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Abstract

Learning is modeled as an infection, which jumps from person to per-
son. The rate of infection mimics individual discount rates and induces
savings behavior on its own. It is shown that the apparent discount rate,
the combination of the agents’ true discount rate and the infection rate,
decreases over time and approaches the agents’ true discount rate. This
decrease, known as hyperbolic discounting, is consistent with what is ob-
served in psychology studies, while the limiting case, exponential discount-
ing, is consistent with market level observations. This model closes the gap
between individual and market level observations of discounting behavior
without explicitly assuming the two kinds of discounting nor relying on
commitment mechanisms.

1 Introduction

Beginning with the clinical experiments of Tversky and Kahneman [Tve81] hy-
perbolic discounting has been observed in numerous experimental settings and
has regularly worked better than other discounting models at explaining the ob-
served behavior. It is referred to as,“ [the] best documented DU [discounted util-
ity] anomaly ” in a recent Journal of Economic Literature survey article[FO02].

Hyperbolic discounting refers to one explanation of the empirical regularity
that people act as if they had declining discount rates over time and that they
don’t seem to follow the “equal difference” rule that exponential, constant rate,
discounting implies. If given a choice between a low payoff in the future and
another higher one a little later, they will chose the higher, more delayed payoff;
but when the choice is brought forward, closer to the present, people change their
minds and choose the smaller more immediate payoff.
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This behavior may not be a primitive, but rather a derived behavior. Read
[Rea01] suggests that hyperbolic discounting may be the result of subadditivity.
The argument is that as a stretch of time is subdivided, the amount of discount-
ing increases. This means that the amount an agent will discount a payment
in two years depends on if they conceive of it as one two-year period or two
one-year periods. Subadditivity can manifest itself as hyperbolic discounting
when agents are discounting the future from a fixed now. In the example above,
the single two-year period is compared to one of its halves, a one-year period.
It then appears that the discount rate falls as the time horizon is increased- an
observational equivalent of hyperbolic discounting.

Economics is left with the problem of rationalizing these empirical, exper-
imental observations with the equally good explanatory power of exponential
discounting when it is applied to large financial markets. Financial markets have
institutionalized exponential discounting by expressing the returns on securities
as an annual figure. Economists have also put their blessing on exponential
discounting through almost universal use in financial and macroeconomic mod-
eling.

There is a contradiction: individual behavior is better explained by hyper-
bolic discounting while the behavior of markets is more commonly explained by
exponential discounting. It is as if the whole does not equal the sum of the parts.
Since our market models are ultimately based on intuition about individual be-
havior, they must not be contradicted by the facts of individual choice or they
must demonstrate a mechanism where individual, observationally, hyperbolic
behavior through interactions in the market is observed as exponential. Justify-
ing individual hyperbolic discounting with market level exponential discounting
is important to the completeness of the model.

Justifying the contradiction between the individual and market discounting
behavior will also provide insight into the functioning and utility of markets in
facilitating exchange. If these two discounting methods can be justified in the
same model, we can have some assurance that financial markets are not merely
a more cost-effective way of trading assets, but that they perform other func-
tions. Financial markets may be the mechanism that allows for time consistent
planning that would not be possible without their existence As a result, finan-
cial markets may encourage transmission of ideas, serve as experimental labs for
new ideas in valuation, or any one of a dozen different services that go beyond
reducing transactions cost.

Models of individual rationality that produce exponential discounting from a
hyperbolic discounting typically involve hypothesizing many individuals within
each of agent. Each of these individuals is in control for a while, but is aware
that, in the future, an alternate self will be in charge of the decision-making[Azf99].
Exponential discounting, and the associated time consistent plans, arise because
the individual in charge uses commitment mechanisms, e.g., investments with
exit costs, so the future selves will be forced to accept the plans[Lai97].

That methodology takes hyperbolic discounting as a given and then rational-
izes other observed exponential behavior with commitment mechanisms. This
is one possibility, but there are few exit costs associated with modern financial
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markets; stock trades can be made for less than $8. Commitment mechanisms
may be a useful explanation for some investments, notably real estate and tax
deferred retirement accounts, but it lacks explanatory power in the broader
financial markets. This family of models fails to explain the discounting phe-
nomena with mechanisms that can be realistically observed in the economy.
Moreover, they assume the two particular forms of discounting, instead of al-
lowing them to arise as a consequence of more primitive assumptions.

This paper will refrain from assuming hyperbolic discounting and instead
explain how it arises naturally in an evolutionary system with agents similar to
those that populate a typical dynamic macroeconomic model. An evolutionary
system that has two parts, an individual with a classically defined objective
function, and a pool of potential policy rules, produces dynamics that are much
different than those found with non-evolutionary solution methods. These dy-
namics mimic the development of hyperbolic discounting and the eventual res-
olution into exponential discounting.

While this may initially look like just another way of solving a dynamic
programming problem, in actuality it is far from it; this method is a dynamic
model in its own right. It combines the dynamics of capital accumulation, that
the other models explore, with the dynamics of learning about how the markets
work. This means that the model will be more applicable in “odd” times, when
market rules or the structure of the economy are in flux, when they are expected
to be qualitatively different than the present. So, while the typical models
work well when explaining market behavior when the uncertainty about the
future is only quantitative, i.e., different inflation rates, or productivity growth
rates. Evolutionary models will be more effective when uncertainty about the
future is qualitative. This has direct applications where the rules of financial
markets are changing and evolving, such as the increasing world capital markets
integration and the increasing introduction of new financial instrument. It also
has applications to explaining the current behavior of US capital markets given
the rapidly changing structure of our economy.

The key abstraction is to disentangle observed discounting from the prefer-
ences of the individual. Observed discounting is a consequence of the imperfect
rules the agents use to make decisions. These rules are a product of the agents’
own preferences and the learning process that produced the rules. Learning
lends its own flavor to the observed discounting behavior.

Section 2 will describe the modeling methodology. It will lay out the steps
required in the simulations and describe the modeling options of each of the
steps.

Section 3 will show how explicitly non-forward looking agents develop, or
learn, forward-looking behavior in a viral evolution system. This will be demon-
strated by constructing a model where agents only care about consumption
today. This system will be expanded in section 3.2 to show the evolving behav-
ior of agents that are explicitly forward-looking with exponential discounting.
Discounting will evolve because even if agents don’t care about consumption
tomorrow, survival and spread of behaviors will occur tomorrow. The behaviors
that involve saving will produce more utility next year, thereby surviving better
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and spreading better through the population. Over the years, these behaviors
may become widespread. This section may be interpreted as an exploration of
the limiting behavior of the evolutionary system.

Section 4 will introduce the concept of hyperbolic and exponential discount-
ing. The definitions in this section will be used in the section that follows to
describe the implied discounting behavior of the consumption rules that arise
in this evolutionary system.

Section 5 will take a look at the interaction of the classically defined indi-
vidual with exponential discounting and the pool of potential policy functions.
In this section, we will demonstrate that evolutionary systems evolve hyper-
bolic discounting that eventually resolves into exponential discounting. This
may be interpreted as an exploration of the implied discounting dynamics of
the evolutionary system.

2 Modeling Methodology

The first step in demonstrating that a viral evolutionary system can induce
forward looking behavior in agents that have no preferences over future con-
sumption is to state the objective function of the agents that the viruses will
be infecting. This can be a static or a dynamic optimization problem, it does
not matter. For this initial example we will use a simple deterministic dynamic
programming problem with a few twists.

Vt = max
ct

ln(ct) (1)

s.t.

kt+1 = k0
t + (1− δ)k − ct

k0 = K

In the problem shown above as equation 1, the agent chooses consumption
in a representative agent problem with production. The capital transition equa-
tion is dependent on the current capital stock, kt, capital’s share of income, θ,
the depreciation rate, δ, and current consumption, ct. What makes this prob-
lem unusual is that the agent does not care about the future. Only current
consumption enters the objective function;future consumption is not consid-
ered.1 For this particular problem, the optimal policy function is obvious; the
agent should consume the entire capital stock and production in the first period
leaving nothing for the periods that follow.

The traditional approach to this kind of problem is to have the agent “solve”
the dynamic programing problem, either by finding the value function or the
policy function that maximizes the objective function. In this case the dynamic
programing problem will be solved by evolving a good policy function solution to

1In the actual simulation the utility function is modified so there is a small lower bound
on consumption, 0.01, which yields a zero utility result. This modification is useful in later
simulations so that younger agents are not immediately better off than older agents and so
that the “probability of deat” interpretation of the discount rate is accurate.
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this dynamic programing problem. The policy function will have a simple fixed
functional representation.2 The functional form of the policy function is shown
as equation 2 below. The two parameters of the policy function are, C, and, α,
which can be conceives of as autonomous consumption and a transformation of
the marginal propensity to consume.

ct = C + αkt (2)

Each policy function will be represented by its two parameters. As we discovered
above, the optimum policy function is ct = (1 − δ)kt + kθ

t , where the agent
consumes all wealth.

These rules will evolve similar to the way viruses evolve. The defining image
is of an individual that consults his own consumption rule every period and
slavishly follows it. When the agent is doing well with the rule, the agent informs
others, teaching others how he is making the consumption and savings decision.
Agents that do well evangelize particularly strongly, telling more people about
their policy function. Other agents in the economy have a chance of hearing the
news about the policy function and they may alter their own policy functions
in light of this new policy function. The new policy function will then be used
by the agent and propagated in the same way as the first.

This is analogous to the functioning of a physical virus. They exist in our
bodies, using our own cells to produce copies of themselves. As individual cells
become filled with virus copies they burst distributing the virus and viral cysts
to other cells in the body and to other individuals. Viruses that are particularly
good at propagating themselves don’t kill their host, but keep the host functional
and in contact with other potential hosts. That is why the common cold is such
a successful virus, it does not kill the host right away, and keeps the host just
sick enough to produce a large number of viral cysts, but not sick enough to
keep it away from all social contact.This process needs to be operationalized
and brought into the context of an evolving consumption policy function.

The steps required to evolve viral policy rules are relatively simple. First, the
agents are initialized with random policy functions, and these policy functions
are placed in the pool that will later be used to infect the individuals. Thereafter
the simulation follows these steps:

1. The agents use their current policy functions to make consumption deci-
sions.

2. Using the utility result of these consumption decisions, the rule for cyst
production determines the number of viral cysts, or copies of the agents’
policy rule, that the agent will cast off and add to the pool. Higher utility
makes for more cysts.

3. These cysts are added to the pool.

4. The rule for catching a new virus is then applied to each of the agents.
2Evolving the functional form needlessly complicates the demonstration
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5. If an agent is infected, a virus is drawn from the pool and passed to the
agent.

6. The agent then uses the rule for melding the virus with their current policy
function to create the new policy function that will be used starting in the
next period.

7. Agents that are determined to have died, by running out of capital, are
given a new policy function from the pool and another dose of capital.

8. Finally, every virus in the pool is subject to the viral decay rule to deter-
mine if they should be removed from the cyst pool.

The process then repeats itself until some convergence criteria on the population
of viruses in the pool are reached. This is the pattern of all viral evolution
systems. This system is different from the evolution used in classical agent
based genetic algorithms. This evolutionary system describes the evolution of
a policy rule that cannot propagate itself and is not tied to any one organism.
It’s the story of a symbiot. The mutation and cross-over functions are still in
place but selection is much different, and additional operator, infection, has
been added.

There are some specific characteristics that need to be defined in this system.
These characteristics revolve around both the agents in the simulation and the
pool of viral cysts that infect the agents. The primary characteristics are:

1. The number of agents in the simulation.

2. A rule for cyst production.

3. A rule for catching a new virus.

4. A rule for melding the new virus with the existing policy function in an
agent.

5. A method for removing dead agents from the economy.

6. A rule for the survival of an individual virus in the pool of cysts.

Some of these characteristics have little effect on the terminal result; they can
be changed freely. Others provide extremely subtle effects that can have a large
effect on which policy functions evolve in the system. Each of these charac-
teristics is described below and related to the selection, mutation, crossover,
infection paradigm.

2.1 The number of agents in the simulation

The number of agents in the simulation is one of those factors that does not
make much of a difference in this context. If the agents actually interacted in
the goods market, as they would in a heterogeneous agent problem, rather than
just the market for ideas, then the number of agents would be important since
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that would determine how closely the simulation approximated the continuum of
agents that is usually assumed. For all the simulations in this paper, the number
of agents will be fixed at 20. This is large enough to get good “cross fertilization”
of ideas and small enough so that the simulations run in a reasonable amount
of time. The results of the models are relatively insensitive to the number of
agents in the economy. The number of agents in the economy can be thought
of as being analogous to the number of significant digits in a calculation- after
a certain point, adding extra significant digits doesn’t change the results very
much. The results that will be shown in this paper are not intended to be high
precision estimates of policy functions but rather the pattern of how the policy
rules evolve over time.

2.2 A rule for cyst production

The rule for cyst production used in step 2 is a more complicated choice. The
usual wisdom is that viral production should be proportional to fitness as mea-
sured by the agent’s objective function. While this makes a lot of sense when
the fitness has a cardinal interpretation, utility is supposed to be ordinal.3 One
policy function producing a larger utility score for an agent than another policy
function just means that the result is better, not how much better. It is rea-
sonable that the rule for determining cyst production should be related to the
order statistic of the fitness. That means that policy functions that produce a
higher utility score should produce more cysts than those that produce a lower
utility score simply because it has higher score and not because it is a certain
percentage higher.

In these simulations, we will use a rule that increases the number of cysts
produced proportionally with the square of the rank. Rank, in this case, is
defined in the reverse order of its usual definition, in that the best virus has a
high rank, and the worst virus has the rank of one. For the 20 agents in the
economy, this particular rule produces a lot of cysts,

∑20
i=1

i2

2 = 1, 440.4

There are obviously many other choices for this function, and, as in most
numerical techniques, there is little basis for one choice over another except
that it works well in some contexts. This particular rule was chosen because in
experiments that were performed leading up to this demonstration it resulted
in reasonably quick evolution in the virus pool without converging too quickly
to a homogeneous population.5

3This is not strictly true for expected utility models. Expected utility models require that
utility is cardinal for intrapersonal comparisons but makes no restrictions on cardinality with
respect to interpersonal comparisons.

4In this paper the actual rule for the number of cysts that an agent will produce is halved,
rounded up for odd numbers.

5The limiting factor is not installed computer memory but rather cache size.
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2.3 A rule for catching a new virus

Step 3 uses a rule to determine if an agent will catch a new virus from the cyst
pool. This is kept as simple as possible and represents a fixed probability of
infection for all agents in each period, called the infection rate. This particular
parameter, which at first seems innocuous, is actually one of the most important
parameters in the simulation. The many effects and interpretations of this
particular parameter will be explored in the following sections.

2.4 A rule for melding the new virus with the existing
policy function in an agent

Once the agents to be infected are chosen in step 3, the new virus must be com-
bined with the policy function that the agent currently uses to make consump-
tion decisions. This is a combination of the cross-over and mutation operator
that is used in standard agent-based evolution. There are many ways to imple-
ment cross-over. The simulations in this paper will use simple mean cross-over.
In simple mean cross-over, the new policy function parameters, in our case just
autonomous consumption, C, and a transformation of the marginal propensity
to consume, α, that the agent will use, is just the average of the parameters
in the current policy function and the virus that it just caught. Many of the
other cross-over operators, like biologically inspired cross-over, which swaps pa-
rameters in randomly determined strands, are only becomes useful when there
are a large number of parameters. Other types of types of cross-over that in-
volve swapping of parameters, have a nice interpretation only when two policy
functions are combined to produce two new policy functions, i.e., sexual repro-
duction. In the present study two policy functions are combined to produce
only one policy function, and so is inappropriate.

Step 3 also includes the mutation operator, which acts on policy rule pa-
rameters. The function of this operator is to do the small-scale exploration of
the parameter space and allow the slow increases in the fitness of the policy
function. Normally this is an extremely important parameter since it prevents
genetic drift 6, and the settling of the policy function on an inefficient local opti-
mum. In the simulations used in this paper, getting the parameters just right is
not very important, those terminal values are not the object of the investigation.
The focus will be on the broad behavior of the evolving system and the path
that it takes to its terminal equilibrium. Towards this end, the per parameter
mutation rate has been set at a relatively high 0.3. The actual mutation takes
the form of adding a Normally distributed random variable with a mean of zero
and a standard deviation of 0.1 to the existing parameter.

6The tendency for policy functions to clump together away from a local optimum simply
because the response surface of the fitness function is relatively flat
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2.5 A method for removing dead agents from the economy

Like real viruses, some of the policy functions will cause the death of the agents.
Death in this case is defined as running out of capital. When an agent dies, it is
immediately removed and a new agent with a new consumption policy function,
drawn from the pool of cysts, is created with the same initial capital stock of
the agents that were originally created. What is important is that the step
of removing dead agents comes after the step where the agents produce cysts
that will be added to the cyst pool. This way, if an agent has the “optimum”
function of consuming all the capital stock, they can still pass the function on
to others.

The very hidden parameter in this model is the capital endowment that is
given to each agent. In most dynamics problems with a saddle point charac-
terization, the initial endowment is just represented by a named parameter and
then ignored since it does not have an effect on the steady-state of the dynamic
system. In this case, the size of the initial endowment is very important. It will
determine which of several equilibria the pool will converge to. This topic will
be taken up in section 3.

2.6 A rule for the survival of an individual virus in the
pool of cysts

The final rule is used in step 8, the shrinking of the cyst pool. Since in each
period the agents in the economy will be adding 1, 440 viral cysts to the cyst
pool, the pool will quickly grow without bound and become unmanageable. To
prevent this, each cyst is subject to a fixed probability of being removed from the
pool called the decay rate. This means that, while the size of the pool will grow
in the early periods, it will eventually top out and remain an approximately fixed
quantity. Equilibrium pool size is established when the inflow of cysts, 1, 440,
is equal to the average number of decaying cysts less the cysts that are removed
because they are being used to infect agents. The decay rate insures that there
is an equilibrium pool size that is approximately the inflow rate divided by the
decay rate.

In section 3 we will actually evolve this particular system and demonstrate
the circumstances where the pool converges to policy functions that produce the
“optimal” result of consuming all the capital and in which circumstances the
agents exhibit forward looking behavior in spite of being explicitly not forward
looking.

3 Inducing Forward Looking Behavior

The simulation described above very quickly produces agents that find the “op-
timal” policy function, consuming all current capital, creating a cyst with this
function, and then being replaced by a new individual with a function drawn
from the cyst pool. This expected solution always happens when the initial cap-
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ital endowment is large, e.g., 40 units. As expected, this evolutionary method is
capable of finding the optimal solution to the individuals’ consumption problem.
This, in itself, is not surprising. What is surprising is that this is not always
the case. There are some circumstances where the system will evolve towards
a completely different equilibrium, where the agents do not consume all their
wealth in the first period.

3.1 Savings without forward looking agents

When the initial capital stock is set to one, the agents start saving, something
that is decidedly not optimal from the agent’s point of view. Figure 1 below
shows the results of a 33 factorial design experiment over the decay rate, infec-
tion rate, and depreciation rate.7 The simulations were run for 10,000 periods,
and the terminal capital for each of the agents was recorded.8

Figure 1 shows that when there is a low initial capital stock of one unit,
terminal capital stock is nonzero, and is in fact higher than the initial stock,
indicating savings behavior. This savings appears to decrease as the infection
rate increases. No other solution method would give this result as an optimal
solution to the agent’s problem since it is not anywhere near the global optimum.
The difference between this solution method and the others is the existence of
a pool of policy functions. The likely source of this effect is then either the
pool itself or the interaction of the pool and the agents. There is an intuitive
explanation behind the existence of savings, and the existence of two separate
equilibria. The source of impulse to save is the viruses.

While the agents themselves do not have an interest in future consumption,
the long-term cyst production of the virus is very dependent on the average
consumption of the agent over time. If the virus directs the agent not to consume
everything today, it will produce a smaller number of cysts today, but it can
produce more the next period. Eventually, by saving, the average cyst output of
the agent will be larger than it would be if the agent consumed the endowment
the first period and was replaced by another agent. While it may initially appear
that the replacement rule is driving this result, in fact the viral cysts are created
and added to the pool before a new virus is drawn for the newly created agent.
In this way the analytically optimal rule of consuming everything in the first
period can still propagate itself though the population.

The intuition behind the two different possible equilibria is slightly more
7A factorial design is an experimental design that matches all level of all factors and is used

in situations where there is factor interaction. In this case there was no factor interaction.
As a consequence the values of the decay and depreciation rates are unimportant to both the
intended analysis and the discussion that follows.

8These results were created as part of the testing procedure for the simulation code. This
kind of extensive testing is required when working with genetic algorithms since the evolu-
tionary process tends to “cheat”, exploiting logical flaws in the simulation design and fitness
criteria. A good example of the cheating phenomena can be seen in Graham-Rowe [GR02],
where a self-organizing circuit, which was designed to evolve an oscillator, evolved a radio re-
ceiver since the fitness criteria was defined as production of an oscillating signal. The circuit
used the RF signal from a nearby computer as the basis for its oscillator.

10



Figure 1: Infection Rate vs. Terminal Capital (Initial Capital = 1)

complicated. A virus in one of the agents has two paths. It can consume the
endowment, expel a large number of cysts, and hope that, when the new agent
appears, one of their cysts will be chosen to infect the new agent. The other
option is to consume only a fraction of the endowment, produce a small number
of cysts, and then continue along the same path until they are infected and
lose control of the organism, or reach some kind of equilibrium with the capital
stock.

The former option is like the person who consumes her entire endowment,
feels very happy, and tells society frequently how wonderful it is to save nothing,
before keeling over and dying for lack of money. People in the present have a
good chance of hearing and accepting this message, as do people in the future,
to a lesser extent (copies of the message decay over time). People accepting
the message decrease their savings rate, feel happier, and have a good chance of
spreading the “Save less” message through their present and future generations.
Societal savings approaches zero. The latter option is like the person who con-
sumes enough to feel pretty good, but saves some endowment. Content, he tells
society several times (but less often than the enthusiastic spendthrift) about
his successful consumption and savings plan. People have only a fair chance of
hearing, accepting, and broadcasting the messages he sends out this generation,
but he probably survives many more generations to repeat those messages. Over
time, the population of converts grows and his savings plan comes to dominate
the population.
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The best path for an agent is determined by the equilibrium capital stock9

for that agent’s policy function and the agent’s initial endowment. If the equi-
librium production for that policy function is less than the initial endowment,
the virus that communicates this path will, on average, produce fewer cysts than
the virus that communicates consumption of the entire endowment. This occurs
because the agent that consumes everything will always be refreshed each period
with a new initial endowment, since it “dies”. However, if the production at
the equilibrium of the capital stock is higher for a virus’s policy function than
the initial endowment, then saving will produce, on average, a larger number of
cysts.

The fitness and survival of the functions that induce savings depends on
the trade-offs between the risk of being infected by another virus and the rate
that capital increases towards the equilibrium for that function. Slow capital
accumulation and its resultant high early consumption keeps a relatively high
average cyst output over the short run but increases the probability that the
function will be replaced by another before the equilibrium capital stock is
reached. Quick accumulation minimizes the short run average cyst production
but also minimizes the chance that the function will be replaced before the
equilibrium capital stock, and maximum cyst production is reached.

We have established that it is possible to evolve the optimal solution to the
posed problem, where the agent consumes the entire endowment every period
and we have established that the dynamics of a pool make it possible for other
behaviors, that involve saving, to evolve.

The evolutions and gradual improvement can be thought of as learning. True
it is not learning in the most efficient, Bayesian, sense, but it demonstrates an
improvement the effectiveness of policy rules over time. Given the interpreta-
tion of evolution of policy rules as learning, there is a learning effect on the
savings behavior of the individuals, even when the individual explicitly does
not care about the future. The dynamics of the learning effects are important
to understanding savings behavior.

The next section will expand the exploration of the relationship between
forward looking behavior in the agents and the infection rate, which induces
forward looking behavior even in agents that should not save. This will provide
the basic intuition that will allow a general formulation of discounting in evolving
systems.

3.2 Interaction of forward looking agents and viral evolu-
tion

In order to explore the interaction of the learning induced forward looking be-
havior with true forward looking behavior on the part of the individual, it is
necessary to alter the objective function of the agents. Only one extra term
needs to be added to put the problem from the previous section in the classic

9Equilibrium capital stock in this sense is the fixed point in the state transition equation
given the consumption rule, i.e., k that satisfies: k = kθ + (1− δ)k − C − αk.
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Bellman form. Equation 3 below shows the modified problem with the discount-
ing factor, β.

Vt = max
ct

ln(ct) + βVt+1 (3)

s.t.

kt+1 = k0
t + (1− δ)k − ct

k0 = K

Modifying the simulation is a bit more difficult than modifying the objective
function. The difficulty is that the objective function now includes the dis-
counted value of future consumption. The most direct solution is, in each pe-
riod, use the function that the agent has, run it out several hundred periods and
calculate a future consumption series. This series can then be used to calculate
the present discounted value of all future consumption and then the appropriate
number of viral cysts can be generated.

While this is reasonable, it violates the spirit of the simulations because
it puts a lot of computational pressure on the agents. An easier way to put
discounting into the model is to directly use the discounting factor as proba-
bility of surviving into the next period. This particular interpretation requires
modification of steps 2 and 7, the utility and death rules.

Interpreting the discounting factor, β, as the probability of surviving requires
that the utility from not surviving is equal to zero and that the utility from
surviving is always greater than zero. Viewed in this manner the Bellman
equation can be expressed as Vt = maxct ln(ct) + βVt+1 + (1− β)0.10It is clear
that the probability of surviving interpretation of the discount parameter is
mathematically equivalent to the time preference interpretation.

Discounting can be interpreted axiomatically as a preferring consumption
today, or can be a derived property. Viewing discounting as a derived property
leads to the interpretation of the discount factor as the probability of surviving
into the next period and the restriction that expected utility in the “dead”
period is zero. This interpretation can be used in the implementation of the
evolutionary method.

Instead of just using the current period consumption for the fitness of the
function, the utility from consumption in all periods up to that point is accumu-
lated. There is no need to do any discounting since a modification to step 7, the
death step, will effectively create discounting. While it is conceivable that an
agent could be alive for the entire 10,000 period simulation it is unlikely since
step 7 will also be modified.

10The probability of death interpretation of the discount rate is only appropriate when the
utility function is bounded below at zero. If it were not, there would be circumstances where
consumption of some positive quantity would yield a negative utility result and the agent
would be better off dead. Recall that in the simulations consumption was modeled as having
a lower bound, 0.01, that evaluated to zero utility. The effective utility function is therefore
ln(ct)− ln(0.01)
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In step 7 the “death” of an agent, besides being triggered by a collapse of the
capital stock, is also randomly determined. Each agent has only a β probability
of surviving into the next period. If they do not survive, the accumulated
utility is reset to zero, and they keep their current policy function and capital
stock. This particular setup is intended to mimic an infinitely lived agent with
discounted utility. The big disadvantage is that discounting tends to be rather
sudden: the agent “dies”. This modification allows the system to evolve period-
by-period and yields discounted utility results without simulating all future
periods for each agent every period. This rule makes the following simulations
incomparable to the first simulation. Dead agents are reborn with the same
capital stock and policy rule they died with, not a new rule and the initial
capital stock.

The discounting simulation was run for 10, 000 periods under 81 different
scenarios that varied the discount rate and the infection rate. Figure 2 plots
the results of that simulation, as level curves of terminal capital stock, given
probability of surviving, β, and the infection rate. Initial capital stock was set
at one. While the relationship between the terminal capital stock, the infection
rate, and the discount rate is not very clear, the plot shows that, generally,
increases in the infection rate or decreases in the discount rate decrease the
terminal capital stock. The converse can be noted by observing that the largest
capital stocks occur when the infection rate is the lowest and the β is the highest
(the lower right hand corner).

This makes sense because with higher probabilities of survival, there is more
success from saving, and because with higher infection rates there is more pos-
sibility of learning forward-looking behaviors. What is most interesting about
these experimental results is that the effect of the infection rate after 10, 000
periods is more pronounced than the effect of the agents’ own probability of
surviving. This partially has to do with the slightly different treatment of func-
tion replacement and the death of the agent, and the different scales of the two
probabilities. It should highlight the fact that learning is important to savings
behavior and that the effects of learning can often masquerade as the discount
rate.

The intuition for this result is that the virus has two ways of losing the
benefits of the accumulated utility and the ability to produce a large number
of viral cysts. If the agent dies, the virus loses the benefit of the accumulated
utility and the ability to produce more cysts. The virus can also lose the benefit
if the agent catches a virus. In that case, the virus is replaced by an inexact
copy of itself and again loses the benefit of the accumulated utility since it is no
longer able to reproduce through that agent.

The assumption that the agent will not be infected with an identical virus
ignores a very important component of the evolutionary system, the cyst pool.
Including the pool in the interpretation of the effective discount rate produces
many different discounting patterns.

In summary, section 3.1 established that the infection rate is important to
determining savings behavior when the agents explicitly did not care about
savings. This section expanded that idea and showed that the infection rate
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Figure 2: Effect of Probability of Surviving and Infection Rate on Terminal
Capital Stock

continues to be important when the agents do care about savings and future
consumption. To the extent that infection is thought of as being struck by a
new and perhaps better idea, this is a learning process. Most importantly it
was demonstrated that the effects of learning could masquerade as a preference
for future consumption.

The next section (4) will explain in detail the two major kinds of discount-
ing, hyperbolic and exponential, and how they both can arise in an evolutionary
system. This material will be used to explore the theoretical relationship be-
tween the agents’ probability of death, the infection rate, the probability of
self-infection and the “observed” discounting of an agent.

4 Discounting

Discounting is the economists’ way of handling future events and making sure
that we value future consumption less than present consumption. One of the
most common ways of discounting future consumption in macroeconomics is
the so-called exponential model, δt. This particular model has a very strong
practical support since it mimics the effect of compounding interest. It is also
the only form of discounting that provides consistent choices in discrete time
dynamic programming problems.

The consistency problem is specific to dynamic optimization problems and
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the mathematical assumptions that are made in order to make the problems
tractable. It is perfectly possible to have an arbitrary discounting function,
γ(t), in a dynamics problem like the one shown below.

T∑
t=0

γ(t)u(ct) (4)

With the proper transition equations, provided that the γ function is always
positive and finite, a solution can be found at time zero. There are, however,
two different kinds of time inconsistency that can arise in dynamic problems,
one general and one specific to the Bellman form. The specific problem of consis-
tent discounting arises in dynamic programming problems because of additional
assumptions added in Bellman form equations.

Equation 5 below shows a typical kind of dynamic optimization problem,
with, c, the control variable, k, the state variable and β the discount of next
period’s utility. The most interesting thing about this particular form is that it
is recursive, i.e., Vt, is defined in terms of Vt+1.

Vt = max
ct

ln(ct) + β(t)Vt+1(kt+1) (5)

s.t.

kt+1 = f(kt)− ct

This means that it is possible to reinsert the same problem back into the equa-
tion, and it should express exactly the same problem.

Vt = max
ct

ln(ct) + β(t)
[
max
ct+1

ln(ct+1) + β(t + 1)Vt+2(kt+2)
]

(6)

s.t.

kt+1 = f(kt)− ct

kt+2 = f(kt+1)− ct+1

This is where the “time inconsistency” problem arises. In order for the choices
to be time consistent, the agent must make the same decision for kt+2 in period
t as they would in period t+1. A sufficient conditions for this to be true is that
the agents face the same problem, and this is only true when β(t) = β(t+1). In
other words, the only way the dynamic problem has a recursive representation
is when the discounting is exponential.

The reason that other discounting methods produce time inconsistent choices
is that the agent effectively faces a different, recursively defined problem every
period, which implies the possibility of different choices.

This particular “time inconsistency” problem arises because of the recursive
structure inherent to the Bellman form and is a special case of the general time
inconsistency problem, which is that agents change their plans over time even
when there has been no change in information.

Hyperbolic discounting is one of the alternative methods that is, as men-
tioned before, strongly supported by experimental evidence but is “time incon-
sistent” in the general sense. The discounting interpretation, ignoring the many
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fights about the functional form, is that the discounting factor is increasing over
time, β(t) < β(t + 1).

That particular observation becomes more interesting in the “probability
of death interpretation”11 of the discounting factor. Exponential discounting
means that there is a constant probability of death. Hyperbolic discounting
means that there is a decreasing probability of death.

The next section will look at the apparent discounting in evolutionary sys-
tems in terms of the discounting functions described above. It will be shown that
evolutionary systems have a long-run equilibrium with exponential discounting
but pass through an hyperbolic or “time inconsistent” stage on the way to the
exponential discounting equilibrium.

5 Discounting Dynamics

Moving back to the problem of viral evolution again, we can rephrase the appar-
ent discounting behavior of the agent-function combination as the probability
that the existing policy rule will be able to gather the benefits of the accu-
mulated utility in the next period. This is a compound event that represents
the survival of the agent and either no infection by an alternate policy rule or
infection by a function that is identical to the one that is currently dictating
the agent’s behavior.12 Equation 7 below expresses the current apparent prob-
ability of surviving, β̂(t) , in terms of the agent’s probability of surviving,β, the
probability of infection, d, and the probability that an identical virus will be
drawn from the cyst pool, p(t).

β̂(t) = β((1− d) + dp(t)) (7)

It is critical to point out that the apparent probability of surviving is always
less than or equal to the agents’ probability of surviving, since the former means
appearing to survive unchanged, while the latter means not dying, but possibly
having a different policy function. Associated with every apparent probability
of surviving is a tuned policy function that is, the optimal policy function for
the apparent probability of surviving, i.e., one that is tuned to the probability
of being replaced by a different policy function. This can be thought of as the
analytically derived function that would be found if the actual probability of
surviving was equal to the apparent probability of surviving, i.e., the locally op-
timal policy function. The apparent probability of surviving and the associated
tuned policy function will enable us to explore the many different discounting
structures that can occur in a particular viral evolutionary system. We will
explore this situation with a series of thought experiments that will play out

11This interpretation is strictly only true when the utility from having no consumption in
the “dead” state is zero. If the utility functions are logarithmic and the average consumption
is less than 1, then it is possible for an agent to be better off dead.

12Infection by an identical virus results in no change in the agents state, beyond a possible
mutation. All accumulated utility and capital remain intact.
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as changing the terms in the apparent probability of surviving function given
above.

One of the most obvious features of viral evolution is that if the viral system
evolves the analytically optimal policy response, the one you would get with
other solution methods, and that policy function fully populates the cyst pool,
then the apparent probability of surviving is equal to the agent’s probability
of surviving and the tuned policy function is equal to the analytically optimal
policy function. In this case, it does not matter what the infection rate is since
the policy function is always replaced with the same analytically optimal policy
response.

β̂(t) = β((1− d) + d1) = β (8)

So, if the pool is populated with the analytically optimal policy function, then
the apparent discounting of the agents is exponential, β(t) = β(t + 1). The
discount rate and the probability of surviving will be the same in every period,
and discounting will be time consistent. Hence, exponential discounting can
arise from an evolutionary system.

5.1 A Transition Behavior Thought Experiment

The policy function that corresponds to this long-run equilibrium result is un-
likely to arise early in the evolution since it will be competing with other policy
functions. The analytically optimal policy function is tuned to a probability
of surviving of β, but this apparent probability of surviving will not occur un-
til later in the evolutionary process because other policy functions exist in the
pool and the probability of being infected by another policy function is posi-
tive. Other policy functions that are more closely tuned to the current apparent
probability of surviving are likely to dominate and generate more cysts. The
following thought experiment should prove this point.

Suppose that the pool is divided into two parts and there is no cross-over or
mutation. Infection results in a simple replacement of policy functions. A frac-
tion p(t) of the pool is filled with one of two policy function, and the remaining
larger fraction (1 − p(t)) is filled with a third, toxic function that causes the
death of an individual and no cyst production. The toxic function produces fit-
ness that are so low that any cross-over with a toxic function results in another
toxic function.

Now suppose that the fraction of toxic functions in the pool is untouchable,
it will always be there and will always be the same fraction. The remainder of
the pool will behave as a normal viral cyst pool for the two non-toxic policy
functions. Suppose further that we start an economy off with these two nontoxic
policy functions, the analytically optimal one, based on the actual probability
of surviving, and a tuned policy function, optimal for an apparent probability of
surviving. Now assume that the tuned policy function has a higher fitness than
the analytically optimal policy function for all fractions of the cyst pool up to
(1 − p). The analytically optimal policy function would be more fit if it made
up the entire pool, but its fitness falls off as its fraction of the pool falls. It is
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Figure 3: Fitness of Two Functions

not the best reaction to the current apparent probability of survival. Figure 3
illustrates this point.

The vertical axis is the fitness measure of the policy function, given the
fraction of the pool dominated by the policy function. There are two separate
fitness functions, one for the tuned policy function and one for the analytically
optimal policy function. When the analytically optimal policy function dom-
inates the pool it has a higher fitness value than the tuned policy function.
However, the existence of the fixed fraction of toxic policy functions prevents
the analytically optimal policy function from ever controlling a fraction of the
pool that would allow it to be more fit than the tuned policy function. As a
consequence, no matter what fraction of the pool the analytically optimal policy
function dominates, the tuned policy function will always be more fit and will
always command a higher fraction of the next period’s cyst pool.

This means that the tuned policy function will be contributed to the pool
more often than the optimal policy rule. As the tuned policy function increases
its share of the pool it will become more and more fit since as its share of the
pool increases the apparent probability of surviving approaches its tuned value.
Eventually, when the tuned policy function fills the fraction of the pool not
filled by the toxic policy function, it will be the best policy function given the
composition of the pool. The analytically optimal policy function will not be
able to compete.
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The most interesting property of viral evolution is that hyperbolic discount-
ing, i.e., declining probability of death discounting, arises naturally from the
evolutionary processes. Suppose this time that we have a population of toxic
policy functions in the viral pool, but no fixed proportion of toxic rules. Sup-
pose further that we have one agent that actually has a very good, but not
the analytically optimal, policy function while the others have the toxic policy
function, die, and are replaced by draws from the viral pool. Initially, every
infection will be guaranteed to yield the toxic policy function, so there is a very
high apparent probability of losing control and a very low apparent probability
of surviving. Over time, the good policy function will shed more cysts into
the cyst pool. This means that, over time, the probability of the agent with
the good policy function being infected by an identical policy function starts to
increase, so the probability of losing control to a toxic policy function decreases
over time. Because the pool is changing, the tuned policy function, given the
current state of the cyst pool, will change over time.

The tuned policy function will tend to dominate the pool until good policy
functions push out more of the toxic policy functions, increasing the fraction
of the pool devoted to good policy functions. This will in turn change the
tuned policy function, reflecting the lower probability of being infected by a
toxic function, and the process will continue. Mutation will eventually cause an
instance of the correct tuned rule to arise and propagate, since it is the most
fit function for the cyst pool composition. Slowly, the fraction of the pool that
contains toxic policy functions will shrink and the apparent probability of death
will decrease (hyperbolic discounting along the path), until the probability of
surviving converges to the agents’ actual discount rate (exponential discounting
at equilibrium.). Evolutionary pressure forces the probability of surviving to
increase over time.

So an evolutionary system like that described can support both exponential
discounting that is often observed in capital markets, and hyperbolic discounting
that is observed in clinical experiments. Furthermore, hyperbolic discounting
arises during the transition period when the economy and policy functions are
moving towards a new capital equilibrium and policy function equilibrium where
discounting is exponential.

5.2 Transition Behavior Demonstration

These thought experiments can be demonstrated by simulation using the model
used to explore the interaction of viral evolution and forward looking agents.
The discount rate cannot be observed directly but it can be inferred from the
behavior. The key is to assume that the agent’s reactions are optimal for some
discount rate and then find the discount rate that is consistent with the choice.
This discount rate, which I will call the implied discount rate, can be calculated
using the intertemporal, first-order condition.

Recall that forward-looking agents faced the following problem:

Vt = max
ct

ln(ct) + βVt+1 (9)

20



s.t.

kt+1 = k0
t + (1− δ)k − ct

k0 = K

The first-order intertemporal condition for this problem is:

1
ct

= β

[
θkθ−1

t + (1− δ)
ct+1

]
(10)

Which can be manipulated to give the implied discount rate, β́.

ct+1

ct(θkθ−1
t + (1− δ))

= β́ (11)

For purposes of simulation, the implied discount rate at time t is time shifted so
only contemporaneous and lagged values of consumption and the capital stock
are required.

Twenty thousand period simulations were conducted for a variety of factor
levels on each of the four main simulation variables: depreciation, viral decay
rate, discount rate and the infection rate. The factor levels are shown in table
1 below. In all, 1, 440 simulations were made- eight replicates of a full factorial
design.

If the thought experiment above is an accurate description then we would
expect an initial stage of experimentation in each of the simulations, where a
fairly good rule tends to dominate the viral pool and then a slow increase in
the implied discount rate. This early chaotic was completed in less then 200
periods for almost all the simulations. What remains is a slowly changing series
of per-period average implied discount rates. The average change over time can
be shown with a simple regression on time, t.

β́t = α + λt + ε (12)

To construct Table 1 below, the first 200 observations were trimmed from each
of the 1, 440 series of average implied discount rates. The remaining 19, 800
observations were regressed on a time trend and the slope parameters collected.
The first row of the table shows the mean of all the slope parameters and
the confidence bound on that mean. The rows that follow show the average
of the slope parameter for the simulations that had zero depreciation, 0.10
depreciation, and so on. In all cases the mean of the time trend is positive,
which is consistent with the thought experiment that the probability of survival
should increase. Successful rules will slowly adapt to their own dominance of
the viral pool increasing the apparent probability of survival over time. This
means that discounting follows a hyperbolic pattern of declining probability of
death in these simulations. It would be a bit much to claim that learning causes
hyperbolic discounting, but it would be reasonable to suppose that learning is
tightly bound up with the phenomena.
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Table 1: Rate of Change in Implied Discount Rate (1/1, 000, 000)

Confidence Bounds
Factor Factor Level Mean 2.5% 97.5%
All 2.70 2.13 3.28
Depreciation 0.00 2.09 1.45 2.73

0.10 3.33 2.03 4.62
0.15 2.70 1.74 3.65

Decay Rate 0.10 2.36 1.18 3.54
0.20 3.22 2.44 4.00
0.30 2.53 1.53 3.53

Discount Rate 0.00 3.52 1.79 5.25
0.50 2.99 1.73 4.24
0.75 2.38 1.34 3.42
0.90 2.14 1.08 3.20
0.95 2.49 1.22 3.77

Infection Rate 0.10 2.34 2.08 2.60
0.15 1.91 1.16 2.67
0.20 2.57 1.40 3.73
0.25 3.99 2.17 5.28

6 Summary and Conjectures

This paper has demonstrated a way of using a viral evolutionary system in a
macroeconomic framework. The paper has also shown that, while economists
can solve many problems with viral evolutionary methods, the pool provides an
extra dimension where interesting dynamic behavior can develop. In particular
we showed that, even with agents that are explicitly not forward looking, a
viral evolutionary system could produce behavior that shows forward-looking
interests.

This particular effect can be combined with forward-looking agents to pro-
duce hyperbolic discounting that is often assumed in economics rather than
derived from some other more elementary process.

There are three potential empirical tests of this model. First, it may be that
the empirical regularity of exponential discounting breaks down when there
is significant qualitative uncertainty about the economy. In this is the case,
financial markets in long-run equilibrium operate with an apparent discount
rate equal to the actual discount rate. When the deep parameters of the market
change, i.e. there is qualitative uncertainty, the markets must go through a
learning process where the discount rate is much higher. If this is the case, then
an empirical study of periods with qualitative changes in the economy, e.g.,
transition from wartime to peace time economies and other rapid structural
changes, will cause a change in the risk free rate, either upward or downward
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depending on the change, which would then decrease as the learning process
proceeded. So if the risk free rate exhibited downward bias, instead of mean
reversion this would be empirical evidence of a learning period that is structured
like a viral evolutionary system or some other observationally equivalent learning
model.

The second potential application has to do with the function of capital mar-
kets above and beyond their ability to decrease transactions costs. If we do not
observe the learning effects as described in the first hypothesis then it may be
that financial markets allow for the development of policy functions that are not
so closely tied to the current state of the economy. Put in econometric terms,
policy functions are dependent on the “deep” parameters in an economy, e.g.,
the parameterization of technical growth rather than the actual revelations of
technical growth. Unfortunately, a method of testing this hypothesis escapes
the author since it may not be falsifiable.

Finally, a more direct test can be conducted under experimental conditions
in a lab setting. By observing the changes in implied discounting when agents
interact in a market and when they do not may provide compelling evidence of
additional market functionality.
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