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1 Introduction

The use of numerical methods to study dynamic economic systems has pervaded all fields of

economics in the last three decades. In macroeconomics, the pioneering studies by Kydland

and Prescott (1982) and Long and Plosser (1983) sparked off a new approach to study the

overall performance of an economy. The approach, called real business cycle (RBC) theory,

gained adoption from a large number of macroeconomists because RBC models were able

to reproduce several features of the economywide fluctuations that characterize market

economies. Agents in these models face uncertainty about future economic developments

and have to solve dynamic stochastic problems forming expectations about the future

rationally. Except for some special cases, dynamic stochastic models lack a close form

solution and they have to be solved using numerical methods. A numerical technique

widely used to solve these models involves the log-linearization of their equations. The

log-linearized model is an approximation to the original model that is called a linear

dynamic rational expectations (LDRE) model.

Some of the reluctance to use numerical methods in economics can be linked to the

difficulty of translating economic models into a language that can be read by a computer.

This paper and the accompanying set of Matlab functions which we call the LDRE Tool-

box are designed to help a researcher with almost no experience in computational work

to resolve and study his own dynamic stochastic model.1 The simplification of the com-

putational tasks required to study a dynamic model is one distinguishing characteristic

of the Toolbox, vis-à-vis other computational algorithms available elsewhere.2 The provi-

sion of step-by-step explanations of the procedures a researcher should follow to study his

own model is the second distinguishing characteristic and goal of this work. Briefly, once

a macroeconomic model fitting in the class of models of section 2 is outlined, the Tool-

box accompanying this paper log-linearizes the model equations; returns impulse-response

functions; sample and population moments conditions of macroeconomic aggregates and

ratios; and simulations of the model under a given sequence of shocks. Although non

macroeconomic models could also be studied using the Toolbox, the characteristics of its

output make it more suitable for the study of macroeconomic models.

The most important reason to work with the linear (or log-linear) version of a model

instead of its original non-linear formulation is the minimization of the computational

costs, measured in terms of computer time and programming effort, involved in solving a

1The Toolbox is available at www.econ.iastate.edu/faculty/oviedo.
2Some of the functions in the Toolbox were borrow from these other sources although their documen-

tation has been changed here. See for example http://www.ssc.uwo.ca/economics/faculty/klein
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model. Furthermore, whereas most alternative solution techniques are subject to the ‘curse

of dimensionality’, the dimension of the state space does not represent a problem for linear

approximation techniques.3 This advantage could be shadowed by a lower accuracy of the

results. However, it has been shown that linear models produce highly accurate results

when the variance of the shocks hitting the system is not too large, something that we

illustrate later in section six.4

The organization of the paper is as follows. In the second section, we show the type of

models than can be studied using the LDRE Toolbox. In the third section, we consider an

open and two closed-economy versions of the standard RBC model to serve as examples

for the application of the solution technique discussed in section four. In section five we

review the Matlab functions in the Toolbox and in section six we illustrate the output

of the Toolbox for the three RBC models used as examples. We summarize the paper in

section seven

2 LDRE Models and their Variables

To establish a convention on how to classify the variables in a LDRE model, we distinguish

four types of variables. First, predetermined or backward-looking variables. Second, non-

predetermined or forward-looking variables. Third, innovations to the backward-looking

variables. Fourth, flow or additional variables.

The value of a predetermined variable at time t is given by optimizing decisions taken

at t− 1, the evolution of the system between t− 1 and t, and the innovations observed at

t. Commonly, backward-looking variables correspond to the state variables in a dynamic

programming framework. Throughout the paper as well as in the Toolbox, we use x1(t)

to denote the values of the predetermined variables at time t.5

Within the set of predetermined variables, we distinguish between endogenous and

exogenous variables. While the values of the endogenous predetermined variables are

affected by economic optimizing decisions, the values of the exogenous predetermined

variables are independent of these decisions and only rely on their exogenous driving

processes. The stock of capital and the amount of foreign assets are typical examples of

3In the numerical methods literature, the course of dimensionality refers to the impossibility of solving
models endowed with a relatively large state space. What is a “relatively large state space” cannot be
stated more precisely without referring to specific models, but it can be said that difficulties arise, in
general, when models have five or more state variables.

4On the accuracy of the log-linear solutions, see for example Dotsey and Mao (1992) and Danthine and
Mehra (1989).

5For the sake of clarifying the exposition, we depart from the convention of dating discrete-time vari-
ables with a subindex.
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endogenous backward-looking variables in an open economy, while a productivity shock

is an example of an exogenous backward-looking variable. The values of both types of

predetermined variables at time t are included in x1(t).

The value of a time-t forward-looking or non-predetermined variable depends on actions

taken at time t. We group all forward-looking variables in the vector x2(t). Appealing to

the parallelism with the dynamic programming framework, policy variables like consump-

tion and the accumulation of assets are examples of non-predetermined variables.

The time-t values of some predetermined variables depend on the innovations to specific

stochastic processes. For example, in an open-economy model, the international interest

rate and the economywide productivity shock might be modeled as exogenous autore-

gressive processes subject to period-by-period innovations. Let ε(t) denote the vector of

innovations to the variables in the model. At a high level of generality, both forward

and backward-looking variables could be subject to innovations; in this case, the length

of ε(t) is equal to the number variables in the model. In most models, however, most of

the components of ε(t) are equal to zero because no shock hits some of the predetermined

variables (overall, the endogenous ones) and most, if not all, non-predetermined variables.

Finally, we call flow or additional variables to the variables of interest to the researcher

whose value can be inferred from the model, although they are not specifically part of the

model. For example, the trade balance may not be a variable in an open-economy model

but its dynamics might be of interest to the researcher and can be computed from the

dynamics of output, consumption and investment. We use x3(t) to refer to the value of

the vector of flow variables at time t.

The specification of a macroeconomic model usually involves three sets of equations,

namely: a set of optimality conditions; a set of resource constraints and market clearing

conditions; and a set of equations specifying the dynamics of the exogenous predetermined

variables. Examples of these equations are, respectively, the equalization of the marginal

rate of substitution of labor for consumption to the real wage rate; the equalization of

output to the sum of investment and consumption; and an autoregressive process describing

the dynamics of the productivity shock. After log-linearizing the described sets of equations

and using a “hat” over a variable to express percentage deviations with respect to its

steady-state value, we can write the log-linear version of a model as follows:

AEtx̂(t + 1) = Bx̂(t) (1)

where x̂(t) ≡ (x̂1(t), x̂2(t))
′. Without loss of generality, we assume throughout that the
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models have n1 backward-looking variables, n2 forward-looking variables, and n3 flow

variables. Consequently, x̂1(t) is a n1-vector, x̂2(t) is an n2-vector, and x̂(t) is an n-vector,

where n = n1 + n2. Thus, the matrices of coefficients A and B in eq. (1) are matrices of

size n× n.

The actual evolution of the system is also affected by the innovations to the n variables

in x̂:6

Ax̂(t + 1) = Bx̂(t) + ε(t + 1)

If only the backward-looking variables are subject to innovations, a partition of the vector

ε(t + 1) permits writing the system as:

A

(
x̂1(t + 1)

x̂2(t + 1)

)
= B

(
x̂1(t)

x̂2(t)

)
+

(
ε1(t + 1)

0n2×1

)

where ε1(t + 1) is an n1-vector. Furthermore, when only the exogenous backward-looking

variables are subject to innovations, some components of ε1(t + 1) are also equal to zero.

Let x3(t) be the vector of additional or flow variables at time t whose value depends on

the value of x1 and x2, at times t and t + 1. By log-linearizing the equations that define

the flow variables, we can write:

x̂3(t) = C x̂(t + 1) + D x̂(t) (2)

where x̂3 is an n3-vector and C and D are matrices of dimension n3 × n.

3 Examples: Three Neoclassical-Growth Models

In this section we present three versions of the one-sector neoclassical growth model of

optimal capital accumulation augmented by productivity shocks that fit into the class

of models discussed above. The three models are purely real in the sense that money

does not play any role in the determination of the optimal allocation of resources. This

characteristic of the models led Long and Plosser (1983) to call them real business cycles

(RBC) models. The first model is the stochastic growth example of Brock and Mirman

(1972) which became the workhorse in the macroeconomic literature. Since a closed form

solution to this model exists when preferences are logarithmic and the capital depreciates

completely after production in every period, we will be able to compare numerically the

6Observe that Ax̂(t + 1) = AEt x̂(t + 1) + ε(t + 1).
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closed form solution with the solution to the log-linear approximation of the model. The

second model is an extended version of the Brock and Mirman economy that lacks a

closed-form solution. In this extension, only a fraction of the capital stock depreciates in

every period, labor supply responds to economic conditions, and the productivity of the

economy grows exogenously over time. We call this model the KPR model because we are

going to replicate the results in King, Plosser, and Rebelo (1988a) who calibrate it to the

US economy. The third model discussed below is the extension of the RBC framework to

a small open economy (SOE), extension developed by Mendoza (1991) who calibrated the

model to the Canadian economy.

The three artificial RBC economies are consistent with the conditions under which

the second welfare theorem holds. Consequently, the allocations optimally chosen by a

central planner are the same allocations that would arise in a decentralized competitive

economy where households supply the factors of production employed by atomistic firms

to produce the final output. Although we are ultimately interested in the dynamics of the

decentralized economies, we exploit the equivalence above and focus on the less involved

central planner problems. We can then back out the competitive equilibrium prices from

the optimal allocations chosen by the planner.

Below, we start specifying the models and characterizing their first-order optimality

conditions; we then show how to sort their variables according to the criteria discussed in

section 2; next we calibrate the models and obtain their log-linear approximations.

3.1 Models Specification and Optimality Conditions

3.1.1 Model 1: The Brock and Mirman Stochastic Growth Model

In the Brock and Mirman problem, the central planner of a closed economy populated

by a large number of identical households is endowed with a production technology that

transforms capital and labor services into consumption and investment goods. Households

have a time endowment measured in hours and normalized to equal 1. The planner seeks

to maximize the expected lifetime utility of the representative household by choosing a

sequence of consumption, hours of labor supply, and capital stock, {ct, ht, kt+1}∞t=0.
7 The

planner’s problem is summarized as follows:

max
{ct,ht,kt+1}∞t=0

E0

[ ∞∑
t=0

βt log(ct)

]
(3)

7Variables are in per capita terms.
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subject to the following constraints for t = 0,...,∞:

zt k
α
t h1−α

t ≥ ct + it (4a)

it = kt+1 − kt(1− δ) (4b)

zt+1 = (1− ρ)z + ρzt + εt+1 (4c)

k0 and z0 given (4d)

The lifetime utility function in eq. (3) indicates that the representative household only

derives utility from the consumption of goods in each period, ct. Households discount

future utility at the rate implicit in the discount factor β. The flow budget constraint in

eq. (4a) says that at any time t ≥ 0, the sum of consumption and investment, ct + it,

must not exceed the total amount of output arising from exploiting the Cobb-Douglas

technology. For a given pair of labor and capital, (ht, kt), the total amount of output

depends on the capital share in output α, and the productivity shock zt. The investment

equation (4b) depicts the law of motion of the capital stock which shows that the capital

stock depreciates exponentially at the rate δ. Eq. (4c) is the forcing process governing

the dynamics of the productivity shock; there, ρ is an autocorrelation parameter, z is the

stationary value of zt, and εt is an i.i.d. shock with E[εt] = 0 and E[εt, εt+j] = σ2
z if j = 0,

and it is equal to 0 otherwise. The central planner finds optimal to set ht = 1 at any t > 0

because leisure is not an argument of the household utility function. Furthermore, the non-

satiation assumption implicit in the functional form of the objective function implies that

the budget constraint must hold as a strict equality at the optimum. After substituting it

from eq. (4b) into the budget constraint, the first order conditions for optimality in the

problem at hand are:

1

ct

= β E

[
1

ct+1

(1 + αzt+1k
α−1
t+1 − δ)

]
; t ≥ 0 (5a)

zt k
α
t + kt(1− δ) = ct + kt+1; t ≥ 0 (5b)

Eq. (5a) shows that the economy must accumulate capital until the marginal cost in utility

terms (on the left-hand side of the equation), is equal to the marginal expected benefit, in

utility terms (on the right-hand side), and eq. (5b) imposes the technological constraint

on the allocation of resources.

The equilibrium and solution of the Brock and Mirman economy is a sequence {zt+1,

kt+1, ct}∞t=0 that satisfies eq. (4c) and the optimality conditions (5) for t ≥ 0, given the
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initial conditions specified in (4d).8 To completely characterize the efficiency allocations of

the Brock and Mirman economy, the solution must satisfy the following limiting condition:

lim
t→∞

E
[
βt(1/ct)kt+1

]
= 0

that (loosely speaking) indicates that it would be suboptimal for the planner to accumulate

capital forever. Notice that eq. (4c) along with eqs. (5) represent a system of three

equations for each t ≥ 0 that can be solved for the optimal sequence {zt, kt+1, ct}∞t=0.

A researcher studying the Brock and Mirman model might be interested in studying

the dynamics of output, yt, the wage rate, wt, and the rental rate of capital, rk
t , which

are three possible flow variables of this model. The following equations allow to back out

these variables:

yt = ztk
α
t (6a)

wt = (1− α)ztk
α (6b)

rk
t = αztk

α−1 (6c)

The outlined model is known to have a closed form solution when δ = 1. In this case,

investment is equal to kt+1 and output is split between ct and kt+1. It is out of the scope

of this paper to show that the closed form solution to this model involves:9

kt+1 = βαztk
α
t (7a)

ct = (1− βα)ztk
α
t (7b)

3.1.2 Model 2: The King-Plosser-Rebelo Economy

The King-Plosser-Rebelo (KPR) economy is similar to the economy in the preceding model

except that in the KPR economy leisure is an argument of the utility index. Consequently,

the household labor supply is no longer a constant equal to its time endowment. Further-

more, labor-augmenting productivity in the KPR economy grows over time at the (net)

exogenous rate γ, which is the rate at which all variables except labor grow over time. In

order to work with a stationary version of the model where the variables are constant in

the non-stochastic steady state, we have to transform the variables and express them in

units of effective labor. We do not show here how to perform this transformation and we

8If the problem above were expressed in recursive form, it can be said that for given values of the
predetermined variables at t, the model solution returns a value for zt+1, kt+1, and ct.

9See, for instance, Sargent (1988).
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do not discuss its implications nor the restrictions that a balanced growth path imposes

on the functional form of the production and utility function.10

Here, the central planner faces the following problem:

max
{ct,ht,kt+1}∞t=0

E0

[ ∞∑
t=0

βt log(ct) + ω log(1− ht)

]
(8)

subject to the following constraints:

zt k
α
t h1−α

t ≥ ct + (1 + γ)kt+1 − kt(1− δ) (9a)

zt+1 = (1− ρ)z + ρzt + εt+1 (9b)

k0 and z0 given (9c)

E[εt] = 0; E[εt, εt+j] = σ2
z , if j=1; and = 0 otherwise

In this economy, all variables except ht and εt represent “de-trended” variables, that

is stationary versions of the growing variables. Except for ω, which is a parameter of the

utility function that determines the fraction of time allocated to leisure, the nomenclature

is the same as in the foregoing model. The transformation required to make the variables

stationary modifies the investment equation multiplying kt+1 by the gross growth rate

(1 + γ).

The equilibrium and solution of the model can be stated as a contingent sequence

of four variables {zt+1, kt+1, ct, ht}∞t=0 that, for some initial conditions (9c), satisfies the

following four equations for t ≥ 0:11

zt+1 = (1− ρ)z + ρzt + εt+1 (10a)

(1 + γ)
1

ct

= β E

[
1

ct+1

(1 + αzt+1k
α−1
t+1 h1−α

t+1 − δ)

]
; (10b)

zt k
α
t h1−α

t + kt(1− δ) = ct + (1 + γ)kt+1; (10c)

ωct

(1− ht)
= (1− α)ztk

α
t h−α

t (10d)

10References for the interested reader include Barro and Sala-i-Martin (1995) and King, Plosser, and
Rebelo (1988b).

11The ordering of the equations is consistent with the ordering followed in the numerical part to be
discussed later. Notice that we start writing the equation for the forcing process, then we write all other
equations involving variables dated both at t and t+1, and finally we write the “intratemporal” equations,
that is equations whose variables belong to only one period.
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The optimal allocations should also be consistent with the limiting condition imposed on

the Brock and Mirman economy. Different from that economy where it was optimal to set

ht=1, in the KPR economy eq. (10d) is used to find the number of hours that equates

the marginal rate of substitution of labor for consumption to the marginal productivity of

labor.

The flow variables that we (arbitrarily) choose to study are output, yt; investment, it;

the wage rate, wt; and the rental return on capital, rk
t . The following equations define

these variables:

yt = ztk
α
t h1−α

t (11a)

it = (1 + γ)kt+1 − kt(1− δ) (11b)

wt = (1− α)ztk
αh−α

t (11c)

rk
t = αztk

α−1h1−α
t (11d)

3.1.3 Model 3: The Small-Open-Economy RBC Model

In the small-open-economy (SOE) version of the RBC model, the economy borrows and

lends in international capital markets so as to smooth out consumption over time. This

requires incorporating the asset position of the economy into the analysis, taking into

consideration that only domestic households own the domestic capital stock.

To produce fluctuations in the relative price of investment to consumption goods, the

model includes capital adjustment costs; this means that changing the stock of capital

generates costs that increase with the speed of the desired adjustment and that agents

find optimal to undertake investment changes gradually (Mendoza (1991)). The inclusion

of capital-adjustment costs has been motivated by the otherwise extremely high investment

volatility produced by cross-country variations in the real return on capital. Specifically,

we are going to assume that the cost of increasing the capital stock from kt at t to kt+1 at

t + 1, involves a cost equal to (φ/2) (kt+1 − kt)
2.

As explained by Arellano and Mendoza (2003), and Schmitt-Grohé and Uribe (2003),

when domestic agents have only access to a risk-free bond whose rate of return is exoge-

nously determined abroad, the equilibrium dynamics posses a random walk component.

This is a major problem when we want to study the model dynamics around a stationary

point because the random walk component essentially means that the stationary point

does not exist. Several techniques have been proposed in the literature to overcome this

problem (see Schmitt-Grohé and Uribe (2003)). Following Mendoza (1991), we choose to

make the discount factor dependent on the history of consumption and labor supply. Un-
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der this formulation, the central planner seeks to maximize an Epstein’s (1983) Stationary

Cardinal Utility:

max
{ct,ht,bt+1,kt+1}∞t=0

E





∞∑
t=0

exp

[
−

t−1∑
τ=0

ψ log

(
1 + cτ − hω

τ

ω

)] (
ct − hω

t

ω

)1−σ

1− σ





(12)

where the endogenous discount factor
∑∞

t=0 exp
[
−∑t−1

τ=0 ψ log
(
1 + cτ − hω

τ

ω

)]
introduces

an impatient effect because the rate of time preference increases with past consumption

and labor supply. However, since this effect has shown negligible in quantitative applica-

tions (see Mendoza (1991)), we follow Schmitt-Grohé and Uribe (2003) in assuming that

atomistic households do not internalize the effects of their consumption plans on the rate of

time preference. In the formulation above, σ is the coefficient of relative risk aversion of the

household; ψ is the elasticity of the rate of time preference with respect to (1+ ct +hω
t /ω);

1/(1− ω) is the elasticity of the labor supply; and bt is the stock of international assets.

The central planner maximizes the lifetime expected utility subject to the following

flow budget constraint for t ≥ 0:

ztk
α
t h1−α

t − φ

2
(kt+1 − kt)

2 + kt(1− δ) + (1 + r)bt ≥ ct + kt+1 + bt+1

where the left hand side contains the source of resources and the right hand side contains

the uses of resources. Among the sources, the planner counts on: the net-of-adjustment-

costs output arising from exploiting the production technology given the available stock

of capital and labor supply; the after-depreciation capital inherited from the precedent

period; and the inherited stock of international assets along with its accruing interest

payments. The value of bt determines the economy’s asset position (with negative values

representing net indebtedness); furthermore, an increment of bt, i.e bt+1 − bt > 0, implies

a current account surplus of the same magnitude, and viceversa. International assets are

assumed to have a fixed net return equal to r and the process for the productivity shock

is the same as in the precedent two models.

The solution to this SOE model is a contingent sequence of five variables {zt+1, bt+1,

kt+1, ct, ht}∞t=0, that for some initial conditions (z0, k0, b0), satisfies the following system

of five equations for t ≥ 0:

zt+1 = (1− ρ)z + ρzt + εt (13a)

(ct − hω
t /ω)−σ [1 + φ(kt+1 − kt)] =

11



βtE
[(

ct+1 − hω
t+1/ω

)−σ (
1 + αzt+1k

α−1
t+1 h1−α

t+1 − δ + φ(kt+2 − kt+1)
)]

(13b)

(ct − hω
t /ω)−σ = βtE

[(
ct+1 − hω

t+1/ω
)−σ

(1 + r)
]

(13c)

ztk
α
t h1−α

t − φ

2
(kt+1 − kt)

2 + kt(1− δ) + (1 + r)bt = ct + kt+1 + bt+1 (13d)

hω−1
t = zt(1− α)kα

t h−α
t (13e)

where we have used βt ≡
(
1 + ct +

hω
t

ω

)−ψ

in eqs. (13b) and (13c). Except for the func-

tional form of the utility function, the capital adjustment costs, and the discount factor,

eq. (13b) is the same as eq. (5a) in the Brock and Mirman economy and eq. (10b) in the

KPR economy; eq. (13c) is the dynamic efficiency condition for the accumulation of debt;

it equates the utility cost of borrowing to the expected discounted utility of repaying the

amount borrowed at the international interest rate; eq. (13d) is the flow budget constraint,

and eq. (13e) equates the marginal rate of substitution of labor for consumption to the

marginal productivity of labor.

Strictly speaking, the SOE model does not fit in the class of models of section 2 because

kt+2 in eq. (13b) is a variable dated at time t+2. To make the model conformable with the

class of models of section 2, we will add an equation to system (13) to define the auxiliary

variable ka
t as ka

t = kt+1. This allows us to write ka
t+1 instead of kt+2 in eq. (13b) and all

model variables are then dated either at t or t + 1.

The sequence {zt+1, bt+1, kt+1, ct, ht}∞t=0, that satisfies conditions (13), given a sequence

of innovations to the productivity shock, {εt}∞t=1, and given initial conditions (b0, k0, z0),

is a solution if it does not violate the limiting condition

lim
t→∞

E

{ ∞∑
t=0

exp

[
−

t−1∑
τ=0

ψ log

(
1 + cτ − nω

τ

ω

)] (
ct − hω

t

ω

)−σ

(kt+1 + bt+1)

}
= 0

This limiting condition rules out solutions where assets (kt + bt) grow indefinitely for the

same reasons we ruled them out in the precedent examples. The condition also rules out

indefinite increments in borrowing to avoid situations where the household indefinitely

borrows and then repays interest and principal by borrowing more.

Since we want to obtain the results in Table 6 (pp. 812) of Mendoza (1991), we consider

the following flow variables:
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GDP: yt =ztk
α
t h1−α

t − (φ/2)(kt+1 − kt)
2 (14a)

GNP: ỹt =yt − r bt (14b)

Savings: st =yt − c (14c)

Investment: it =kt+1 − kt (14d)

Productivity: prt =yt/ht (14e)

Interest Payments: ipt =r bt (14f)

Trade-balance-output ratio: tbt =(yt − ct − it)/yt (14g)

3.2 Variable and Equation Sorting and a Recursive Interpreta-

tion of the Models

Tables 1 and 2 classify the variables and equations of the three RBC models following the

criteria of section 2. Having a recursive interpretation of the dynamics of these models

will be useful to understand the theoretical solution of the next section. Starting with the

Brock and Mirman economy, at t = 0, the central planner wakes up with a given stock

of capital and a value of productivity, i.e. a pair (k0, z0), and he has to decide how much

output to allocate to current consumption, c0. Given the current output y0 (a quantity

dependent on k0 and z0) and the chosen level of consumption, c0, then he finds how much

capital will be available for production at t = 1, i.e. k1. At time t = 1, the planner faces

the same problem he faced at t = 0: he knows (k1, z1) and has to choose c1; then, he finds

how much capital he will have at t = 2, i.e. k2, and so on.

The recursive interpretation of the planner’s decision problem indicates that at any

t, he observes the state variables (zt, kt), and the optimal policy function ct = c(kt, zt)

tells him the optimal level of consumption.12 Then, the state-transition eqs. (4c) and

(5b) determine the value of kt+1 and zt+1 for a given innovation to the productivity shock.

In the recursive form of the KPR economy we have the same vector of state variables

(kt, zt); two policy functions, one for consumption, ct = c(kt, zt), and one for labor supply

ht = h(kt, zt); and two state transition eqns., i.e. eqns. (10a) and (10c). In the SOE model,

at any t, the planner knows the value of the state variables (bt, kt, zt), and he follows an

optimal policy rule for consumption, ct = c(bt, kt, zt); an optimal policy rule for saving

in capital, sk
t = sk(bt, kt, zt); and an optimal policy rule for saving in international assets,

sb
t = sb(bt, kt, zt). Then, a state transition function along with the policy functions and the

12The policy functions are part of the solution to the models.
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innovation to the productivity shock determine the value of next period states.

To link the precedent recursive interpretation of our three models with the general

numerical solution to LDRE models discussed in the next section, it will be useful to call

f to the set of policy functions; to call p to the set of transition equations; and to think

that: a) given the value of the state variables at time t, the policy functions in f indicate

the optimal value of the control variables at t; b) given the value of the state variables at

t, the transition equations in p indicate the value of the state variables at t + 1.

3.3 Calibration

To calibrate the three foregoing RBC models, we focus on their non-stochastic steady

states. These states are the rest points where the economies would stay in the long run

if we shut out all innovations to the exogenous backward-looking variables. To find the

steady states of our models, we have to impose εt = 0, for t ≥ 0, and solve the respective

systems of equations: (5) for the Brock and Mirman economy; (10) for the KPR economy;

and (13) for the SOE.

The system of steady state equations is solved to find the value of some model parame-

ters and variables, given the information available on some macroeconomic aggregates and

parameters. In each case, deciding upon which parameter and variable values are taken

from the data and which ones are arising from the equilibrium conditions of the model

depends, among other things, on the availability of statistical information of the modeled

economy. We calibrate the Brock and Mirman and the KPR model to the US economy

following King et al. (1988a), and the SOE model to the Canadian economy following

Mendoza (1991). For the first two models, the time interval is a quarter and for the SOE

model, the time interval is a year.

Using the definition of output in (6a), the following three equations characterize the

non-stochastic steady state of the Brock and Mirman economy:

1 = β(1 + α
y

k
− δ) (15a)

y = c + kδ (15b)

y = zkα (15c)

We normalize the calibration setting k = 10 and we impose δ = 1 to obtain a closed

form solution to this model. We set the capital share in output α=0.40 and choose a

value of β consistent with an annual net-of-depreciation return to capital, 1 + α y/k − δ,
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equal to 6.5%, which gives β = 0.9844 on quarterly basis. When δ = 1 (15a) implies

that the output-to-capital ratio y/k = 1.0650.25/α = 2.54 and equation (15b) implies that

c/y =0.6062; additionally, from the equality zαkα−1 = α y/k, we obtain z = 10.11;

In the KPR economy the system of steady-state equations is:

(1 + γ) = β(1 + α
y

k
− δ) (16a)

y = c + k(δ + γ) (16b)

ωc

(1− h)
= (1− α)

y

h
(16c)

y = zkαh1−α (16d)

We normalize the calibration setting k = 10; consistent with the fact that the fraction of

time allocated to work is equal to 20% in the US economy, we follow King et al. (1988a) to

set h = 0.2. We set the capital share in output α equal to 0.42; δ = 0.025; and γ = 0.004;

and we find the value of β consistent with a net annual return on capital of 6.5% in

equation (16a): β = (1 + 0.004)/(1 + 0.065)0.25=0.988; the same equation then implies

the ratio y/k = 0.0973 and by using the investment eq. (11b) and eq. (10c), we obtain

i/k = 0.29 and c/y = 0.702. Eq. (16c) then implies ω = 3.305 and (16d) z = 0.9409.

In the SOE version of the RBC model, the calibration of the model to the Canadian

economy in Mendoza (1991) starts with the following parameter values: α = 0.320; δ =

0.100; ω = 1.455; φ = 0.019; ρ = 0.42; σ = 2.000; r = 0.040; and ψ = 0.11.13 We

normalize the calibration setting k = 3.398, which approximates the middle point of the

capital-stock grid in Mendoza (1991). The system of equations characterizing the steady

state of the model is:

1 = (1 + c− hω/ω)−ψ(1 + α
y

k
− δ) (17a)

1 = (1 + c− hω/ω)−ψ(1 + r) (17b)

y + r b = c + kδ (17c)

hω−1 = (1− α)
y

h
(17d)

y = zkαh1−α (17e)

Thinking of input prices in the decentralized equilibrium, notice that hω−1 = w =

(1 − α)(y/h) and that rk = r + δ = α(y/k) (see eqs. (17a), (17b), and (17d)). From eq.

13To reproduce the quantitative results in Mendoza (1991), we have lightly deviated from the original
parameterization in which φ = 0.028.
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(17d) and the equalization of the relative input prices to the ratio of marginal products,

h = [rkk(1 − α)/α]1/ω =1.007. Eq. (17b) then shows that c = 1.123, which then implies

that the discount factor is equal 0.962. By using equation (17e) and the right hand side

of (17a), we obtain z = 1.00 and y = 1.486.

Table 3 summarizes the value of the parameters in the three RBC models and Table 4

summarizes the value of some macroeconomic variables and ratios.

3.4 Log-Linearization

The LDRE Toolbox accompanying this paper carries out the numerical log-linearization of

the equations of any dynamic model fitting in the class of models of section 2. To show the

equivalence between the paper-and-pencil and the numerical log-linearization of a model

we next work out the log-linear approximation to the KPR model.

Log-linearizing a model implies finding the matrices of coefficients A and B in eq. (1)

and C and D in eq. (2). For the KPR economy, we start totally differentiating eqs. (10)

around the steady state:

ρdzt − dzt+1 = 0 (18a)

−1 + γ

c2
dct − βE

[
− 1

c2

(
1 + αzkα−1h1−α − δ

)
dct+1 +

1

c
αkα−1h1−αdzt+1

+
1

c
αz(α− 1)kα−2h1−αdkt+1 +

1

c
αz(1− α)kα−1h−αdht+1

]
= 0 (18b)

kαh1−αdzt + [αzkα−1h1−α + (1− δ)]dkt+

(1− α)zkαh−αdht − dct − (1 + γ)dkt+1 = 0 (18c)

ω

(1− h)
dct − (1− α)kαh−αdzt − z(1− α)αkα−1h−αdkt−

[
ωc

(1− h)2
dht + z(1− α)(−α)kαh−α−1]dht = 0 (18d)

Let define x̂t ≡ dxt/x as the percentage deviation of xt from its steady-state value x. This

permits writing system (18) as:

ρzẑt − zẑt+1 = 0 (19a)

−1 + γ

c
ĉt − βE

[
−1

c

(
1 + αzkα−1h1−α − δ

)
ĉt+1+

(
1

c
zαkα−1h1−α

) (
ẑt+1 + (α− 1)k̂t+1 + (1− α)ĥt+1

)]
= 0 (19b)

zkαh1−αẑt + [αzkαh1−α + (1− δ)k]k̂t+
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(1− α)zkαh1−αĥt + cĉt − (1 + γ)kk̂t+1 = 0 (19c)

(
z(1− α)kαh−α

)
(ẑt + αk̂t) + [

ωc h

(1− h)2
− z(1− α)(−α)kαh−α]ĥt = 0 (19d)

Since all but the “hat” variables above have numerical values, the log-linear approximation

to the KPR model arises from the evaluation of the system (19) at the steady state using

the numerical information in Tables 3 and 4:

0.847ẑt − 0.941ẑt+1 = 0 (20a)

−1.470ĉt + 1.470E[ĉt+1]− 0.059E[ẑt+1] + 0.034E[k̂t+1]− 0.034E[ĥt+1] = 0 (20b)

0.973ẑt + 10.159k̂t + 0.564ĥt − 0.683ĉt − 10.04k̂t+1 = 0 (20c)

2.822ĉt + 1.891ĥt − 2.822ẑt − 1.185k̂t = 0 (20d)

The coefficients multiplying the variables dated at t + 1 are the elements of matrix

A and the coefficients multiplying the variables dated at t are the elements of matrix B.

When we use the LDRE Toolbox to obtain the log-linear version of the KPR model we

obtain the following matrices:




0.941 0 0 0

0.059 -0.034 -1.470 0.034

0 10.040 0 0

0 0 0 0







E ẑt+1

E k̂t+1

E ĉt+1

E ĥt+1




=




0.847 0 0 0

0 0 -1.470 0

0.973 10.159 -0.683 0.564

-2.822 -1.185 2.822 1.891







ẑt

k̂t

ĉt

ĥt




This equation is equivalent to system (20); furthermore, the matrices of coefficients on

the left- and right-hand side correspond to matrices A and B in eq. (1). Following the

same steps above, we can log-linearize the flow-variables in (11) to obtain:

C = 04×4 D =




1.000 0.420 0 0.580

3.355 1.409 -2.355 1.9461

2.822 1.185 0 -0.185

0.041 -0.024 0 0.024




which are examples of the matrices in eq. (2). In general, whereas A and B have a row per

equation and a column per variable, C and D have a row per flow variable and a column

per model variable.

The matrices of log-linear coefficients A to D of the Brock and Mirman model are:
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A =




10.111 0 0

0.065 -0.039 -0.065

0 10.000 0


 ; B =




9.100 0 0

0 0 -0.065

25.397 10.159 -15.397




C = 03×3 D =




1.000 0.400 0

1.000 0.400 0

1.000 -0.600 0




And the matrices of log-linear coefficients A to D of the SOE model are:

A =




1.000 0 0 0 0 0

0.734 0 -1.207 -28.570 26.213 0.347

0 0 0 -28.570 25.714 0

0 -0.590 3.398 0 0 0

0 0 0 0 0 0

0 0 3.398 0 0 0




;

B =




0.402 0 0 0 0 0

0 0 -0.361 -28.100 25.290 0.327

0 0 0 -28.100 25.290 0

-1.486 -0.614 3.534 -1.123 1.0108 0

-1.003 0 -0.321 0 0.777 0

0 0 0 0 0 3.398




C =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 10 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 -2.286 0 0 0




; D =




1.000 0 0.320 0 0.680 0

1.016 -0.016 0.325 0 0.691 0

4.091 0 1.309 -3.090 2.782 0

0 0 -9.000 0 0 0

1.000 0 0.320 0 -0.320 0

0 -0.024 0 0 0 0

0.984 0 2.372 -0.755 0.669 0




4 A Theoretical Solution to LDRE Models

Klein (2000) proposes a theoretical solution to LDRE models that is summarized by a

pair of functions, one representing the law of motion of the state (or backward-looking)

variables, and the other representing the optimal policy rule (the optimal decision on

forward-looking variables). The first maps the state space into itself and the second maps

the state space into the set of optimal policy functions. These functions correspond to f
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and p introduced in section 3. The solution is, therefore, the recursive representation of

the stable solution to a system of log-linear difference equations. Here, we follow Soderling

(1999) to show how to obtain this pair of functions from the matrices of coefficients A and

B.

Klein’s method is based on the Schur decomposition of the matrices A and B in eq.

(1). The decomposition gives the square complex matrices Q, S, T , and Z such that:14

A = QSZH and B = QTZH

where ZH denotes the transpose of the complex conjugate of Z. Q and Z are unitary

matrices, that is QHQ = ZHZ = I, and S and T are upper triangular.

The generalized eigenvalues of the matrices A and B are equal to the i-th diagonal ele-

ment of T divided by the i-th diagonal element of S. When the matrix A is singular, some

of the generalized eigenvalues are infinite. Let us define as stable generalized eigenvalues

those that are less than one. The unstable are those larger or equal to one in absolute

value, including infinite values.

The decomposition can be reordered without altering the result. The reordering made

here is such that the block of stable generalized eigenvalues come first.

Starting with the vector of variables x̂, define the auxiliary variable ŷ as ŷ=ZH x̂, so

ŷ(t) =

(
ŷs(t)

yu(t)

)
= ZH

(
x̂1(t)

x̂2(t)

)
(21)

By virtue of the Schur decomposition, pre-multiplying both sides of (1) by QH gives:

SEtZ
H x̂(t + 1) = T ZH x̂(t)

which, employing the auxiliary variables defined in (21), becomes:

S Etŷ(t + 1) = T ŷ(t)

14If the reader does not feel comfortable with the statement above, notice that it takes just a Matlab
call to get the Schur decomposition of two matrices. Given two square matrices A and B, through the
sentence [S,T,Q,Z]=qz(A,B), Matlab returns the matrices S, T , Q, and Z. In fact, the decomposition
that Matlab makes is such that A = QHSTH .
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A partition of the matrices S and T conformably with ys and yu, is:

(
Sx1x1 Sx1x2

0 Sx2x2

)
Et

(
ŷs(t + 1)

ŷu(t + 1)

)
=

(
Tx1x1 Tx1x2

0 Tx2x2

)(
ŷs(t)

ŷu(t)

)
(22)

Notice that the second difference equation contains the unstable roots due to the reordering

of the eigenvalues. Therefore, a stable solution for that equation requires ŷu(t)=0 for all

t, which implies the existence of a linear dependency among the components of the vector

ŷu(t). The remaining equations in (22) can be written as:

Et ŷ
s(t + 1) = S−1

x1x1
Tx1x1 ŷ

s(t) (23)

where it can be shown that S−1
x1x1

exists. This is because S is a triangular matrix that

in turn was reordered in such a way that none of its elements in the diagonal are zero

(otherwise an unstable generalized eigenvalue would have arisen and its correspondent

block could not be part of the upper right block of S).15

Multiplying eq. (21) by Z gives Z ZHx(t) = x̂(t) =Z ŷ(t) because Z ZH = I. Making

a partition of Z conformably with the partition of x̂ and ŷ in eq. (21), we can write:

(
x̂1(t)

x̂2(t)

)
=

(
Zx1ys Zx1yu

Zx2ys Zx2yu

)(
ŷs(t)

ŷu(t)

)
=

(
Zx1ys

Zx2ys

)
ŷs(t) (24)

where the second equality arises because ŷu(t) = 0 and the first equation in (24) says that

x̂1(t) = Zx1ys ŷ
s(t). Recalling that the value of x̂1(0) arises from the initial conditions, one

can solve for ŷs(0):

ŷs(0) = Z−1
x1ys

x̂1(0)

provided that Zx1ys is invertible. It can be shown that the invertibility is assured when

the number of predetermined variables (rows in Zx1ys) equals the number of stable roots

(columns in Zx1ys).

Some of the backward-looking variables are affected by innovations to the exogenous

processes and some others are not. For instance, while the next period stock of financial

assets may be affected by changes in the interest rate, the stock of capital will be equal

to the existent stock plus the net investment in the current period. Hence, we may write

x̂1(t + 1) = Et x̂1(t + 1) + ε1(t + 1), with some components of ε1(t + 1) equal to zero. On

the other hand, recalling that the first equation in (24) implies that x̂1(t) = Zx1ys ŷ
s(t), the

15The determinant of a triangular matrix is equal to the product of the diagonal elements, which are
all non zero in matrix S.
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expression x̂1(t + 1) = Et x̂1(t + 1) + ε1(t + 1) can be written as:

Zx1ys [ŷs(t + 1)− Et ŷ
s(t + 1)] = ε1(t + 1)

So:

ŷs(t + 1) = Et ŷ
s(t + 1) + Z−1

x1ys
ε1(t + 1)

This is not an explicit solution for ŷs(t + 1) because its expected value as of time t is also

on the right hand side of the equation. However, expression (23) may then be used to give:

ŷs(t + 1) = S−1
x1x1

Tx1x1 ŷ
s(t) + Z−1

x1ys
t
ε1(t + 1) (25)

It remains to get the solution in terms of the original variables in x̂1(t), something that is

straightforward if we appeal to the definition of the auxiliary variable ŷ(t) and the partition

of Z made above (see equations (21) and (24)):

x̂1(t + 1) = Zx1ys ŷ
s(t + 1) = Zx1ysS

−1
x1x1

Tx1x1Z
−1
x1ys

x̂1(t) + ε1(t + 1) (26)

Now, in order to solve for x̂2(t), notice that (24) implies that x̂2(t) = Zx2ys ŷ
s(t), and again,

since x̂1(t) = Zx1ys ŷ
s(t),

x̂2(t) = Zx2ysZ
−1
x1ys

x̂1(t) (27)

To establish a link between these results, the recursive interpretation of the models in

section 3, and the Matlab functions in the Toolbox, define

p ≡ Zx1ysS
−1
x1x1

Tx1x1Z
−1
x1ys

(28)

f ≡ Zx2ysZ
−1
x1ys

(29)

This notation permits writing (26) as x̂1(t+1) = px̂1(t) +ε1(t+1), and (27) as x̂2(t) =

f x̂1(t). Thus, (28) and (29) completely describe the evolution of the system once the initial

conditions and the shocks hitting the economy are specified. Particularly, p represents

the state transition function governing the evolution of the state variables. Likewise f

represents the policy function or decision rule and it maps the state of the economy into

the decisions about the forward-looking variables. To see the dynamics implied by p and

f , remember that the initial conditions are specified in x̂1(0). Then f gives the value of

x̂2(0) and p gives the value of the backward-looking variables at t = 1 for a particular

shock ε1(1). At t=1, x̂2(1) = f x̂1(2), and x̂1(2) = px̂1(1)+ ε1(2), and son on.
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The value of the additional variables is straightforward to get at this point. Making

partitions of the matrices C and D and the vector x at times t and t + 1 in eq. (2),

x̂3(t) =
(

C1|C2

) (
x̂1(t + 1)

x̂2(t + 1)

)
+

(
D1|D2

) (
x̂1(t)

x̂2(t)

)
(30)

where both C1 and D1 are of dimension n3 × n1 while both C2 and D2 are of dimension

n3 × n2. Notice that the elements of C2 are all zeros in most of the cases. Also recalling

that x̂1(t + 1)= p x̂1(t) + ε1(t + 1) and that x̂2(t)= f x̂1(t), (30) can be re-written as:

x̂3(t) = (C1 p + C2 f p + D1 + D2 f)x̂1(t) + (C1 + C2 f) ε1(t + 1) (31)

The following notation is used in the Toolbox:

g ≡ C1 p + C2 f p + D1 + D2 f (32)

h ≡ C1 + C2 f (33)

which simplifies (30) to:

x̂3(t) = g x1(t) + h ε1(t + 1) (34)

5 The Matlab Functions in the LDRE Toolbox

This section describes the role of the Matlab functions of the LDRE Toolbox and shows

how a researcher should adapt the model-specific functions to his own model. The func-

tions in the Toolbox can be grouped in three subsets and they are all coordinated by the

function CONTROL.m. The first subset carries out the log-linearization; the second obtains

the fundamental equations (28) and (29), as well as the set of coefficients in (32) and (33);

and the third subset plots impulse response functions, computes business cycles statistics,

and simulates the economy under a user-provided sequence of innovations to the exoge-

nous predetermined variables. Table 5 lists the functions in each subset and uses a star to

identify the model-specific functions.

In designing the LDRE Toolbox, we have minimized the number of function calls to

just one. After providing his model-specific information, the researcher just has to call

the function CONTROL.m to solve his model and obtain his results. To provide the model

specific information, the researcher has to edit 5 of the 16 functions in the Toolbox. First,

he has to pass some in-file information within CONTROL.m. To serve as an example, a
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simplified version of this function follows:

function [X,f,p]=CONTROL

global n1 n2 n3 ne nv n
%--- Model specific information goes here: -----------------------------

n1=2; n2=2; n3=4; ne=1;
proc = [1 0 0];
SIGMA = diag([0.0099818^2]);
shocks=[1]; lengthIR = 60;
directory = ’C:\Your directory\’;

%--------------------------------------------------------------
nv=n1+n2+n3; n=n1+n2;
[g,h,f,p]=recrepres;
X=procedure(proc,shocks,lengthIR,SIGMA,GDP,g,h,f,p,directory);

The first piece of model-specific information corresponds to the number of each type

of variable in the model. n1 is the number of backward-looking variables (including both

the endogenous and the exogenous); n2, the number of forward-looking variables; ne, the

number of exogenous variables among the backward-looking ones; and, n3, the number

of additional or flow variables. As indicated in Table 1, to solve the Brock and Mirman

economy we set n1=2, n2=1, n3=3, and ne=1; to solve the KPR economy, we set n1=2,

n2=2, n3=4, and ne=1; and to solve the SOE economy, we set n1=3, n2=3, n3=7, and ne=1.

The researcher must indicate the required output by filling in the binary vector proc

which of size 1× 3. The first component of the vector corresponds to population moment

conditions; the second to impulse-response functions; and the third to simulations with

a researcher-provided sequence of innovations to the exogenous predetermined variables.

Setting proc=[1,0,0], the Toolbox returns the population moment conditions; setting

proc=[0,1,0], returns the impulse response functions; and setting proc=[0,0,1], returns

the results of the simulations with the researcher-provided innovations to the exogenous

predetermined variables.

The statistical properties of the innovations to the exogenous predetermined variables

is specified through the variance-covariance matrix SIGMA, a square matrix of size ne.

When the researcher seeks to obtain impulse-response functions, the vector shocks

specifies the predetermined variables receiving impulses. The size of shocks is 1× ne and

its ordering matters: its first element corresponds to the first exogenous predetermined

variable, the second element to the second exogenous predetermined variable, and so on.

shocks is a binary vector and a 1 in the j-th position indicates that the j-th exogenous

predetermined variable is receiving an impulse equal to a 1% deviation with respect to its

steady-state value. Furthermore, the researcher must specify the length of the responses
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by providing a value to the scalar variable lengthIR.

The last piece of information that has to be passed within CONTROL.m is the name of a

directory where the tables of moment conditions will be saved. To simulate a model under

a particular sequence of shocks, the file containing the innovations to the shocks must also

be saved in this directory following the guidelines given below.

Once CONTROL.m has collected the above in-file information, it first calls recrepres.m

to solve for the recursive representation of the model, and then calls procedure.m to obtain

the desired results. The function recrepres.m, in turns, calls lincoef.m to log-linearize

the model equations as it is explained next.

5.1 The Log-linearization Funtions

To log-linearize the model, lincoef.m calls stst.m once and eqns.m and flows.m twice.

The researcher has to adapt these functions to his own model as we illustrate next by

adopting the KPR model as example.

stst.m has to return the values of the variables and parameters of the model and

this requires solving the system of steady-state equations. An adaptation of the function

stst.m to the KPR economy follows:

function [X,Xf,p] = stst %STEADY STATE OF THE KPR ECONOMY

%=======Parameter values and steady state values of k and h ==============
alpha = 0.420; gamma = 0.004; delta = 0.025; rho = 0.900;
h = 0.200; k = 10.00; r = 1.065^.25-1;

%======Calibration=======================================================
beta = (1+gamma)/(1+r);
ratioyk = ( (1+gamma)/beta - 1 + delta)/alpha;
ratioxy = (1/rayk)*(delta+gamma);
ratiocy = 1 - ratioxy;
z = ratioyk*k^(1-alpha)*h^(alpha-1);
w = (1-alpha)*z*k^alpha*h^-alpha;
rk = r + delta;
y = z*k^alpha*h^(1-alpha);
c = y - (gamma+delta)*k;
i = k*(1+gamma) - k*(1-delta);
omega = (c/y)*(h/(1-h))/(1-alpha);
ratiock = c/k;
ratioiy = i/y;

%=====Model and flow variables==============================================
X = [z k c h]’;
Xf = [y i w rk]’;

p = struct(’zss’,z,’alpha’,alpha,’beta’,beta,’gamma’,gamma,’delta’,...
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delta,’omega’,omega,’rho’,rho,’xi’,xi);

After writing the parameter values and setting the values of k and h, the function solves

the system of equations (16a) to find the values of all variables and ratios shown in Table

4, as well as the value of ω. Then it sets the values of the vectors X and Xf, which contain

the steady-state values of the variables in the model and the values of the flow variables.

The last two lines construct a structure p containing the values of the parameters. It is

important to keep unchanged the input-output syntaxis of stst.m because other functions

in the Toolbox have been programmed to work with variables called X, Xf, and p.

The system of equations defining the model has to be written within the function

eqns.m. A simplified version of eqns.m adapted to the KPR economy follows:

function coeff=eqns(X,flag,p) %EQUATIONS IN THE KPR ECONOMY

s=X’; %used to calculate percentage deviations
X=repmat(X,1,size(X,1)); %matrix X is constructed repeating vector X
SmId=1e-6*eye(size(X)); %finite differences: 1st step

switch flag1 %coefficients, A or B
case ’A’

Xp=X+SmId; %deviation on variables dated at t+1
case ’B’

Xp=X; X=X+SmId; %deviation on variables dated at t
end

%======== Only the following lines are model specific ============================
z=X(1,:); k=X(2,:); c=X(3,:); h=X(4,:);
zp=Xp(1,:);kp=Xp(2,:); cp=Xp(3,:); hp=Xp(4,:);

uc = 1./c; uh=-p.xi./(1-h); ucp = 1./cp;

coeff(1,:) = (1-p.rho)*p.zss + p.rho*z - zp;
coeff(2,:) = (1+p.gamma)*uc - p.beta * ucp .* ...

(1 + p.alpha*zp.*kp.^(p.alpha-1).*hp.^(1-p.alpha) - p.delta);
coeff(3,:) = z.*k.^p.alpha.*h.^(1-p.alpha) + ...

(1-p.delta)*k - c - kp*(1+p.gamma);
coeff(4,:) = -uh./uc - (1-p.alpha)*z.*k.^p.alpha.*h.^(-p.alpha);

%============================================================================
coeff=coeff/1e-6; %finite diff.: 2nd step: (f(x+Dx)-f(x))/Dx
s=repmat(s,size(s,2),1);
coeff=coeff.*s;

The inputs of eqns.m are the vector of variables X created in stst.m, the variable flag

which indicates whether the matrix of coefficients A or B is requested, and the structure

of parameters p that was defined within stst.m. The model-specific part of the function

starts creating two vectors for each variable that permits obtaining the t- and t + 1-values
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of the variables. For example, for the productivity shock, which is the first component

of X, we wrote z=X(1,:) and zp=Xp(1,:) to obtain the values of zt and zt+1. The user

should be aware that the position of the variables in X is the position indicated in stst.m

and that the order of the variables remains unchanged across the functions in the Toolbox.

In the next step we have written the system (10). We use .* to indicate a product

and .^ to indicate exponentiation because this is the way Matlab recognizes these opera-

tions with matrices. For each equation i = 1, ..., 4, we first wrote coeff(i,:)= and then

the equation as if they were equated to zero. Parameters are indicated anteceding the

expression p. to the nomenclature introduced in stst.m.

The equations defining the flow variables should be written in the function flows.m.

A simplified version of the function adapted to the KPR economy (see eqs. (11)) follows:

function coeff=flows(X,Xf,flag,p) %FLOWS OF THE KPR ECONOMY

s=X’; %used for percentage deviations
X=repmat(X,1,size(X,1)); %X is made repeating the vector X
SmId=1e-6*eye(size(X)); %creates finite differences

switch flag %coefficients, C or D
case ’C’

Xp=X+SmId; %deviation on variables dated at t+1
case ’D’

Xp=X; X=X+SmId; %deviation on variables dated at t
end

%======== Only the following lines are model specific =========================
z=X(1,:); k=X(2,:); c=X(3,:); h=X(4,:); zp=Xp(1,:);
kp=Xp(2,:); cp=Xp(3,:); hp=Xp(4,:);

coeff(1,:) = - Xf(1) + z.*k.^p.alpha.*h.^(1-p.alpha);
coeff(2,:) = - Xf(2) + z.*k.^p.alpha.*h.^(1-p.alpha) - c;
coeff(3,:) = - Xf(2) + (1-p.alpha)*z.*k.^p.alpha.*h.^-p.alpha;
coeff(4,:) = - Xf(4) + p.alpha)*z.*k.^(p.alpha-1).*h.^(1-p.alpha);

%==========================================================================
coeff=coeff/1e-6; %: (f(x+Dx)-f(x))/Dx
s=repmat(s,size(coeff,1),1);
Xf = repmat(Xf,1,size(coeff,2));
coef_flow=coeff.*s./Xf;

The format of flows.m is similar to the format of eqns.m although flows.m has an extra

input, the vector Xf which was created in stst.m and which contains the value of the flow

variables. The input variable flag now indicates whether the matrix C or D is requested.

Each equation in flows.m is preceded by the expression coeff(i,:) = - Xf(i), where

i = 1, ..., 4.
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5.2 The Core Functions

To solve the model, the function CONTROL.m calls recrepres.m to compute p and f (see

eqs. (28) and (29)) as well as g and h (see eqs. (32) and (33)). recrepres.m calls

reorder.m, qzswitch.m and the Matlab built-in function qz.m.16 reorder.m checks, at

pairs and starting from the top, whether or not the generalized eigenvalues are arranged

in an ascending order. If they are, then it checks the next pair and so on. If they are not,

it then calls qzswitch.m, which in turns completes the desired ordering. None of the core

functions are model specific.

5.3 The Output Functions

Once the function CONTROL.m has obtained the solution to the recursive representation of

the LDRE model, it calls procedure.m to obtain the requested results. procedure.m, in

turns, calls other functions which are described next.

In an almost completely model-specific function nomeclature.m, the researcher has to

write the names of the variables in his model. These names are used in the headings of

graphs and tables of results. The nomenclature must be ordered according to the positions

of the variables in the vectors X and Xf of the file stst.m. The model variables must precede

the flow variables, and among the flow variables, it is assumed that the first variable is the

GDP. A simplified version of nomenclature, adapted to the KPR model follows:

function [Names,Notation] = nomenclature

A=1; k=2; c=3; h=4; y=5; i=6; w=7; r=8;

Names{A} = ’Productivity’; Names{k} = ’Capital’;
Names{c} = ’Consumptions’; Names{h} = ’Hours’;
Names{y} = ’GDP’; Names{i} = ’Investment’;
Names{w} = ’Wage rate’; Names{r} = ’Ret. on Cap."

Notation = {’A’;’k’;’c’;’n’;’y’;’i’;’w’;’r’};

Among the remaining output functions, impres.m computes the impulse response func-

tions; moments1.m, the population moment conditions; and simushocks.m carries out the

simulations of the model with the user-provided sequence of innovations to the exogenous

predetermined variables. When the researcher requests the simulations with actual shocks,

the function moments2,m computes the sample moment conditions.

16The function recrepres.m is Paul Klein’s function solab.m to which we have added the lines necessary
to obtain the coefficients of the flow variables. qzswitch is a function written by Christopher Sims and
the version in the Toolbox’s has minor notation and documentations changes. See Sims (1995).
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impres.m computes the impulse response functions assuming that the impulse is equal

to 1% with respect to the steady state value of the variable being shocked. Briefly, for

a given impulse x̂1(1), impres iterates x̂1(t + 1) = px̂1(t) for the sate variables; x̂2(t) =

f x̂1(t) for the control variables; and x̂3(t) = gx̂1(t) for the additional variables.

moments1.m computes the population moment conditions reading the variance-covariance

matrix specified in CONTROL.m along with the matrices p to h. Its output contains the

standard deviation (or absolute volatility) of the variables, along with the relative volatility

(measured with respect to the volatility of GDP) and several correlations. The results are

written in four tables that are saved in the file tables.out. This file, which can be opened

with the Matlab editor, is overwritten each time the researcher requests to recalculate the

moment conditions.

Finally, simushocks.m reads the user-provided innovations to the exogenous predeter-

mined variables and computes the same statistics as moments1.m, except that they are sam-

ple and not population moments. The statistics are also reported in the file tables.out.

6 The Toolbox at Work

This section discusses the output of the Toolbox by showing some results related to the

RBC models of Section 3. Starting, with the Brock and Mirman model, the following

matrices summarize the solution to its recursive representation:

p =

(
0,90 0

1.00 0.40

)
; f =

(
1.00 0.4

)
;

As for the coefficients of the flow variables, g and h are both of 3× 1. h is a null matrix

and g has a unitary vector in its first column and the vector (0.4, 0.4,−0.6)′ in its second

column. To understand better how the matrices p and f interact with other elements of

the model, assume that starting at the steady state at time t = 0 (i.e. ẑ0 = k̂0 = ĉ0 = 0),

there is a one-time 1% innovation to the productivity at time t = 1, i.e. ε1 = 1. At t = 1,

(
ẑ1

k̂1

)
= p

(
ẑ0

k̂0

)
+ ε1 =

(
0,90 0

1.00 0.40

)(
0

0

)
+

(
1

0

)
=

(
1

0

)

which shows that ẑ1 = 1, and k̂1 = 0. The optimal response of consumption is

ĉ1 = f

(
ẑ1

k̂1

)
=

(
1.0 0.4

) (
1

0

)
= 1
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that is to say, consumption rises by 1%. At time t = 2, (ẑ2, k̂2)
′ = p× (ẑ1, k̂1)

′, which gives

ẑ2 = 0.9ẑ1 and k̂2 = ẑ1. Thus, the percentage deviation of the capital stock at t = 2 is

equal to the percentage deviation of consumption at t = 1. The result extends to any two

contiguous periods so that in the Brock and Mirman economy k̂t+1 = ĉt for any t. This is

not a coincidence for what we have discussed here is the log-linear approximation to the

exact policy functions kt+1 = βαztk
α
t and ct = (1 − βα)ztk

α
t of eqs. (7). If we use paper

and pencil to log-linearize these policies following the guidelines given in section 3.4, we

obtain precisely that the approximate policy rules for k̂t+1 and ĉt are equal, i.e. k̂t+1 =

ĉt = ẑt + αk̂t.

The equality k̂t+1 = ĉt is not a general result but a particular result valid for the Brock

and Mirman economy. Notwithstanding, the equality is useful to illustrate the accuracy

of the log-linear approximations in this particular model for which we know the exact

solution. Figure 1 shows the consumption policy function c(kt, zt) for particular values

of (kt, zt); in the left panel, zt is equal to its steady-state value and kt deviates between

-10% and +10% from its steady-state value. The solid line shows the exact policy function

ct = (1 − βα)ztk
α
t , and the dashed line shows the linear approximation to this policy,

i.e. ct = c[1 + (αk̂t + ẑt)], where c is the steady-state value of consumption. When the

deviation of kt from its steady-state value is equal to 10% (i.e. kt = 11), the approximate

policy rule returns a consumption value that is 6% higher than the value indicated by the

exact policy function. Observing that it is highly unlikely to find that kt is 10% above

its steady state value, we can conclude that the approximation is relatively accurate in

the Brock and Mirman economy. In the right panel of Figure 1, k̂t = 0, and zt deviates

between -10% and +10% from its steady-state value. The approximation is equal to the

exact consumption policy function, and this happens because the exact policy function is

linear in zt.

The other two models do not have known exact solutions and their approximate solu-

tions are summarized by their corresponding matrices of coefficients f to h. In the KPR

economy, these matrices are:

f =

(
0.296 0.617

1.051 -0.294

)
; p =

(
0.900 0.000

0.136 0.953

)
; g =




1.609 0.250

4.702 -0.615

1.577 1.533

0.066 -0.031




; h = 04×2;
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and in the SOE economy the matrices f to h are:

f =




1.282 -0.030 0.543

1.290 0 0.413

0.816 0 0.473


 ; p =




0.402 0 0

2.411 0.984 -3.229

0.816 0 0.423


 ;

g =




1.877 0 0.601

1.908 -0.016 0.610

3.718 0.092 0.781

8.164 0 -4.774

0.587 0 0.188

0 -0.024 0

-0.987 0.022 1.272




; h =




0 0 0

0 0 0

0 0 0

0 0 10.000

0 0 0

0 0 0

0 0 -2.286




;

Turning our attention toward the output of the LDRE Toolbox, we start calculating

the population moment conditions of the variables in the three RBC models by setting

proc=[1,0,0] in the file CONTROL.m. After executing [X,f,p]=CONTROL at the Matlab

command window, the population moment conditions are summarized in the structure X.

Additionally, the file tables.out will display the four tables showing these moment con-

ditions. We can now write any of the following at the Matlab command window: X.sdx

to obtain percentage standard deviations; X.sdxsdGDP to obtain the ratios between the

percentage deviation of each variable and the percentage deviation of GDP; X.rhoxlagx,

autocorrelations; X.rhoxGDP, contemporaneous correlations with GDP; X.rholagxGDP,

correlation between (four) lags of each of the variables and the GDP at time t; and

X.rhoxlagGDP, correlation between (four) lags of GDP and the remaining variables at

time t. In Table 6 we summarize the population moment conditions of the three RBC

models that we obtain using the LDRE Toolbox. The population moment conditions of

the KPR model reproduce the results in Table 4 (pg. 222) of King et al. (1988a) (see the

fourth row and last six columns of that table) and the population moment conditions of

the SOE model correspond to the central columns of Table 6 (pg. 812) of Mendoza (1991).

Setting proc=[0,1,0] and lengthIR = 15 in CONTROL.m, and executing [X,f,p]=

CONTROL at the Matlab command window, we obtain impulse response functions for 15

periods. X is now a matrix containing a row per time period and a column per variable.

A graph per variable is displayed on the screen after pressing any key. For the sake of

illustration, three response functions following a 1% productivity impulse in the SOE are

shown in Figure 2.

Setting proc=[0,0,1] in CONTROL.m allows us to simulate the models under a user-

specified sequence of shocks. For this end, we have created a vector of innovations to the
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productivity shocks called innovations, which is of size 30,000, using a (quasi)-random

number generator. More in general, to simulate a model under a particular sequence

of innovations to the exogenous predetermined variables, the researcher has to write the

innovations in a matrix innovations which has to be saved writing save innovations

innovations. The matrix will be of size T × ne, where T is the number of simulation

periods and ne is the number of exogenous variables in the model. In our example, we

have set the variance of our innovations equal to the variance specified in SIGMA within

the function CONTROL.m of the Brock and Mirman economy because we want to show that

the population moment conditions are very similar to the sample moment conditions when

the length of the sample is long enough. When [X,f,p]=CONTROL is executed, the output

structure X has the same format as the structure obtained setting proc=[1,0,0], except

that a new field X.Y will contain a matrix Y which has a row per simulation period and

a column per variable. Table 7 shows the sample moment conditions of the Brock and

Mirman economy when the economy is simulated with the shocks described above. The

results are similar to those shown in Table 6.

7 Summary

We have provided step-by-step guidance on the procedures required to approximate a

model with a log-linear approximation and study its economic implications. The Toolbox

of Matlab functions accompanying this paper and the explanations in the paper can help

a researcher with almost no experience in computational economics to approximate and

study his own dynamic rational expectations model. He must edit 5 out of the 16 functions

in the Toolbox to provide his model-specific information. Part of this information is the

values of parameters and variables when the model rests in its non-stochastic steady state.

A calibration exercise is required for this end and we have shown how three standard RBC

models have been calibrated in the literature.

Once the researcher has supplied his model specific information, a set of functions in

the Toolbox carries out the numerical log-linearization, and we have shown the equiva-

lence between the numerical and analytical log-linearization of one RBC model. A second

set of functions solves for the recursive representation of the approximated model. These

functions implement the solution proposed by Klein (2000), solution that has been dis-

cussed in detail in the paper. The solution to the approximated model is summarized in

four matrices that equip the third set of Matalb functions with the inputs necessary to

deliver three types of results. Namely, population moment conditions, impulse response
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functions, and sample moment conditions when the model is simulated under a sequence

of user-provided shocks. Three RBC examples have been worked out thoroughly to show

how the functions in the Toolbox are adapted to particular cases of log-linear dynamic

rational expectations models. In the process, we replicated some results published in the

RBC literature.
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Table 1: Variable Sorting According to the Criteria of Section 2
Model Predetermined Non- Inno- Flows

Predetermined vations
x1(t)

Endo- Exo- x2(t) ε1(t) x3(t)
genous genous

Model 1 k z c ε y, w, rk

Model 2 k z c, h ε y, w,rk

Model 3 b, k z c, h ka ε y, ỹ, s, i, pr, ip, tb

Notation: k ≡ capital stock; z ≡ productivity shock; c ≡ consumption; h ≡ hours; ε ≡ innovation to the productivity shock;
y ≡ GDP; w ≡ wage rate; rk ≡ return on capital; b ≡ international debt; ka ≡ auxiliary capital variable; ỹ ≡ GNP; s ≡
savings; i ≡ investment; pr ≡ productivity; ip ≡ interest payments; tb ≡ trade-balance-output ratio.

Table 2: Equation Sorting According to the Criteria of Section 2
Model Optimality Budget Constraint & Forcing

Conditions Market Clearing Processes
Model 1 (5a) (5b) (4c)
Model 2 (10b), (10d) (10c) (9b)
Model 3 (13b), (13c), (13e) (13d) (13a)

Note: The equation defining the auxiliary variable ka completes the system of equations in Model 3 and that equation can
be understood as a budget constraint.

Table 3: Parameters Values used in the Calibration
Model α β γ δ ω φ ψ ρ σ

Model 1 0.40 0.984 - 1.000 - - - 0.90 -
Model 2 0.42 0.988 0.004 0.025 3.305 - - 0.90 -
Model 3 0.32 0.961 - 0.100 1.455 0.019 0.11 0.42 2.00

Note: The time period in Models 1 and 2 is one quarter and in Model 3 is one year.
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Table 4: Macroeconomic Aggregates and Ratios at Steady State
Macroeconomic aggregates

Model h c y i k z
Model 1 1.000 15.40 25.40 10.00 10.00 10.11
Model 2 0.200 0.683 0.973 0.290 10.00 0.941
Model 3 1.007 1.123 1.486 0.340 3.398 1.000

Macroeconomic ratios
Model c/y i/y k/y b/y tb/y -

Model 1 0.606 0.394 0.394 - - -
Model 2 0.702 0.298 10.28 - - -
Model 3 0.755 0.229 2.286 -0.397 0.016 -

Note: See Table 1 for nomenclature details.

Table 5: Matlab functions in the Toolbox
Log Core Output

Linearization Functions Functions
stst.m* recrepres.m procedure.m

lincoeff.m qzswitch.m nomenclature.m*
eqns.m* reorder.m impres.m
flows.m* simushocks.m

tables.m
tables.out
graphs.m
moments1.m
moments2.m

innovations.mat*
CONTROL.m*

Notes: a) The function CONTROL.m coordinates the execution of all other functions to produce the required results. b) The
functions that have to be adapted to each model are starred. c) The files tables.out and innovations.mat are not Matlab
functions but a text file to show business cycle statistics and a variable containing innovations to exogenous predetermined
variables, respectively.
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Table 7: Sample Moment Conditions in the Brock and Mirman Economy
Variable Standard Autoco- Cross Correlations with GDP at time t

deviation rrelation variables at variables at
(percent) t t + 1 t + 2 t + 3 t− 1 t− 2 t− 3

GDP 3.653 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Consumption 3.653 0.956 1.000 0.956 0.884 0.804 0.956 0.884 0.804
Capital 3.653 0.956 0.956 1.000 0.956 0.884 0.884 0.804 0.725
Wages 3.653 0.956 1.000 0.956 0.884 0.804 0.956 0.884 0.804
Return on k 1.078 0.333 0.148 -0.148 -0.246 -0.270 0.246 0.270 0.268
Prod. shock 2.295 0.901 0.983 0.886 0.798 0.717 0.959 0.895 0.818

Notes: Simulations setting the standard deviations of innovations to the productivity-shock process equal to 0.9981%. Results
are comparable to the first block of Table 6. Notice that the sample productivity shock is lightly more volatile than the
theoretical shock.
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Figure 1: Consumption Policy Functions in the Brock and Mirman Economy: Exact and
Linear Approximate Solutions
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Note: In the left panel of the figure, the solid line shows the exact consumption optimal policy rule for different values of
k when ẑt = 0; the dashed line shows the approximate policy function arising from the solution method discussed in the
paper. In the right panel the comparison is made for different values of zt when k̂t = 0.

Figure 2: Impulse-Response Functions in the SOE
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Note: Response functions of GDP, investment, and the trade balance-GDP ratio to a 1% innovation to the productivity
shock.
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