction) on the steady state capital stock which is quite opposite of the first precautionary effect.

The following thought experiment helps us understand how the two channels are distinct. Suppose

idiosyncratic risks are assumed to come from some exogenousendowment (see footnote 5, section

2) rather than production sources - that is assume that thereare no productivity shocks (capital is

riskfree) but that households have some other source of income which is subject to non-diversifiable

idiosyncratic shocks. It is easy to check that the steady state equations would then be given by,

log(
1
R

) = logβ+
A2

2
((

(R−1)(1+g)

2R(1+g)−1
)2σ2

e) (28)

R− (1−δ) = f ′(k)η (29)

whereσ2
e represents the variance of the exogenous (non-diversiafiable) endowment shocks. The

riskfree rate would clearly be affected by the rate of inflation/money growth and so would the capital

stock because of its dependence onR, even if there are no non-diversifiable production risks. Non-

superneutrality breaks down because of the first but not the second factor in this case.
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4.2 The Fisher equation

It is clear from the discussion in the previous section that the relationship between the nominal interest

rate and the rate of inflation is generally not one-on-one as the riskfree real rate is influenced by

changes in the rate of inflation. We explain below why it is notpossible to further specify how

the real riskfree rate will change because of a rise in the inflation rate, in the general model with

production risks. But first we show that in the special simplecase in which there are endowment but

no productivity shocks the direction of this change is unambiguous.

Theorem 3 In an economy with endowment risk but no production risk, thereal riskfree rate is posi-

tively related and the capital stock negatively related to the rate of inflation.

Proof: Equation ( 28) determines the steady state real riskfree rateRas independent of the capital

stock but an implicitly increasing function of the rate of inflation g. Equation ( 29) determines the

steady state capital stock as an inverse function of the realriskfree rate but without direct dependence

on g. The steady state is thus unique. Geometrically, on the(R,k) plane the functionK1(R) is a

vertical straight line and the functionK2(R) is more gently downward sloping (see Figure 2). An

increase ing shiftsK1(R) outwards, doesn’t changeK2(R) and the result follows.14

In the more general case in which productivity shocks are present the comparative static exer-

cise of an increase ing yields ambiguous results.K1(R) andK2(R) are decreasing functions as in

Figure 1. BothK1(R) andK2(R) are increasing ing. Hence as a result of a rise in the rate of infla-

tion/money growth bothK1(R) andK2(R) shift outwards. The net effect on the steady state values is

thus ambiguous even when the steady state is unique.

14The theorem vindicates Barro’s conjecture that the rate of inflation and capital stock are inversely related, albeit in the
special case of endowment but no production risks.
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Figure 2:

Intuitively, a rise in the rate of inflation/money growth reduces the marginal propensity to consume

which in turn reduces the precautionary savings and the riskpremium. But a reduction in the risk

premium in turn has positive effects on the capital stock, ouput which in turn has a positive feedback

on consumption variance and precautionary savings. Thus when we take into account production

risks, there are all these positive and negative feedbacks on the precautionary savings and the risk

premium which render the net effect of a rise in the inflation rate ambiguous.

4.3 The optimal monetary policy

Sinceg is exogenously given, in this section we address the issue ofits optimal value.

We begin by noting that in the present set up, although individual household consumption along
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the steady state path is stochastic, the average consumption across all households (or aggregate con-

sumption for that matter) is not, since there are no aggregate risks in the economy. By optimalg we

therefore denote the value ofg that maximizes the steady state utility of the “average” consumer. The

average consumption along the steady state is given by,

c = η f (k)−δk (30)

From the previous sections, it is also clear that when markets are incomplete, the steady state

real riskfree rate, capital stock and hence consumption depend on the rate of money growth. We are

therefore in essence looking for a 3-tuple(g,R(g),k(g)) which maximizes the utility of the average

consumer along a steady state path.

In addition to the two steady state equations ( 26) and ( 27), the optimal rate of money growth

must satisfy

uc
∂c
∂g

+ γum
∂m
∂g

= 0 (31)

Note that from the Euler equation ( 8) at the steady state

uc = γum+uc(
1

R(1+g)
)

Substituting for the partial derivatives andum in ( 31), using ( 30), ( 23) and the above expression

and after simple manipulation, condition ( 31) reduces to,

uc((η f ′(k)−δ)
∂k
∂g

+(η f ′(k)−δ)(1− 1
R(1+g)

)− 1
A

(
1

R(1+g)2 )) = 0
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Note that at the steady stateuc 6= 0, sincek is finite. Hence the optimal money growth rate is given

by the solution of(g,R,k) in the equations ( 26), ( 27) and

(η f ′(k)−δ)
∂k
∂g

+(η f ′(k)−δ)(1− 1
R(1+g)

)− 1
A

(
1

R(1+g)2) = 0 (32)

Two observations are in order. Firstly, given a certain parametric specification of the economy,

equations ( 26) ( 27) and ( 32) together may have no solutions,or unique or multiple solutions which

are meaningful. In particular a solution (if it exists) may involve a positive or a negativeg. Secondly,

at this point, given the complex form of the equations it is difficult to check (if not impossible) whether

a solution(s) can be found in the form of a “rule” (such as the Friedman rule) which is invariant to

parametric specifications.

The next theorem shows that the Friedman rule which sets the gross nominal rate of interest

R(1+g) = 1 or g≈−r (the net real riskfree rate) may be suboptimal under the present set up.

Theorem 4 The Friedman rule is suboptimal for some economies, when markets are incomplete.

Proof: Note that the Friedman rule is optimal when markets are complete, since the riskfree rate

(and hence capital stock) is invariant with respect tog.

For the incomplete market case, it is sufficient to give an example in which markets are incomplete

and a meaningful steady state exists withR(1+ g) = 1, g = −r but for which ( 32) is violated. We

assume the simple case once again under which endowment but no productivity shocks are present

(σ2
p = 0, σ2

e > 0). Under this situation, it is easy to check that the condition ( 32) reduces to,

(R−1)
1

η f ′′(k)
∂R
∂g

+(1− 1
R(1+g)

)(R−1)− 1
A

(
1

R(1+g)2) = 0 (33)
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We now assumeR(1+ g) = 1 andg = −r. Note that under these conditions, a steady state in

which r ≤ 1
2 can always be found forβ = 1/2 andAσ2

e > 8log(4/3) (see Appendix).

The expression on the left of equation ( 33), evaluated atR(1+g) = 1 andg = −r becomes,

r(
1

η f ′′(k)
)(

A2r2

( 1
1+r )+A2σ2

er(1− r)(1−2r)
− 1

A(1− r)

which is always negative forr ≤ 1
2. Hence the optimality condition is violated for economies with

β = 1/2 andAσ2
e > 8log(4/3) for R(1+g) = 1 org≈−r.

5 Appendix

Proposition 1

To derive the demand function for the riskfree asset, we firstevaluate the definite integralE(uh
c(c

h
t+1))

on the right hand side of the first Euler equation. Assuming that ch
t ∼ N(c̄,σ2

c)

Et(u
h
c(c

h
t )) =

∫ ∞

∞
Exp(−Ach

t )
1

σc
√

(2π)
Exp(−(ch

t − c̄)2

2σ2
c

)d(ch
t )

= Exp(−AEt(c
h
t )+

A2

2
Vart(c

h
t ))

Substituting foruh
c(c

h
t ) = e−Ach

t on the left hand side and forEt(uh
c(c

h
t )) on the right hand side and

simplifying we have,

log(
π0,t

pt
) = Ach

t −AE(ch
t+1)+A2Var(ch

t+1)+ logβ
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The demand for real balances can be derived by dividing both sides of ( 8) byE(uh
c(c

h
t+1))

1
pt+1

and

simplifying.

To derive the demand for physical capital not that the Euler equation ( 9) can be written as,

uh
c(c

h
t ) = βEt(u

h
c(c

h
t+1))(1−δ)+ βEt(u

h
c(c

h
t+1))Et(ηh

t+1 f ′(kh
t+1))

+Covt(u
h
c(c

h
t+1),η

h
t+1 f ′(kh

t+1))

Sincech
t is normal, applying Stein’s lemma to the above expression, we have

uh
c(c

h
t ) = βEt(u

h
c(c

h
t+1))(1−δ)+ βEt(u

h
c(c

h
t+1))Et(ηh

t+1 f ′(kh
t+1))

+E(uh
cc(c

h
t+1)Cov(ch

t+1),η
h
t+1 f ′(kh

t+1)

whereuh
cc(.) represents the derivative ofuh

c(.). Dividing the above expression by ( 7), and noting

that
E(uh

cc(c
h
t+1)

E(uh
c(c

h
t+1))

= −A and simplifying yields the required expression.

Proposition 3

To prove the normality ofch
t and derive the functional form we start by solving forct

h backwards

from dateT,

ch
T = ηh

T f (kh
T)+ (1−δ)kh

T + θh
T−1 +

mh
T

pT
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Sinceηh
T is normal and prices are deterministic,ch

T is normal. Hence equation ( 15) is true for

dateT −1 with aT = 1, bh
T = 0, andihT = Wh

T given by the right hand side.

To solve forch
T−1, we first derive the demand for cash and the risk free asset at dateT −1. From

equation ( 11), demand for real balances atT −1 must satisfy

mh
T

pT−1
=

1
A

log(
γ
β
)+ET−1(ηh

T f (kh
T)+ (1−δ)kh

T + θh
T−1+

mh
T

pT

−A
2

Var(ch
T)− 1

A
log(

pT−1

πT−1
− pT−1

pT
)

Simplifying, we get

mh
T

pT−1
=

1
1− pT−1

pT

(
1
A

log(
γ
β
)+ET−1(ηh

T f (kh
T)+ (1−δ)kh

T)− A
2

Var(ch
T)

− 1
A

log(
pT−1

πT−1
− pT−1

pT
))+

1
1− pT−1

pT

θh
T−1

From equation ( 10), bemand for the riskfree bond at dateT −1 must satisfy

log(
πT−1

pT −1
) = Ach

T−1−AE(ch
T)+A2Var(ch

T)+ logβ

Noting thatch
T−1 = ihT−1−kh

T − mh
T

pT−1
− πT−1

pT−1
θh

T−1 and substituting formh
T

pT−1
from above and simpli-

fying we have,
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θh
T−1 =

1− pT−1
pT

2+ πT−1
pT−1

(1− pT−1
pT

)
[ihT−1−

2
(1− pT−1

pT
)
E(W̃h

T )

+
2

(1− pT−1
pT

)

A
2

Var(ch
T)+

1+ pT−1
pT

1− pT−1
pT

1
A

log(
pT−1

πT−1
− pT−1

pT
))− 1

A
πT−1

pT−1

+ logβ−
1+ pT−1

pT

1− pT−1
pT

1
A

log(
γ
β
)−kh

T

Finally, substitute forθh
T−1 and mh

T
pT−1

into ch
T−1 = ihT−1−kh

T −
mh

T
pT−1

− πT−1
pT−1

θh
T−1 and simplify to get,

ch
T−1 = aT−1W

h
T−1−bh

T−1

where

Wh
T−1 = iht−1 +

πT−1

pT−1
ET−1(

˜ihT)

aT−1 =
1

(1+ πT−1
pT−1

)+ (1− πT−1
pT−1

pT−1
pT

)

bh
T−1 = aT−1(

πT−1

pT−1

A
2

Var(ch
T)+kh

T +(1− πT−1

pT−1

pT−1

pT
).

(
1
A

log(
γ
β
)− 1

A
log((

pT−1

πT−1
)(

pT

pT−1
)−1)+

1
A

log(
pT

pT−1
)))

+(1−aT−1)(
1
A

logβ+
1
A

log(
πT−1

pT−1
),

Thusch
T−1 has the required form. Also sinceaT−1 andbh

t−1 are non-stochastic andWh
T−1 is normal,

ch
T−1 is normal.

We repeat the above steps to solve forθh
T−2,

mh
T−1

pT−2
andch

T−2 and generalize to get the required
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forms for consumption. It can also be checked in the process that the household’s equilibrium policy

rules for bond and cash balances are given by,

θh
t = at(i

h
t (

1
at+1

− pt

pt+1
)−2Et(W̃

h
t+1)+

A
at+1

Var(ch
t+1)+2

bh
t+1

at+1

(
1

at+1
+

pt

pt+1
)(

1
A

log((
pt

πt
)(

pt+1

pt
)−1)+

1
A

log(
pt+1

pt
)

+(
1

at+1
− pt

pt+1
)
1
A

(logβ− log(
πt

pt
))− 1

A
log(

γ
β
)−kh

t+1)) (34)

mh
t+1

p1
=

1

( 1
at+1

− pt
pt+1

)
(θh

t +Et(W̃
h
t+1)−

A
2at+1

Var(ch
t+1)

bh
t+1

at+1
+

1
at+1

(
1
A

log((
pt

πt
)(

pt+1

pt
)−1)+

1
A

log(
pt+1

pt
)− log(

γ
β
))) (35)

Theorem 1

Note first thatg≥ 0 is sufficient to guarranteea < 1 at the steady state (assuming we are able to

find one in whichR≥ 1) since in this case

(R−1)(1+g) < 2(R−1)(1+g)

= 2R(1+g)−2(1+g)

< 2R(1+g)−1→ a < 1

Also note from ( 26), that whenσ2
p = 0, R= 1/β and whenσ2

p > 0, R< 1/β. We shall therefore

look for solutions to ( 26) and ( 27) forR∈ [1,1/β].
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To prove existence of steady state we manipulate the equations and rewrite them as,

f (k) = (
2log( 1

βR)

σ2
p

)1/2A−1(
(R−1)(1+g)

2R(1+g)−1
)−1 (36)

f ′(k) =
R− (1−δ)

η−σp(2log( 1
βR))1/2

(37)

We get equation ( 37) by substituting

Aσp(
(R−1)(1+g)

2R(1+g)−1
f (k) = (2log(

1
βR

))1/2

from equation ( 36). The equations ( 36) and ( 37) define the steady state capital stockk as two

implicit functionsG1(R) andG2(R) of the real riskfree rate. It can be easily checked thatG1(1) = ∞

andG1(1/β) = 0. Also G2(1) = ( f ′)−1( δ
η−σp(2log(1/β)) = k̄ > 0 andG2(1/β) = ( f ′)−1(δ+(1/β−1)

η ) =

k > 0. Thus,G1(1)−G2(1) > 0 andG1(1)−G2(1) < 0. Hence a zero exists in[1,1/β].

Theorem 4

WhenR(1+g) = 1 andg = −r, at the steady statea = r. We therefore need to look for a steady

state in whichr ∈ [0,1]. In particular note that forβ = (1/2), σ2
p = 0, andσ2

e > 0, the steady state

equations are,

log( 2
(1+r))

r2 =
A2σ2

e

2

r = η f ′(k)−δ
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The LHS of the first equation→ ∞ asr → 0. At r = 1/2, LHS= 4log(4/3). Hence a solution to

the first equation (and also the second) exists in the region[0,1/2] if A2σ2
e > 8log(4/3).
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