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Abstract

The paper assumes a continuum of two period-lived agents; agents
are identical except for the inherited income. Young agents optimally
allocate their inherited income between consumption and investment
in human capital in a stochastic environment. In the second period
they receive a wage proportional to the accumulated human capital and
invest in o®spring. Two main results are provided: a low earning per
unit of human capital leads the economy to converge to a stationary
income distribution whatever the initial distribution. Viceversa, for a
su±cently high wage an endogenous growth is at work and the income
distribution dynamics depends on the initial conditions. In this case
several redistributive policies are analized.
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1 Introduction
The aim of this paper is to develop an analytical framework investigating
the dynamics of income distribution through investment in human capital,
as in the spirit of Galor and Zeira, 1993,[13], Glomm and Ravikumar, 1992,
[15], Benabou, 1996, [9] and Galor and Tsiddon, 1997, [14] among others.
The analysis of the personal income distribution raises several questions and
the paper tries to investigate some leading points related both to conceptual
and empirical questions. The ¯rst one concerns the e®ects, on the personal
income distribution, of di®erent opportunities in accumulating human capital
as a result of di®erent initial conditions; in a "free-market", under certain
assumptions, such heterogeneity causes inequality among individuals, and
such inequality can be ampli¯ed over time, especially when intergenerational
transfers are at work, inducing a path-dependance in the dynamics of the
income curve. This kind of question brings us to the following: "Is the long
run dynamics a®ected by initial conditions?" In the literature both a positive
and a negative answer can be found: the Loury's article in 1981,[16], showed
that inequalities can a®ect the income curve in the short run but they have no
in°uence in the long term, where the income distribution achieves an ergodic
measure. Later, Galor and Zeira (1993, [13]) have shown that adding an
assumption of thresholds in the human capital investment to the imperfect
capital market hypothesis, then inequalities can a®ect the short as well as the
long run dynamics. These results underline the importance for a complete
analysis of the income curve dynamics stressing both the short and the long
run properties: this is the goal of the ¯rst part of the work where convergence
to an ergodic distribution can occur or not according to a parametric change
on the labour market.
Another relevant point about the dynamics of the income distribution is

the lack of a steady trend, as the empirical observation seems to suggest;
"The evidence ...... suggests that it may be better for a number of countries
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to think in terms of "episodes" when inequality fell or increased.....there was
a widespread belief that inequality was falling, steadily ...As we know now,
income inequality did not continue to fall"1. According to a OECD empirical
study (1993, [19]), the dynamics of the income curve in the past two decades,
for a large number of countries, was characterized by an alternating fall and
rise in income dispersion2. The reasons for such a behaviour can be very
complex but undoubtedly a part of the story is closely related to a change
in the economy structure. To take into account such a "stylized fact", a
theoretical scheme should be able to provide di®erent dynamic behaviours
according to a slight change in the basic assumptions describing the postu-
lated economic system. Two recent works are able to do this according to
some parametric change. In the Acemoglu's work, [1], inequality increases
or decreases according to frictions on the labour market: the more e±cient
the labour market, the higher the inequality and lower the growth rate and
viceversa. Hence according to imperfections on the labour market, measured
by the length of search, it is possible to take into consideration both increas-
ing and decreasing inequality jointly to a high or low growth. In the Galor
and Tsiddon's work,[14], instead the result comes from non-linearities in the
accumulation of human capital, i.e. from presence of multiple steady-states.
This non-linearity, jointly to a particular technological progress, causes the
income curve to change from a bimodal to a unimodal distribution over time,
reducing inequality.
Our model can generate both increasing and decreasing inequality, jointly

to an endogenous growth and a stationary economy respectively, according
to the human capital remuneration on a Walrasian labour market, hence
without assuming imperfections in such market. Moreover the human cap-
ital accumulation rule for each dynasty is linear, hence characterized by a
monotonic evolution. In other words, the result comes from a theoretical
framework which is as simple as possible. Under these simple assumptions
the paper provides a rigorous analytical study of the statistical law describing
the income curve dynamics which, to the best of my knowledge, is missing
in the literature.

1A.B. Atkinson (1996, [7]) page 6.
2In a recent empirical work, Perotti, [21], tries to shed a light on the relationship growth-

equality. He ¯nds a broad positive association between the growth rate and equality,
although with some caveats. The sample under investigation covers from 1960 to 1985
but the second half of '80 was characterized by a strong increase in inequalities indexes,
especially in USA and UK.
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Since both a fall and a rise in dispersion are possible in our model ac-
cording to a parametric change, the paper concludes for a trade-o® between
growth and equality. For such a reason the second part is devoted to some
exercises of endogenous ¯scal policy aiming to investigate the e®ect on the
growth process of redistributive policies. Despite the widespread belief that
welfare policies represent an obstacle to the growth process, although there is
not a clear reason supporting such a conclusion (see Atkinson, 1995 [6]) the
second part of the work shows as such policies can reduce inequality without
slowing down the growth rate. It must be stressed that the empirical work of
Perotti, 1996[21], concludes that "...social security expenditure is positively,
rather than negatively, associated with growth..." (Perotti, 1996, page 161).
The paper is articulated as follows: in section two both the basic model

and the individual behaviour are formalized. In section 3 the assumption
of individuals homogeneity is relaxed in order to investigate the statistical
law underlying the income distribution and the relationship with the initial
conditions; in section 4 the income distribution moments are analyzed pro-
viding, jointly with the previous point, a full characterization of the temporal
properties of the income curve. Section 5 summarizes the results while sec-
tion 6 analyzes the e®ect of di®erent schemes of redistributive policies on the
growth process.

2 The model
The economy is populated by a continuum of two period-lived, heterogenous
agents living in overlapping generations. Each parent has one child, which
provides the relationship between generations within dynasties; individual is
child when young and parent when old. These assumptions imply a station-
ary population whose size is normalized to one. Moreover, parents take care
of o®spring by transferring them their income (net of consumption); this sort
of parental investment provides the endowment for the young agents (in the
following we will mean this parental investment as an inheritance).
In their ¯rst period of life individuals decide how to allocate their inher-

ited income (parental investment) between consumption and investment in
education (human capital); human capital is forgone consumption. Agents
are identical with respect to their preferences and di®er only with respect
to their inherited income. Consequently, the inheritance of each individual
a®ects the amount of human capital she accumulates. Di®erently from Galor
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and Zeira (1993, [13]), each individual invests in human capital, although
in di®erent levels. In the second half of their life agents work, receiving a
wage which is proportional to the acquired human capital; this earning is al-
located between consumption, which is proportional to the inherited income
according to a ¯xed propensity, and investment in o®spring.
Di®erently from the standard models of human capital accumulation (as

for example Uzawa, 1965, [24] and Lucas, 1988, [17]), where a speci¯c produc-
tion sector for human capital exists, I assume a simple one-to-one relationship
between income and human capital; a unit of inherited income "buys" a unit
of human capital. The latter is the only way to transfer income from the
¯rst to the second period of life, since human capital is the only "asset" in
this simple economy and borrowing is denied. These assumptions allow us
to focus only on the intergenerational transfer of earnings related to human
capital accumulation, rather than to a wealth context, which is well investi-
gated both in Loury (1981, [16]) and Galor and Zeira (1993, [13]). Finally,
human capital is homogenous and there is only one type of it; agents di®er
only in size but not in composition.
As we said, during the second period of life, agents receive a wage propor-

tional to the accumulated human capital; more educated people gain a higher
earning (college premium). I assume that the economy is equipped with a
linear production function producing the only good in such an economy and
whose only argument is human capital: Y = Ah; which represents a constant
returns to scale technology on the accumulable input. In this simple econ-
omy hence each agent receives a "wage" Ahi; where hi is the human capital
accumulated by the i¡ th agent during the youth. Moreover I assume that
the wage is subject to a random shock which captures the uncertainty on the
labour market or other factors related to "chance".

2.1 The individual behaviour
In this section we are going to analyze the individual behaviour. As we said,
each individual has to perform her human capital investment according to
a maximizing program. Agents born at time t; maximize a utility function,
whose arguments are the ¯rst period consumption Ct and the investment in
o®spring Xt+1.
The individual program is then:
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Vt(Xt) =Max
Ct

fU (Ct) + ¯E [U (Xt+1) jt]g (1)

subject to the following life cycle:

Ct = Xt ¡ ht (2)

Wt+1 = Aht + °"t+1 (3)

Xt+1 =Wt+1 ¡ S (4)

Ct;Xt; ht;Xt+1 > 0 8t

where C stands for consumption, X for income, h for human capital, W for
wage, A is the mean wage for unit of human capital, S = µXt; µ 2 (0; 1) ;
is the ¯xed-level consumption for the second period3 and ¯ 2 (0; 1) is the
second period utility weight. "t+1 is an instantaneous wage shock. We shall
assume a stationary, gaussian i:i:d: (0; 1) random process; ° is a positive
coe±cient measuring the local impact of the noise on the wage. Finally we
assume U 0 > 0; U 00 < 0 and U 000 > 0:
In (2) the ¯rst period income Xt (the parental investment); for agents

born in period t, is exhaustively allocated between consumption and invest-
ment in human capital. In (4) the bequest Xt+1 comes from the di®erence
between wage, which is proportional to the accumulated human capital plus
a random term, and the ¯xed-consumption S. The Xt+1income provides the
endowment (investment) of the o®spring.
Since an explicit solution is necessary in order to study the dynamics of

the income curve, I assume a constant absolute risk aversion utility function,
U(z) = ¡1=a(exp(¡az)), where a > 0 is the absolute risk aversion coe±-
cient. It must be remarked anyway that this particular form of preferences
does not alter the dynamical property allowing at the same time an explicit

3The assumption about the relationship between second period consumption and in-
herited income is not obviously crucial and we can also assume that people consume the
same level during the old age. Nevertheless it seems to me more realistic assuming that
individuals try to mantain the "life-style" also during the second period. For this reason
I assume that individuals consume in a heterogenous way in the second period, according
to their "social rank".
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solution to the maximization problem which is necessary for studying the dy-
namics. What is important in such a context is only the concavity property
of the utility function. At the same way, the assumption that individuals
consume in the second period according to a ¯xed propensity rather than
to an optimal choice is not relevant, although likely less elegant. As it will
be clear in the following, the dynamics depends on the non-linearity of the
optimal plans w.r.t. the coe±cient A and such a result is robust to more
complex maximizing programs which have not explicit solution in presence
of the random shock.
Solving the optimization program we obtain C¤t ; and from the (2) h¤t :

C¤t =
a2(A¡ µ)
a1 + a2A

Xt ¡
2 ln(A¯) + (a2°)2

2 (a1 + a2A)
(5)

h¤t =
a1 + a2µ
a1 + a2A

Xt +
2 ln(A¯) + (a2°)2

2 (a1 + a2A)
(6)

where ai i = 1; 2 is the absolute risk aversion coe±cient (curvature) of
the sub-utility functions.
Consumption is a linear function of Xt; it is worth stressing the role

played by uncertainty in (5): the higher the uncertainty (°), the lower the
current consumption, which in turn involves a higher human capital; the
rationale lies in the well-known precautionary behaviour. Nevertheless the
e®ect of uncertainty tends to disappear as income grows; richer people are
less worried about future so as to prefer consumption to human capital in-
vestment. Finally we remark that the positive constraints on the variables
imply a minimum inherited income, X

¡
, and A > µ.

Both (5) and (6) are linear in Xt but non-linear w.r.t. A. In particular
the derivative of h¤ w.r.t. A changes from a positive to a negative value for
some A0 2 <+ because of the income and substitution e®ects; for A > A0 the
income e®ect prevails and in this way we obtain dh¤t=dA < 0 which in turn
implies dC¤t =dA > 0. Moreover we have dA0=dXt < 0; the richer the individ-
ual, the lower the subjective threshold A0 (see ¯gure 1); as noted, individuals
characterized by a high inheritance prefer consumption to human capital
accumulation. Hence, according to the mean wage, individuals can prefer
consumption to human capital or viceversa; because of the intergenerational
transfer, this behaviour a®ects the whole dynasty income dynamics.
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By (3), (4) and (2) we obtain the following stochastic di®erence equation:

X¤
t+1 = (A¡ µ)Xt ¡AC¤t + °"t+1

and substituting (5) we ¯nally have:

X¤
t+1 = ®+ ¹Xt + °"t+1 (7)

where:

® =
A [2 ln(A¯) + (a2°)2]

2(a1 + a2A)

¹ =
a1(A¡ µ)
a1 + a2A

This stochastic di®erence equation describes the transition of income from
youth to old age. In the following we change our perspective in order to
use the (7) as the equation describing the income dynamics for the whole
dynasty.
Because of the non-linear relationship between consumption (or human

capital) and the A coe±cient stated by (5), both ® and ¹ bear a non-
linearity w.r.t. A. In particular, we are interested in identifying thresh-
olds providing ®><0 and ¹><1. If we look at the deterministic part of (7)
in fact, the income dynamics depends on these particular values; as an ex-
ample if ® > 0 and ¹ < 1 then the income achieves, in the long run, a
steady state whatever the initial condition. In order to have ® > 0 the
inequality A > ¹A = 1=¯(exp(¡(a2°)2=2)) must hold, while A > A¤ =
((1 + µ)a1)=(a1 ¡ a2) is necessary for ¹ > 1. The latter implies a1 > a2,
i.e. individuals are more risk averse during youth. Moreover, in order to
assure Xt+1 > 0 we need ® > 0;which implies, as we said, A > ¹A. Never-
theless the latter does not involve A > A¤; so as two dynamical behaviours
are possible: for A 2

³
¹A;A¤

´
) E(dXt+1=dXt) < 1 (steady state) while for

A > Max
³
¹A;A¤

´
) E(dXt+1=dXt) > 1 (perpetual growth).

When A < A¤ all dynasties converge to a deterministic average common
equilibrium value X¤

1 whatever the initial condition4. Dynasties starting
from Xt < X¤

1 grow in mean over time at a falling rate; viceversa, for
4It is worth stressing that the model does not achieve an endogenous growth despite

the CRS assumption on the accumulable factor.
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Xt > X¤
1, income falls steadily until the deterministic equilibrium point.

The rationale for such a result can be found in the income and substitution
e®ect; as previously noted, when A is su±ciently low, individuals with a
medium-low inheritance prefers investments in human capital rather than
in consumption; the lower the inherited income the stronger the e®ect. For
the opposite reason, richer people allocate their inherited income mainly
in consumption, which in turn implies a low investment in o®spring; by
the intergenerational transfer this behaviour induces a fall in the average
income dynasty over time, although to a decreasing rate. Under this point
of view, income di®erences in the long run are induced only by the random
component, as we shall see in the next section.
Viceversa, when A > A¤, the average income grows over time at an en-

dogenous rate ¹ for each dynasty. As noted, for a large A individuals prefer
consumption to human capital, whatever the inherited income; yet the high
value of A in the production function allows a high second period income
despite the low investment in human capital. In such a situation, individuals
starting from a higher initial income have a comparative advantage with re-
spect to agents starting from a lower initial value; intergenerational transfers
amplify over time such an advantage. This fact implies that the distance
between rich and poor individuals tends to get worse over time. In this case
the role of the random component is not clear; it will be investigated in the
next section.
We can recast the above conclusions in a shorter way; starting from the

(5), we can obtain the following expression:

Ct+1 ¡ Ct = ¸ (Xt+1 ¡Xt)

with ¸ = (a2(A ¡ µ))=(a1 + a2A): By a backward substitution in the r.h.s.
we ¯nd:

Ct+1 ¡ Ct = ¸
"

¹t (X1 ¡X0) + °
t¡1X

i=0
¹i ("t+1¡i ¡ "t¡i)

#

The above expression shows that a change in consumption can be seen as the
result of two driving forces: the past change in the deterministic component
of the income, i.e. the initial condition, and the cumulative e®ect of the
change in the random noise. If A < A¤ we have ¹ < 1 and the weight of the
initial conditions tends to disappear for a large t; leaving the current change in
consumption to be driven only by the stochastic component (random walk).
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On the contrary, for A > A¤ we have ¹ > 1 and in this case the current
change in consumption holds memory of the past dynamics.
Although a formal analysis of the moments of the income curve is feasible

directly by the (7), I ¯nd more useful analyze the problem with an approx-
imation in continuous time. In this way it is possible to provide a more
rigorous mathematical analysis of the statistical law characterizing the in-
come curve as result of an interacting process between the deterministic and
the stochastic component. The approach in continuous time requires some
mathematical e®ort but brings us to a richer class of results; the methodology
follows the di®usion process approximation, successfully employed in biology
and genetics. The analysis is performed in the following section.

3 The Income Distribution Dynamics
In this section we are going to take into account all the dynasties living in
the economy by the introduction of a distribution for the inherited income
Xt: By so doing, we can interpret (7) as the transition equation of the income
distribution through two instants. In this way,Xt+1 comes from a convolution
between the distribution of X at time t and the normal distribution of the
aggregate shock "t+1: Knowledge of the density function for Xt+1 provides
statistical information about the income distribution.
According to this point of view, we can use (7) to study the evolution of

theXt distribution modulated by the random component. At this end, we can
rearrange (7) as a stochastic ¯nite-di®erence equation, sinceXt+1 = ¢X+Xt
and ¢t = 1:

¢X = (®+ ±Xt + °"t+1)¢t

where ® = A[2 ln(A¯)+(a2°)2]
2(a1+a2A)

and ± = a1(A¡µ)
a1+a2A

¡ 1, with ® > 0:
For ¢X;¢t # 0 we obtain the following ITO linear di®erential equation5:

dX(t) = (®+ ±X(t)) dt+ °dW (t) (8)
5Generally speaking, when we approximate a stochastic di®erence equation by a di®er-

ential one, the drift coe±cient is biased by an extra term which represents the di®erence
between the ITO and the Stratonovich stochastic integration; to avoid this problem a
change of probability measure, via Girsanov theorem, is necessary. Nevertheless, when
the di®usion coe±cient does not depend on the process Xt, as in our case, this problem
does not raise.
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whereW (t) is a standard Wiener process built on a certain probability space
(;=t; P ) ; ® + ±X is the local drift coe±cient and °2 the local di®usion
coe±cient.
As we said above, the A coe±cient is crucial for the dynamics, since it

a®ects the ± sign: For A > A¤ we have ± > 0 and ± < 0 otherwise.
In (8), there is a non-zero probability for poor agents to be expelled from

the economy (X¿ · 0, for some exit time ¿ < 1) because of uncertainty in
the labour market. To avoid such possibility we have the following:

Proposition 1 In order to make the exit time ¿ approaching in¯nity is suf-
¯cient a low value for ° relatively to ® and ±: (proof in Appendix A1).

Now we are ready to analyze the dynamics of the income distribution by
the following:

Proposition 2 From (8) the density function for Xt is obtained by the ap-
plication of a parabolic di®erential operator (Fokker - Planck equation). (see
appendix A2)

In general such operator is the following:

1
2
@2

@x2
[¾(x; t)f(x; t)]¡

@
@x
[¹(x; t)f(x; t)] =

@f(x; t)
@t

(9)

where ¾(x; t) is the di®usion coe±cient of the ITO equation, ¹(x; t) the drift
coe±cient and f(x; t) the transition density function, i.e. our unknown.
Applying (9) to (8), the density function for the income solves the follow-

ing Fokker - Planck equation:

°2

2
@2

@x2
f(x; t)¡ (®+ ±x)

@
@x
f(x; t)¡ ±f(x; t) =

@f(x; t)
@t

(10)

where X(t) = x:
Usually, this kind of equations can be solved by an integral transform, as

the Laplace or the Fourier transform; in this case, however, both transforms
are equivalent since the x variable is de¯ned on the positive semi-axis only
(we assume f(x; t) = 08x < 0). Moreover, the same is true for the moments
generating function (m.g.f.) Á(s; t) =

R1
¡1 esuf(u; t)du which, in this case,

corresponds to the Laplace transform.
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We use the m.g.f. to reduce the order of the Fokker Planck. Applying
the m.g.f. transform to both sides of (10) and integrating, we obtain the
following linear, ¯rst order partial di®erential equation:

Ã
°2

2
s+ ®

!

sÁ(s; t) =
@Á(s; t)
@t

¡ ±s
@Á(s; t)
@s

(11)

which can be integrated by the characteristics method. The auxiliary equa-
tions are:

dt
1
= ¡

ds
±s
=

dÁ
³
°2
2 s+ ®

´
sÁ

Two independent solutions are a = se±t and b = Áe
¡
³
°2
2±

s2
2 +

®
± s

´

. The general
solution is thus:

Á(s; t) = e
³
°2
2±

s2
2 +

®
± s

´

g(se±t) (12)

where g(¢) is an arbitrary function which can be eliminated by assigning an
initial condition.
Equation (12) represents the m.g.f. of the unknown density function

f(x; t): We have to note that the exponential function, on the r.h.s., rep-
resents the m.g.f. of a normal density with mean ®=± and variance °2=2±.
However, we can know the exact m.g.f. assigning an initial condition Á(s; 0);
we perform this in the next paragraph.

3.1 Two relevant cases
In the following, we are going to use two di®erent initial conditions for the
income distribution in order to rule out the arbitrary function g(); in the
¯rst one, we assume a normal density function while an exponential law
is assumed in the second one. In this way, we are able to characterize the
statistical law underlying the income distribution and its temporal evolution.
Let us assume as an initial condition the following m.g.f Á(s; 0) = exp

³
¹s+ ¾2

2
s2
2

´
,

i.e. a normal distribution with mean ¹ and variance ¾2=2: In this case, from
(12), we obtain the following cumulant m.g.f. k(s; t) = log(Á(s; t)) :

k(s; t) =
·®
±

³
e±t ¡ 1

´
+ ¹e±t

¸
s+

"
°2

2±

³
e2±t ¡ 1

´
+
¾2

2
e2±t

#
s2

2
(13)
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which represents a normal density with mean
h
®
±

³
e±t ¡ 1

´
+ ¹e±t

i
and vari-

ance
h
°2
2±

³
e2±t ¡ 1

´
+ ¾2

2 e
2±t

i
. In other words, starting from an initial distri-

bution of income characterized by a normal density, this law of distribution
is conserved over time with time-varying moments. However the dynamic
properties of the moments can dramatically change according to the value
of the ± coe±cient; in the ± < 0 case, i.e. when A < A¤, f(x; t) converges
towards a steady state (ergodic) normal distribution with mean ®=± and
variance °2=2±: As we can see from (13), this equilibrium distribution has
no memory of the initial condition. As previously noted, in this case the de-
terministic part of the income equation converges to a common steady state
and the equilibrium distribution depends only on the random component.
Viceversa, in the ± > 0 case, we observe a steady increase in the moments;

the income distribution evolves continually over time without changing the
distribution law. We postpone the economic implications of results until
paragraph 5.
If we instead assume an exponential distribution as initial condition, as

approximation of a Pareto's law6, the result we obtain are deeply di®erent.
The m.g.f. (Laplace transform) for an exponential density function, with b
coe±cient, is Á(s; 0) = 1=(1+bs). With this initial condition the solution for
(12) is:

Á(s; t) =
1

1 + be±ts
e
°2
2± (e2±t¡1) s

2
2 +

®
± (e±t¡1)s (14)

Equation (14) represents the unknown m.g.f. as the product of two
Laplace transforms, i.e. as a convolution between an exponential and a nor-
mal distribution. The unknown density f(x; t) is the result of two interacting
forces: from one side the memory of the initial condition, represented by the
exponential function, and, from the other side, the distribution of the labour
market shock, whose coe±cients now happen to be endogenous. If ± < 0 the
weight of initial conditions on the dynamics tends to disappear and f(x; t)
converges, once more, towards a normal distribution for the above reasons.
Unfortunately, when ± > 0, the (14) does not belong to a known family

of distribution laws; in this case an inverse Laplace transform from Á(s; t) to
f(x; t) is necessary. The following proposition allows us to study the problem
by the complex analysis:

6Unfortunately we can not use directly a Pareto's law since it does not own a Laplace
transform.
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Proposition 3 The (14) owns a simple pole. (proof in Appendix A3).

By the above the unknown density function f(x; t) can be rewritten as:

f(x; t) =lim
s!S

(s¡ S)esxÁ(s; t) (15)

where S = ¡1=
³
be±t

´
is the simple pole for Á(s; t). Developing the limit, we

¯nally obtain:

f(x; t) =
1
be±t

esx+Á(e
2±t¡1) s22 +Ã(e±t¡1)s s = ¡1=

³
be±t

´

which can be rewritten in the following way:

f(x; t) = h(t)
e¡

x
b exp(±t)

b exp(±t)
(16)

that is an exponential distribution with parameter 1=
³
be±t

´
; for t = 0 we

have the initial condition e¡
x
b

b (h(0) = 1).
Once more, we have to remark that, when ± > 0; the memory of the

initial distribution is particularly relevant for the dynamic process of the
income distribution.

4 A study on the moments
So far, we have identi¯ed the dynamic properties of f(x; t) assuming some
explicit functional forms about the initial distribution. In this section we
use the (10) to analyze the f(x; t) moments without speci¯cation for initial
conditions. Nevertheless this kind of analysis does not allow us to identify
a statistical law, as in the previous point (except for a normal distribution),
so, in general, both analysis are necessary for a complete investigation.
As said, we can calculate the income distribution moments in a relatively

direct manner starting from (10). Knowing that the mean value is de¯ned
as:

m =
Z 1

0
xf(x; t)dx

and, by di®erentiating w.r.t. time, we obtain:
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_m =
Z 1

0
x
@f(x; t)
@t

dx

Substituting (10) in the above expression and integrating by parts, we ¯nally
obtain the following ordinary di®erential equation for the mean value:

_m = ®+ ±m

Following the same methodology, we can obtain the di®erential equations for
higher moments:

_m2 = 2±m2 + 2®m+ °2
_m3 = 3±m3 + 3®m2 + 3°2m
_m4 = 4m4 + 4®m3 + 6°2m2

By solving the above expression, we ¯nd the central moments (variance V ,
skweness Sk, kurtosis Ku) by the well known relations:

V = m2 ¡m2

Sk =m3 ¡ 3m2m+ 2m3

Ku = m4 ¡ 4m3m+ 6m2m2 ¡ 3m4

By doing so we ¯nd:

m(t) = e±t
³
®
± +m(0)

´
¡ ®

±

V (t) = V (0)e2±t + °2
2±

³
e2±t ¡ 1

´

Sk(t) = Sk(0)e3±t

Ku(t) = Ku(0)e4±t + 3°2
± V (0)e

4±t ¡ 3°2
± V (0)e

2±t + 3°4
±2

³
e4±t ¡ e2±t

2 + ±2
°4

´

(17)
We retrieve some results previously obtained; if ± < 0, whatever the

initial condition, the income distribution achieves, for a large t, a steady
state represented by a normal distribution (Sk = 0;Ku = 3) with mean ®=±
and variance °2=2±: The situation radically changes if ± > 0; in this case we
¯nd a steady increase overall the moments. There is one case only where we
observe a constant value for skewness; this is when the initial distribution is
characterized by a symmetric law (Sk(0) = 0); in such a case this property
is conserved over time.
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5 Economic implications of results
The results obtained in the previous paragraph can be summarized in the
following way:
a) for A > A¤ we observe a steady growth in the central moments (17) of

the income distribution. In this case the unitary mean wage A is su±ciently
high to induce a perpetual growth despite a low investment in human capi-
tal. This fact especially supports individuals with a higher inherited income.
The intergenerational transfer accumulates this behavior amplifying initial
di®erences. From here we have a series of consequences:

1. The income distribution dynamics depends on the initial distribution;
as (13), (16) and (17) show, there is no convergence towards an equilib-
rium distribution which is invariant with respect to initial conditions.

2. The growth of the mean value stands for a steady increase of income
for each agent. Nevertheless, the growth of the variance implies an
increasing dispersion; agents born at time t are richer than the ones
previously born, but they are more distant from the current rich agents.
Further, asymmetric distribution tends to get worse over time.

3. Under an assumption of homogenous agents we can interpret (8) as the
aggregate income equation; the mean growth rate of the economy is
endogenously determined by the average human capital remuneration
A, individual preferences a1; a2; and discount rate ¯.

b) If A < A¤, the income distribution converges towards an invariant
probability measure whatever the initial conditions; as (17), (13), (14) show,
this steady state distribution is characterized by a normal law with mean ®=±
and variance °2=2±. Along the transition path we notice a general reduction
in central moments; the economy growth rate, i.e. the mean value of the
income distribution, tends to zero and the properties of endogenous growth
are ruled out despite the CRS assumption on human capital. Nevertheless the
steady state distribution is more equal than the initial one, since, along the
transition path, we observe a generalized reduction in variance and skewness
as well. According to this point of view, the model con¯rms the presence of
a trade-o® between growth and equality.
So far we have commented the results in a dichotomist way, i.e. separating

the ± > 0 case from the opposite; nevertheless we know that the ± coe±cient is
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endogenously determined by the parameters characterizing the economy, and
in particular by A. Assuming invariant individual preferences, any change in
the technology, modifying A, can a®ect the income curve dynamics even if, in
our scheme, a possible "jump" in A has not an endogenous source7. However,
several ways to make A endogenous can be imagined. As an example, A
could depend on the income dispersion: if the latter grows over time, then
a change in A could arise as the result of a social con°ict between income
classes. If the change in A is such as to induce a negative value in ±, then the
income dispersion tends to decline in time, but the mean value also tends to
decrease over time; each generation is worse o®. This could induce another
change in A in order to make ± positive; the economy starts again towards
a steady increase of the moments and so on. The ¯nal result is an income
distribution alternating falling and increasing patterns in central moments
and, in particular, in dispersion, as the empirical observation suggests (see
OECD, 1993, [19]): the income curve dynamics would be characterized by
"episodes" rather than "trends".
So far we have left open the question about trade-o® between growth and

equity: we shall ¯ll the gap in the following section.

6 The redistributive point of view.
In the previous section we have analyzed the economy in a "free-market"
context, stressing the existing trade-o® between growth and equality. In
this second part we are interested in providing some re°ections about the
way such trade-o® can be a®ected by di®erent tax-subsidies schemes. We
start with a simple lump-sum policy and subsequently we shall look at more
"traditional" distributive actions.

6.1 Lump-Sum Policies
When ± > 0, i.e. when the income dispersion grows over time, it is possible
to reduce inequalities by means of a lump-sum redistribution from top to
low classes. First of all, we have to establish a criterion which allows us to
separate rich from poor. At this end we can imagine a threshold ¹X: each
agent whose income is below ¹X receive a lump sum subsidy in the ¯rst period

7In section 6.3 we shall see as A can be endogeneized by means of public expenditure
¯nancied by tax revenue.
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of life, which is compensated by a lump sum tax on the agents whose income is
above ¹X8;this kind of policy suits particularly to income curves characterized
by a bimodal distribution. Moreover, since economy is growing over time,
we assume that ¹X grows at the same average rate ±:
With such a tax-subsidy scheme the individual life cycle is modi¯ed in:

Ct + ht = Xt + s

b = Xt+1 = Aht + °"t+1 ¡ S X 2
·
X
¡
; ¹X

¸

and:

Ct + ht = Xt ¡ T

b = Xt+1 = Aht + °"t+1 ¡ S X 2
³
¹X;1

´

where s is the subsidy and T the tax (s = T ). By solving the maximization
program we obtain the optimal level of C and b, viz:

C¤t =
a2(A¡ µ)
a1 + a2A

Xt ¡
2 ln(A¯) + (a2°)2 ¡ 2a2s

2 (a1 + a2A)
(18)

b¤t =
a1(A¡ µ)
a1 + a2A

Xt +
A(2 ln(A¯) + (a2°)2 + 2a1s)

2 (a1 + a2A)
+ °²t (19)

where s > 0 iff X 2
·
X
¡
; ¹X

¸
.

Proceeding as in section 2, we obtain the equations describing the dy-
namics of the two income curves, one for each class:

dX = (®1 + ±X)dt+ °dW(t) X 2
·
X
¡
; ¹X

¸
(20)

dX = (®2 + ±X)dt+ °dW (t) X 2
³
¹X;1

´
(21)

where:

®1 =
A(2 ln(A¯) + (a2°)2 + 2a1s)

2(a1 + a2A)
®2 =

A(2 ln(A¯) + (a2°)2 ¡ 2a1T )
2(a1 + a2A)

8This fact does not imply that the amount of subsidies in the economy is exactly
compensated by the amount of taxes, unless ¹X is the median value.
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As it easy to see, the redistributive policy induces only a "scale" e®ect,
making ®1 higher (hence ®2 lower) than the corresponding value without
subsidy, with ®1 > ®2. The redistributive policy does not a®ect the mean
growth rate ± at all and the ¯nal e®ect is uniquely of making the income
classes closer than in the market economy.
The transfer policy can however also a®ect, in the short run, the growth

rate of the two income classes ¯rst moment, since the latter is the only
moment containing the ® coe±cient. Indeed, from (17) we ¯nd:

g1(t) =
_m1

m1
=

®1e±t + ±m1(0)e±t

®1 (e±t ¡ 1) + ±m1(0)e±t
±

g2(t) =
_m2

m2
=

®2e±t + ±m2(0)e±t

®2 (e±t ¡ 1) + ±m2(0)e±t
±

Thus, the policymaker can select an appropriate value for s ( hence for
T ) making g1(t) > g2(t) on a temporal interval which depends on ±; however,
for a large t, both growth rates evolve at the same value: The ¯nal result is
that, in the short term, the low class grows, in mean, faster than the high
one; the e®ect is transitory but it helps to make the two classes closer at any
time.
Finally we have to remark that it is possible to select the redistributive

policy in order to obtain, asymptotically,m1 = m2, wheremi = e±t (®i=± +mi(0))¡
®i=±; i = 1;2. Matching both mean values we ¯nd: ®1¡®2 = ± (m2(0)¡m1(0)),
where ®1 > ®2 and m2(0) > m1(0): Substituting for ®1; ®2; and with s = T ,
we ¯nd:

s = T =
a1 + a2A
2a2

± (m2(0)¡m1(0)) > 0 (22)

The higher m2(0) ¡m1(0) (initial inequality), the higher the amount of
subsidy (tax) necessary for setting m1 = m2, i.e. to make as close as possible
the classes.
This kind of policy owns undoubtedly interesting contents, especially from

a social justice point of view; nevertheless someone could criticize it on the
basis of the following reasoning: if the redistributive action does not improve
the growth process, why a rich should "pay" for a "poor" agent? It is clear in
fact that the policy we are discussing here must be imposed by some central
authority whose goal is to increase the social welfare. It is out of doubt that
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such a policy, although not Pareto, is Pigou-Dalton improving, because of
the concavity of the individual preferences, hence of the social functional:
the loss in welfare su®ered by well-o® individuals is less than the gain in less
lucky agents. But it is at the same time true that a rich agent never will
agree with such a "world view" unless she is particularly open-minded, but
this is not request in our market model.
The question we have to face hence is to provide a democratic support to

our distributive policy: I ¯ll the gap by means of a majority voting approach;
this is possible thanks to the concavity property of the individual utility func-
tions. Such an approach has been fruitfully applied to the e±ciency-equity
debate concerning the accumulation of either physical or human capital; I
refer especially to Alesina and Rodrick, 1992 [2], and Persson - Tabellini,
1992 [22]. These authors stress the distortion, induced by taxation, on the
accumulation, bringing to the conclusion that an e±ciency-equity dilemma
does exist in a democratic setting. It is my feeling however that such a re-
sult it is not a rule; as the previous example showed, the distorsive e®ects
disappear if the taxation scheme follows a lump-sum rule but other schemes
can be successfully employed, as we shall see. Moreover, we have to note
that the empirical work of Perotti, 1996, concludes for a positive relationship
between growth and social security.
By starting from lump sum redistributions in a democratic setting, we

have to face two orders of questions: the ¯rst one concerns the majority
supporting the distributive policy. If such majority exists then the second
question involves the magnitude of the redistribution itself. Both questions
bring to the median voter behaviour. For the ¯rst question in fact, since it
involves a pairwise comparison - to tax or not to tax -, the majority voting
is unambiguously the fairest method (K. May, 1952 [18]). The median voter
behaviour depends in turn on the e®ect that the redistributive policy has on
her income: if the median voter is herself taxed without being the recipient
of the subsidy, then she certainly decides to vote against the redistributive
scheme and viceversa. Such a fact brings us back to a question involving a
form of central authority which undertakes the decision to include, or not,
the median voter among the recipients of the redistributive policy. If goal
of the central authority is to increase the welfare in the economy, then, as
noted above, the distributive policy should be implemented, inducing the
authority to include the median voter among the recipients in order to obtain
the necessary democratic support. We retain such an assumption in the
following.
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The second question concerns the "optimal" redistribution level; in a
democratic setting each individual manifests her preference by means of a
voting mechanism. In our case a con°icting situation between agents whose
inherited income is not greater than and the ones whose income is above
the median value does exist. These latter types manifest unanimously their
preference for a zero tax level, since they have no gain by the redistributive
policy. As far as the former are concerned, they express a given taxation
level according to their preferences, i.e. according to the following indirect
utility:

V i(s;X i) = ¡
1
a1
e¡a1C

¤(s) ¡E
· 1
a2
e¡a2b

¤(s)
¸

(23)

where s is the lump sum subsidy. Each agent whose income belongs to the
compact domain

·
X
¡
;Xmed

¸
express her preference about the taxation level

corresponding to the s value providing the peak for (23). In case the s do-
main were a convex and compact subset of the positive real line then the
concavity of the preferences would assure the existence of a single strate-
gyproof outcome (Condorcet winner) represented by the preferences median
peak (Black, 1958, [10]). In our case we have a singular application of such
a theorem; it is not di±cult to recognize that the (23) does not exhibit an
interior maximum and the single-peakedness property holds only for the up-
per bound of the s domain, i.e. the peak coincides with the ordering of s:
Moreover this is true for each individual belonging to

·
X
¡
;Xmed

¸
, since the

(23) is monotonically increasing in s - both the optimal consumption and
bequest are linearly increasing in s - and such a fact restricts the domain of
the single-peaks to a singleton - the maximum value of s - so that the voting
outcome is unanimous. But in such a context what is the upper bound for
s? it depends on the maximum possible redistribution compatible with the
economy. Nevertheless the latter is not a determinate value, given the strict
monotonicity of the preferences w.r.t. s, although it can not obviously as-
sume a value outside the one compatible with the non-negativity constraint
of the variables. In other words we need once more to establish exogenously
the maximal amount of redistributive policy: under this point of view the
lump-sum redistribution pointed out in (22) assumes a di®erent strength:
if such a policy were "proposed" to the citizens, it would be voted by the
majority of people, obtaining the necessary democratic support.
The above result depends neither on the adopted preferences nor on the
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type of redistributive policy assumed. By adopting a more traditional CES
utility function, as an example C(s)°=°+X(s)°t+1=°; ° < 1; then we shall oc-
cur in the same problem, since it involves a monotonically increasing relation
between the indirect utility and the amount of subsidy. About the second
question - the type of redistribution - now I will to show that drastic changes
in the policy not only does not a®ect the growth at all but can involve an
even higher level of redistribution.

6.2 A proportional scheme
At this end, I use a proportional rather a lump-sum taxation scheme as in
the spirit of the endogenous ¯scal approach, see Persson and Tabellini, 1992
[22] among others. In such a scheme the inherited income is burdened with
a tax ¿ whose revenue provides a lump-sum transfer, g, viz:

gt + (1¡ ¿t)Xi
t = Cit + h

i
t

bi = X i
t+1 = Ah

i
t ¡ µX

i
t

where i is the i-th agent, g the lump-sum transfer; moreover, respect to the
¯rst part of the work, I cast ²t = 0 and ¯ = 1 for the sake of simplicity.
Moreover I assume that the government budget constraint is satis¯ed in each
instant, i.e. gt = ¿tX̂t, where X̂t is the average income. Di®erently from
the previous scheme now the domain of ¿ is well established, i.e. ¿ 2 [0; 1] :
Solving the usual maximization program we ¯nd the optimal consumption
rule as a function of g and ¿; other than Xi :

C¤(¿;X i
t ; X̂t) =

Aa2¿(X̂ ¡Xi
t)

a1 + a2A
+
a2(A¡ µ)Xi

t ¡ ln(A)
a1 + a2A

h¤(¿;X i
t ; X̂t) =

a1¿(X̂ ¡X i
t)

a1 + a2A
+
(a1 + a2µ)X i

t + ln(A)
a1 + a2A

By comparing the above equations with the ones obtained in the "market
economy", (5) and (6) we note the e®ect induced by the proportional tax on
the optimal consumption and human capital, viz. the presence of the ¯rst
term on the r.h.s.; moreover we have to stress the positive linear relation-
ship between optimal plans and tax ¿ which in turn means that the utility
function is monotonically increasing in the tax rate: The e®ect of the latter
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depends however on the position of the i ¡ th agent respect to the mean
income. Individuals below the mean value increase steadily their utility with
the tax level until the maximum allowed value, i.e.¿ = 1; in this case there
is a complete redistribution, inequalities are ruled out and the distribution
is perfectly egalitarian, collapsing to a representative agent model. We have
a result in line with the previous scheme: individuals whose income is not
greater than the mean value gain from the maximum feasible tax. In a real
economy, where the mean value is higher than the median one, this means
that a large majority of people vote for the maximum taxation allowed, i.e.
for ¿ = 1: Once more, with concave preferences, the majority achieves his
unanimous utility peak for the maximum taxation. Moreover this taxation
scheme, di®erently from the previous one, does not need of external deci-
sions about who has to be included among the recipients of the subsidy; any
decision is left to the agents themselves.
What can we say about the growth rate? It easy to show that, for ¿ = 1;

the life cycle is exactly the same as for the market economy and hence the
dynamics described in that section holds completely. This fact brings us to a
remarkable result: if A > A¤ and if the above policy is undertaken then the
economy grows steadily over time in an egalitarian manner: the redistributive
policy does not alter the growth rate but rules out inequalities, increasing
the welfare in the economy.

6.3 Taxes and Public Expenditure
Before to leave the topic I will to show a last interesting case. Let us hypoth-
esize that the coe±cient A is not a constant, as assumed so far, but that it
depends on the public expenditure. In other words we assume that the tax
revenue a®ects the individual, and aggregate, technology, providing a scale
e®ect to the human capital. From a slightly di®erent viewpoint, we can say
that the public expenditure ¯nances the "quality" of the human capital. Our
assumption recalls in part the scheme adopted by Glomm and Ravikumar,
1992, [15], where the tax in°ow ¯nances the quality of the educational sys-
tem. The scheme is the following: at the beginning of the world a young
generation is born and each individual is endowed with an initial income ac-
cording to some distribution function ruled by Nature. Moreover the same
Nature decides the initial level of public expenditure in the economy, viz. A0.
The young generation allocate the endowment between consumption and hu-
man capital; in the second period of life the human capital is transformed in
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income by the usual technology Y i1 = A0hi0: On this second period income
burdens a tax ¿1 whose revenue ¯nances the public expenditure, A1 = ¿1Ŷ1;
where the hat means the average operator. The after tax income, net of
a ¯xed consumption, provides the bequest for the o®spring. The tax rate
is chosen by the old generation according to the maximization of the util-
ity function; if they disagree on the tax level then the latter comes from a
majority voting mechanism. Under these assumptions the life cycle follows:

Xi
t = Cit + h

i
t

Xi
t+1 = (1¡ ¿t+1)Y it+1 ¡ µXi

t

Y it+1 = Athit

where At = ¿tŶt is the public expenditure, Ŷt is the average income pro-
duced by the old generation at time t, Ŷt = At¡1Ht¡1; andHt¡1 is the average
human capital stock. In this way the second period income depends, other
than on the individual human capital, also on the public expenditure at time
t, whose value is correctly observed by each agent in the Economy. Since
parents take care of o®spring in two ways - bequest and public expenditure -
we have to modify the individual utility by including the public expenditure
level, viz (I omit the superscript i for brevity):

U(¿t+1;Xt) = U(Ct) + U(Xt+1) + U(At+1) (24)

In such a way, each individual expresses her preference about the optimal
tax rate ¿t+1; given At andHt: The maximization program must be performed
in two steps: in the ¯rst one, given ¿t+1 and Xt; we obtain the optimal
consumption plan and in the second one the optimal tax rate ¿t+1 given At
and Ht: Unfortunately with exponential preferences it is impossible to ¯nd
an explicit solution to the (24); nevertheless with logaritmic preferences the
di±culty is greatly reduced, leaving a reasonable analytical level. In fact, in
this case, the optimal tax r ate is the following:9

¿t+1 =
3At ¡

q
At (At + 8µ)
4At

2 [0; 1]

and the corresponding optimal consumption is:
9Actually the optimal program provides two values of the tax rate but one of them is

outside the feasible domain [0; 1] :
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Ci¤t =
1
2
At +

q
At(At + 8µ)¡ 4µ

At +
q
At(At + 8µ)

Xi
t

where At = ¿t(At¡1Ht¡1): The optimal tax rate depends on the whole past
taxation pro¯le; hence on the initial conditions, but it depends neither on
the individual income nor on Ht 10, so that there exists no con°ict among
individuals: people unanimously agree on the optimal tax rate hence on the
level of public expenditure. As A grows over time, the optimal tax rate
converges to 1=2, and so does the propensity to consume and accumulate11.
The public expenditure dynamics follows:

At =
Ãt¡1Y

i=0
¿t¡1Ht¡(i+1)

!

A0

which is steadily increasing over time12. It must be stressed, anyway, that
such a taxation scheme operates an integenerational transfer which does not
reduce inequality but does support the growth rate13: in other words, this
kind of taxation scheme is more conceivable for a growth rather than a re-
distributive policy. If we look at the income growth rate in fact:

Xi
t+1 = 1=8

·
(At +

q
(At(At + 8µ))¡ 4µ)

¸
Xi
t

it is growing in the public expenditure, which in turn is increasing in the tax
rate; moreover it is the same for each agent but, being At growing over time,
this brings to a worsening in inequality.
Although the dynamical analysis is rather complex, we can greatly sim-

plify it considering the asymptotic behaviour; in fact, for t su±ciently high,
the following dynamics arises;

10This is induced by the log-preferences.
11It is worth stressing that the propensity to consume depends neither on the individual

income nor on the parental income . Under a di®erent point of view, we can say that
people have a propensity to consume which is indipendent on the social rank.

12Actually the growth property can fail if the initial average income is particularly low
respect to the µ parameter; nevertheless such a critical value is too small for being real
and in the following we assume that A is growing.

13From a slightly di®erent viewpoint, we can look at A as a form of public subsidy to
education which improves the "quality" of individuals' human capital; in this case the
level of this form of "welfare state" a®ects positively the growth rate of the economy.
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¿t = 1=2 hit = 1=2X
i
t ) Ht = 1=2X̂t Xi

t+1 = ®AtX
i
t ) X̂t+1 = ®AtX̂t

where ® is a positive constant. By so doing we obtain a simple system of two
non-linear ¯rst-order di®erence equations:

At = 1=4At¡1X̂t¡1

X̂t = ®At¡1X̂t¡1

We can easily identify a steady state
³
A¤; X̂¤

´
and linearize the system in the

neighbouring of such a point, in order to analyze the long run properties. It
easy to show that the spectrum of the Jacobian matrix is composed by two
distinct, real, positive eigenvalues lying outside the unit circle, con¯rming
the unstable characteristic of the equilibrium.
The interesting result of this scheme is that it is able to induce a perpetual

growth in any case; di®erently from the market economy there is not any
threshold below the which the economy converges toward a steady state.
Nevertheless, as in the market economy, inequalities grow steadily over time
and this is another case of trade-o® between e±ciency and equity.
If A0 is su±ciently high then it is possible obtain the same result even

when the public expenditure is characterized by D.R.S.; the only di®erence
is that individuals are willing to be heavier taxed. It can be shown, in fact,
that the tax rate converges in the long run to 3=4; instead of 1=2; but the
dynamical properties do not exhibit particular changes.
The conclusion achieved in this section is true under logaritmic prefer-

ences but with a more general function the picture is much more complex.
If we adopt exponential preferences in fact the optimal tax level depends on
individual income and average human capital in a non-linear relation: In this
case each agent expresses a di®erent taxation level according to her maxi-
mizing program and a majority voting mechanism decides the level for the
economy. So a rather complex dynamics arises depending on the income of
the median voter, on the average human capital in the economy, on the initial
income distribution and on the past tax evolution. This problem has not an
explicit solution and in general a numerical scheme could be employed but
the strong relationship between "individual" and "environment" variables
makes quite hard to understand the results of a numerical simulation. As an
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example, ¯gure 2 shows the median tax rate in three di®erent simulations14:
the exercise takes into consideration three agents under three di®erent initial
conditions: in the ¯rst one the initial income of the median agent coincides
with the average value of the endowments - we conventionally label such
simulation with Symm. In the second one the median is above the average
(simulation Right) and the median agent is below the average in the Left
simulation.
As the ¯gure shows, the tax dynamics is now more complex than the

case with logaritmic preferences and strongly depending on the assumption
about the median agent. As I said it is not easy to interpret these patterns:
however the fastest growth rate is achieved by the Right simulation and
this is not a surprise. In the Right simulation the median agent endowment
is strongly close to the best endowed individual. In this case the average
human capital is high and jointly to a high initial position for two agents out
of three allows a relatively high tax level which sustains the growth process.
The conclusion is that the richer the economy, the faster the growth process
but with a worsening in inequality. The Left simulation is the opposite: two
agents out of three are endowed with a low income in order to make low
the average. The growth process is still working but at a very low rate: it
is interesting however to note the declining behaviour of the tax rate which
seems to converge to a long run value particularly low - the lowest of the
examples.
Between these two cases we can cast the Symm simulation which does not

seem play any particular role: the growth rate is at an intermediate value
between the previous two with a tax level which is not considerably di®erent
from the Right simulation; in other words it is not possible to conclude that
more equal economies achieve higher growth rate and lower tax rate. However
one must be careful in interpreting these simulations; the only clear point is
the increasing complexity of the income curve dynamics.

14The exercise is based on the following parameters set: a1 = 1; a2 = a3 = 0:5; µ = 0:2;
A0 = 4: The endowments for the three agents are: (1,3,5) in the Symm simulation, (1,1.5,5)
in the Left and (1,4.5,5) in the Right one. The exercise was carried out with the Maple V
mathematical software.

27



7 Conclusions
In this paper we have tried to provide an analytical framework investigating
the dynamics of the personal income distribution through investment in hu-
man capital. It can be ideally divided in two parts: the ¯rst one formalizes
a simple market economy and characterizes the income curve dynamics in
such a context. The second one has a more political insight, being devoted
to discuss redistributive actions.
The ¯rst part concludes that di®erentials in wage earnings, induced by

di®erences in accumulated human capital, do matter for the income distri-
bution; intergenerational transfers can amplify inequalities if the economy
grows at a positive rate. In such a way, growth and personal income distri-
bution are intimately connected. By varying the assumption about human
capital remuneration, it is possible to take into consideration two di®erent
dynamics. Under this point of view, the convergence of the income curve
towards an ergodic steady state distribution represents only one side of the
coin; within the same framework, the initial conditions can or can not af-
fect the long run dynamics according to the human capital remuneration.
Any change in the labour market, a®ecting the human capital remuneration,
can modify the dynamics of the income distribution; this provides a possi-
ble, although partial, answer to the observed changing pattern in the income
dispersion.
The ¯rst part concludes with the presence of a trade-o® between growth

and equality: in a stylized, maximizing economy, as the one we described, the
growth process, in absence of a redistributive policy, involves an increasing
inequality. The second part faces the latter point, analyzing the e®ect of
di®erent redistributive policies on growth and inequality. The results can be
summarized by the following table:

28



Model: Results:

Market
(benchmark)

Growth depending on the
threshold A¤: Trade-o® between
growth and equality.
Path-dependance

Lump-Sum policies
(with or w/out majority voting)

Pigou-Dalton improving
No negative e®ect on the
growth rate

Tax on the young generation Inequalities are ruled out
Growth depending on A¤

Tax on the old generation
and Public Expenditure

Steady growth
Inequalities worsening
Growth rate depending on
the in. distr.

The point I will to remark is that the redistributive actions analyzed
have no negative e®ects on the growth process. If we exclude the last point,
which is closer to a growth rather to a distributive question, the proposed
redistribution policies can reduce inequalities without alter the growth pro-
cess. Under this point of view it does not seem that redistributive policies
represent a brake to the growth process: this is also in the conclusions of the
cited work of Perotti .
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Appendix A1

In this appendix we prove proposition 1. For an agent starting atX(0) =
x, the solution of (8) is:

X(t) =
µ
x+

®
±

¶
e±t ¡

®
±
+ °

Z t

0
e±(t¡s)dW (s)

So, X(t) is the sum of a deterministic component and a stochastic integral
normally distributed, ergo:

X(t) » N
Ãµ
x+

®
±

¶
e±t ¡

®
±
;
°2

2±

³
e2±t ¡ 1

´!

± > 0 (25)

X(t) » N
ÃÃ

x¡
®
j±j

!

e¡j±jt +
®
j±j
;
°2

2 j±j

³
1¡ e¡2j±jt

´!

± < 0

The application of Chebyshev inequality states:

P
nh¯̄

¯°
R t
0 e±(t¡s)dW (s)

¯̄
¯
i
>

³
x+ ®

±

´
e±t ¡ ®

±

o
·

°2
R t
0
e2±(t¡s)ds

[(x+®
± )e±t¡®

± ]
2 =

=
°2

³
e2±t ¡ 1

´

2±
h³
x+ ®

±

´
e±t ¡ ®

±

i2 ± 2 <

By making the r.h.s. of the above inequality as small as possible we can
reduce the instantaneous exit probability to a negligible value; this is true if
° is su±ciently small relatively to ®=±:
A more direct way to the matter consists of using the normality property

stated by the (25). For a normal variable, it easy to prove that the probability
to assume a value outside the m§ 3s range, where m is the mean and s the
standard deviation, is less than 1%. So, in order to make the instantaneous
exit probability less than 1%, we have to satisfy the following:

µ
x+

®
±

¶
e±t > 3

°
q
(e2±t ¡ 1)
p
2±

+
®
±

± > 0

Ã

x¡
®
j±j

!

e¡j±jt +
®
j±j

> 3
°

q
(1¡ e¡2j±jt)
q
2 j±j

± < 0
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which, for large t, simpli¯es to
³
x+ ®

±

´
> 3°=

p
2±;for ± > 0; and ®

j±j >

3°=
q
2 j±j for ± < 0. In general, the latter are easily satis¯ed if ° is small

relatively to ®=±15:

Appendix A2

This appendix shows how the Fokker Planck equation is obtained. When
we are interested in studying the evolution of a probabilistic law, as we are in
this case, we must de¯ne suitable operators to deal with Markov processes.
The evolution of a stochastic process can be viewed in a probabilistic

way, as the transition from a state x to another y in a given interval time
t¡ s; t > s. In other words, we can think of the stochastic process as a series
of "random jump" from a position x at the time s, to another state y at the
time t(t > s); obviously we can assign a probability to this event, i.e. the
transition probability from (x; s) to (y; t):We are interested in the evolution
of this probability. When we have to handle stochastic processes assuming
values on a continuum, i.e. whose state space is the real-number space, we
can not identify the probability of a transition towards a given value, since, as
it is well known, the probability that a continuous random variable assumes
a given value y is zero. In this case then, we ask for the probability that the
process jumps from (x; s) to (B; t) where B is a borelian on <: We de¯ne
P (s; x; t; B) = P (x(t) 2 Bjx(s) = x) as the probability that the process will
assume, at the time t > s, a state in the B space conditional to the present
state (x; s); this transition probability represents a probabilistic temporal
evolution law.
For each bounded measurable function g(x) we can de¯ne a Markov tran-

sition operator Tt; applied to g(x), in such a way:

Ttg(x) = Exg(X) =
Z

<
g(y)P (s; x; t; dy)

This operator is the mean value of g(Xs+t) under the condition X(s) = x:
Roughly speaking, this operator provides the average transition value for
the random function g(X): We use this transition operator in order to cal-
culate the derivative of g(x) with respect to time, which is known as the
"in¯nitesimal generator" A for a Markov process:

15A more sophisticated approach consists of solving the ordinary di®erential equation
-1=(°2=2)T 00 + (® + ±x)T 0; T (0) = 0 (see Ewens, 1979, page 120), where T is the average
exit time of X(t) from the positive region, and to look for a parametric set which makes
T approaching in¯nity. Yet, this equation can be solved numerically only.
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Ag(x) =lim
t!0

Ttg(x)¡ g(x)
t

The in¯nitesimal generator provides the mean in¯nitesimal rate of change of
g(X) when X(s) = x: Using the transition distribution we can rewrite the
in¯nitesimal generator as follows:

Ag(s; x) =lim
t!0

1
t

Z

<
(g(s+ t; y)¡ g(s; x))P (s; x; t; dy) (A1.1)

For a di®usion processXt, the transition probability satis¯es the following
expressions:

lim
t#s

1
t¡ s

Z

jy¡xj·"
(y ¡ x)P (s; x; t; dy) = f(s; x)

lim
t#s

1
t¡ s

Z

jy¡xj·"
(y ¡ x)2P (s; x; t; dy) = ¾2(s; x)

where f is the "instantaneous drift coe±cient", which represents the deter-
ministic mean value of the displacement dXt, and ¾2 is the instantaneous
variance (di®usion coe±cient).
Expanding (A1.1) by a Taylor series, once w.r.t. t and twice w.r.t. x, and

using the drift and di®usion coe±cients, we ¯nally obtain the Kolmogorov's
forward equation, also called Fokker-Planck:

@P
@t
= ¡

@
@y
(f(t; y)P ) +

1
2
@2

@y2
(¾2(t; y)P )

where P stands for P (s; x; t; dy): The solution of this second-order, parabolic
partial di®erential equation provides the temporal evolution for the unknown
transition distribution.

Appendix A3

In this appendix we show that an inverse Laplace transform can be written
as the (15) by complex analysis.
For a function f(s) = g(s)

(s¡a)n , where g(a) 6= 0 and g(s) is analytic on a
given region containing a, we say that f(s) has a n¡order pole in a; if n = 1
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then we speak about it as a simple pole. If f(s) exhibits a n ¡ order pole
in s = a but it is analytic overall the other points belonging to a closed ball
with center in a and contour C, then (s¡ a)nf(s) is analytic on this domain
and it owns a Taylor expansion around a:

f(s) =
a¡n

(s¡ a)n
+

a¡n+1
(s¡ a)n¡1

+::::::::+
a¡1

(s¡ a)
+a0+a1(s¡a)+a2(s¡a)2+::::::

(A2.1)
This particular series is the Laurent expansion for f(s). The part charac-

terized by negative exponents of (s¡a) is the principal part. The Laurent se-
ries can be used to investigate the characteristic of the poles. When the prin-
cipal part shows a ¯nite number of terms and a¡n 6= 0 while a¡n¡1; a¡n¡2; a¡n¡3::::::
are all zero, then s = a is a pole of order n.
The a¡1 coe±cient, which is called the residue of f(s) in the pole s = a;

has a particular importance in the Laurent series. In general, using a Taylor
expansion, this particular coe±cient is:

a¡1 =lims!a
1

(n¡ 1)!
dn¡1

dsn¡1
f(s¡ a)n f(s)g

which for a simple pole can be rewritten in an easier way:

a¡1 =lims!a (s¡ a)f(s)

If f(s) has a simple pole, then integrating the (A2.1) on the C contour
we obtain:

I

C
f(s)ds = 2¼ia¡1

where i is the imaginary unit. In other words, the f(s) integration on a closed
contour surrounding the simple pole a is equal to 2¼i times the residual. In
general if f(s) is analytic into and on the contour C of a region <; apart for
a ¯nite number of poles a; b; c:::::::: inside <, then we have:

I

C
f(s)ds = 2¼i(a¡1 + b¡1 + c¡1 + ::::)

i.e. the integral of f(s) on a contour C is 2¼i times the sum of the residuals.
We are going to use this powerful theorem to demonstrate the inverse Laplace
transform.
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If we indicate with f(s) the transformed function, then the problem is
to look for the not-transformed function F(x): As it is known, this latter is
given by:

F (x) =
1
2¼i

Z °+i1

°¡i1
esxf(s)ds x > 0 (A2.2)

The integration must be performed along a line s = ° on the complex
plane, so as to stay on the right of each pole; this condition guarantees the
existence of the integration.
From the Laplace analysis we know that the (A2.2) can be solved by an

integration on the "Bromwich contour" which is a part of the C contour. We
have then:

F(x) =
1
2¼i

I

C
esxf(s)ds

but for the residuals theorem, F(x) is the sum of the esxf(s) residues for the
f(s) poles. Obviously this method is greatly simpli¯ed if we have a simple
pole for f(s); in this case we have:

F (x) =lim
s!S

(s¡ S)esxf(s)

where S is the simple pole of f(s);this is exactly the (15).
It is worth investigating the type of pole we obtained in (14). This is

clearly a simple pole: by the Laurent series we indeed ¯nd:

¦1

Ã

s+
1

b exp(±t)

!¡1
+¦2 +¦3

Ã

s+
1

b exp(±t)

!

+¦4

Ã

s +
1

b exp(±t)

!2
+ ::::

where ¦i are coe±cient adequately computed. As it easy to see, the pole
¡1=(b exp(±t)) has order one, i.e. a simple pole.
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