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This manuscript analyzes the fundamental factors that govern the qualitative behavior

of discrete dynamical systems. It introduces methods for stability analysis of discrete

dynamical systems. The analysis focuses initially on the derivation of basic propositions

about the factors that determine the local and global stability of discrete dynamical

systems in the elementary context of a one dimensional, first-order systems. These

propositions are subsequently generalized to account for stability analysis in a multi-

dimensional, higher-order, nonlinear, dynamical systems.

1 One-Dimensional First-Order Systems

This section derives the basic propositions about the factors that determine the local

and global stability of discrete dynamical systems in the elementary context of a one

dimensional, first-order, autonomous, systems. These basic propositions provide the

conceptual foundations for the generalization of the analysis for a multi-dimensional,

higher-order, non-autonomous, nonlinear, dynamical systems. The qualitative analysis

of the dynamical system is based upon the analysis of the explicit solution of this system.

However, once the basic propositions that characterize the behavior of this dynamical

system are derived, an explicit solution is no longer required in order to analyze the

qualitative behavior of a particular dynamical system of this class.

1.1 Linear Systems

Consider the one-dimensional, autonomous, first-order, linear difference equation

yt+1 = ayt + b; t = 0, 1, 2, · · ·∞, (1)

where the state variable at time t, yt, is one dimensional, yt ∈ <, the parameters a

and b are constant across time (i.e., the dynamical system is autonomous), a, b ∈ <,
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and the initial value of the state variable at time 0, y0, is given.
1

1.1.1 The Solution

A solution to the difference equation yt+1 = ayt+b is a trajectory (or an orbit), {yt}∞t=0,

that satisfies this equation at any point in time. It relates the value of the state variable

at time t, yt, to the initial condition y0 and to the parameters a and b. The

derivation of a solution may follow several methods. In particular, the intuitive method

of iterations generates a pattern that can be easily generalized to a solution rule.

Given the value of the state variable at time 0, y0, the dynamical system given

by (1) implies that

y1 = ay0 + b;

y2 = ay1 + b = a(ay0 + b) + b = a
2y0 + ab+ b;

y3 = ay2 + b = a(a
2y0 + ab+ b) + b = a

3y0 + a
2b+ ab+ b;

...

yt = aty0 + a
t−1b+ at−2b+ ...+ ab+ b

(2)

Hence,

yt = a
ty0 + b

t−1X
i=0

ai.

Since
Pt−1

i=0 a
i is the sum of a geometric series, i.e.,

t−1X
i=0

ai =
1− at
1− a if a 6= 1,

it follows that

1Without loss of generality, time is truncated to be an element of the set of non-negative integers,
and the initial condition is that of the state variable at time 0. In general, t can be defined to be an
element of any subset of the set of integers from −∞ to +∞, and the value of the state variable can
be given at any point in time.
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yt =

⎧⎨⎩ aty0 + b1−a
t

1−a a 6= 1

y0 + bt a = 1,

(3)

or alternatively,

yt =

⎧⎨⎩
[y0 − b

1−a ]a
t + b

1−a if a 6= 1

y0 + bt if a = 1.
(4)

Thus, as long as an initial condition of the state variable is given, the trajectory

of the dynamical system is uniquely determined. The trajectory derived in equation (4)

reveals the qualitative role that the parameters a and (to a lesser extent) b play in the

evolution of the state variable over time. As will become apparent, these parameters

determine whether the dynamical system evolves monotonically or in oscillations, and

whether the state variable diverges, or converges in the long-run to either a stationary

state or a periodic orbit.

1.1.2 Existence of Stationary Equilibria

Steady-state equilibria provide an essential reference point for a qualitative analysis

of the behavior of dynamical systems. A steady-state equilibrium (or alternatively, a

stationary equilibrium, a rest point, an equilibrium point, or a fixed point) is a value of

the state variable yt that is invariant under further iterations of to the dynamical system.

Thus, once the state variable reaches this level it will remain there in the absence of any

exogenous perturbations.

Definition 1 A steady-state equilibrium of the difference equation yt+1 = ayt + b is a

value y ∈ <, such that

y = ay + b.
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Following Definition 1, (as depicted in Figures 1.1 - 1.7)

y =

⎧⎨⎩
b
1−a if a 6= 1

y0 if a = 1 & b = 0,
(5)

whereas if a = 1 and b 6= 0 a steady-state equilibrium does not exist. Thus, the

necessary and sufficient conditions for the existence of a steady-state equilibrium are as

follows:

Proposition 1 (Existence of a Steady-State Equilibrium).

A steady-state equilibrium of the difference equation yt+1 = ayt+ b exists if and only if

{a 6= 1} or {a = 1 and b = 0}.

In light of equation (5), the solution to the difference equation derived in (4) can

be expressed in terms of the deviations of the initial value of the state variable, y0, from

its steady-state value, y.

yt =

⎧⎨⎩ (y0 − y)at + y if a 6= 1

y0 + bt if a = 1
(6)

1.1.3 Uniqueness of Steady-State Equilibrium

A steady-state equilibrium of a linear dynamical system is not necessarily unique. As

depicted in Figures 1.1, 1.2, 1.5, and 1.7, for a 6= 1, the steady-state equilibrium is

unique, whereas as depicted in Figure 1.3, for a = 1 and b = 0, a continuum of steady-

state equilibria exists and the system remains where it starts. Thus, the necessary and

sufficient conditions for the uniqueness of a steady-state equilibrium are as follows:

Proposition 2 (Uniqueness of a Steady-State Equilibrium).
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A steady-state equilibrium of the difference equation yt+1 = ayt+b is unique if and only

if

a 6= 1.

1.1.4 Stability of Steady-State Equilibria

The stability analysis of steady-state equilibria determines the nature of a steady-state

equilibrium (e.g., attractive, repulsive, etc.). It facilitates the study of the local, and often

the global, behavior of a dynamical system, and it permits the analysis of the implications

of small, and often large, perturbations that occur once the system is in the vicinity of

a steady-state equilibrium. If for a sufficiently small perturbation the dynamical system

converges asymptotically to the original equilibrium, the system is locally stable, whereas

if regardless of the magnitude of the perturbation the system converges asymptotically

to the original equilibrium, the system is globally stable. Formally the definition of local

and global stability are as follows:2

Definition 2 A steady-state equilibrium, y, of the difference equation yt+1 = ayt + b

is:

• globally (asymptotically) stable, if

lim
t→∞

yt = y ∀y0 ∈ <

• locally (asymptotically) stable, if

∃² > 0 such that lim
t→∞

yt = y ∀y0 ∈ B²(y).3

2The economic literature, to a large extent, refers to the stability concepts in Definition 2 as global
stability and local stability, respectively, whereas the mathematical literature refers to them as global
asymptotic stability and local asymptotic stability, respectively. The concept of stability in the mathe-
matical literature is reserved to situations in which trajectories that are initiated from an ²-neighborhood
of a fixed point remains sufficiently close to this fixed point thereafter.
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Thus, a steady-state equilibrium is globally (asymptotically) stable if the system

converges to the steady-state equilibrium regardless of the level of the initial condition,

whereas a steady-state equilibrium is locally (asymptotically) stable if there exists an ²-

neighborhood of the steady-state equilibrium such that for every initial condition within

this neighborhood the system converges to this steady-state equilibrium.

Global stability of a steady-state equilibrium necessitates the gloabl uniquness of

the steady-state equilibrium (i.e., the absence of any additional point in the space from

which there is no escape.)

Local stability of a steady-state equilibuim necessitates the local uniquenss of the

steady-state equilibrium (i.e., the absence of any additional point in the neigborhood of

the steady-state from which there is no escape.). Thus if the system is characterized by

a continuum of equilibria none of these steady-state equilibrian is locally stable. Local

stability requires therefore local uniquness of the steady-state equilibrium. moreover,

if the system is linear local uniquness implies globaly uniqueness and local stability

necessariliy imply global stability.

Corollary 1 A steady-state equilibrium of yt+1 = ayt + b is globally (asymptotically)

stable only if the steady-state equilibrium is unique.

Following equation (6)

lim
t→∞

yt =

⎧⎨⎩ [y0 − y] limt→∞ at + y if a 6= 1;

y0 + b limt→∞ t if a = 1,
(7)

and therefore
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lim
t→∞

|yt| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if |a| < 1;

y0 if a = 1 b = 0;⎧⎨⎩ y0 (t = 0, 2, 4, ...)

(b− y0) (t = 1, 3, 5, ...)
if a = −1;

y if |a| > 1 & y0 = y;

∞ otherwise

(8)

Thus, as follows from equation (8):

(a) If |a| < 1, then the system is globally (asymptotically) stable converging to the

steady-state equilibrium y = b/(1 − a) regardless of the initial condition y0. In

particular, if a ∈ (0, 1) then the system, as depicted in figure 1.1, is characterized by

monotonic convergence, whereas if a ∈ (−1, 0), then as depicted in Figure 1.2, the

convergence is oscillatory.

(b) If a = 1 and b = 0, the system, as depicted in Figure 1.3, is neither globally nor

locally (asymptotically) stable. The system is characterized by a continuum of steady-

state equilibria. Each equilibrium can be reached if and only if the system starts at this

equilibrium. Thus, the equilibria are (asymptotically) unstable.

(c) If a = 1 and b 6= 0 the system has no steady-state equilibrium, as shown in Figure

1.4, limt→∞ yt = +∞ if b > 0 and limt→∞ yt = −∞ if b < 0.

(d) If a = −1, then the system, as depicted in figure 1.5, is characterized by (an

asymptotically unstable) two-period cycle,7 and the unique steady-state equilibrium,

y = b/2, is (asymptotically) unstable.

7Note that definition of stability is perfectly applicable for periodic orbits, provided that the dy-
namical system is redefined to be the nth iterate of the original one, and n is the periodicity of the
cycle.
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(e) If |a| > 1 then the system, as depicted in Figures 1.6 and 1.7, is unstable. For

y0 6= b/(1 − a), limt→∞ |yt| = ∞, whereas for y0 = b/(1 − a) the system starts

at the steady-state equilibrium where it remains thereafter. Every minor perturbation,

however, causes the system to step on a diverging path. If a > 1 the divergence is

monotonic whereas if a < −1 the divergence is oscillatory.

Thus the following Proposition can be derived from equation (8) and the subsequent

analysis.

Proposition 3 (A Necessary and Sufficient Condition for Gloabl Stability)

A steady-state equilibrium of the difference equation yt+1 = ayt + b is globally stable if

and only if

|a| < 1.

Corollary 2 For any y0 6= ȳ,

lim
t→∞

yt = ȳ if |a| < 1.

Convergence is monotonic if 0 < a < 1

Convergence is osciliatory if −1 < a < 0.

1.2 Nonlinear Systems

Consider the one-dimensional first-order nonlinear equation

yt+1 = f(yt); t = 0, 1, 2, · · · ,∞, (9)

where f : <→ < is a differentiable single-valued function and the initial value of the

state variable, y0, is given.
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1.2.1 The Solution

Using the method of iterations, the trajectory of this nonlinear system, {yt}∞t=0, can be

written as follows:

y1 = f(y0);

y2 = f(y1) = f [f(y0)] ≡ f (2)(y0);
...

yt = f (t)(y0).

(10)

Unlike the solution to the linear system (1), the solution for the nonlinear system

(10) is not very informative. Hence, additional methods of analysis are required in order

to gain an insight about the qualitative behavior of this nonlinear system. In particular,

a local approximation of the nonlinear system by a linear one is instrumental in the study

of the qualitative behavior of nonlinear dynamical systems.

1.2.2 Existence, Uniqueness and Multiplicity of Stationary Equilibria

Definition 3 A steady-state equilibrium of the difference equation yt+1 = f(yt) is a

level y ∈ < such that

y = f(y).

Generically, a nonlinear system may be characterized by either the existence of

a unique steady-state equilibrium, the non-existence of a steady-state equilibrium, or

the existence of a multiplicity of (distinct) steady-state equilibria. Figure 1.8 depicts a

system with a globally stable unique steady-state equilibrium, whereas Figure 1.9 depicts

a system with multiple distinct steady-state equilibria.
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1.2.3 Linearization and Local Stability of Steady-State Equilibria

The behavior of a nonlinear system around a steady-state equilibrium, y, can be ap-

proximated by a linear system. Consider the Taylor expansion of yt+1 = f(yt) around

y. Namely,

yt+1 = f(yt) = f(y) + f
0(y)(yt − y) +

f 00(y)(yt − y)2
2!

+ · · ·+Rn. (11)

The linearized system around the steady-state equilibrium y is therefore

yt+1 = f(y) + f 0(y)(yt − y)

= f 0(y)yt + f(y)− f 0(y)y

= ayt + b,

(12)

where, a ≡ f 0(y) and b ≡ f(y)− f 0(y)y are given constants.

Applying the stability results established for the linear system, the linearized sys-

tem is globally stable if |a| ≡ |f 0(y)| < 1. However, since the linear system approximates

the behavior of the nonlinear system only in a neighborhood of a steady-state equilib-

rium, the global stability of the linearized system implies only the local stability of the

nonlinear difference equation. Thus, the following Proposition is established:

Proposition 4 The dynamical system yt+1 = f(yt) is locally stable around steady-state

equilibrium y, if and only if ¯̄̄̄
dyt+1
dyt

¯̄̄
y

¯̄̄̄
< 1.

Consider Figure 1.9 where the dynamical system is characterized by four steady-

state equilibria. f 0(y1) < 1 and f 0(y3) < 1, and consequently y1 and y3 are locally

stable steady-state equilibria, whereas, f 0(0) > 1 and f 0(y2) > 1, and consequently 0

and y2 are unstable steady-state equilibria.
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1.2.4 Global Stability

The Contraction Mapping Theorem provides a useful set of sufficient conditions for the

existence of a unique steady-state equilibrium and its global stability. These conditions,

however, are overly restrictive.

Definition 4 Let (S, ρ) be a metric space and let T : S → S. T is a contraction

mapping if for some β ∈ (0, 1),

ρ(Tx, Ty) ≤ βρ(x, y) ∀x, y ∈ S.

Lemma 1 (The Contraction Mapping Theorem) If (S, ρ) is a complete metric space

and T : S → S is a contraction mapping then

• T has a single fixed point (i.e., there exists a unique v such that Tv = v).

• ∀v0 ∈ S and for β ∈ (0, 1), ρ(Tnv0, v) ≤ βnρ(v0, v) ∀n = 1, 2, 3, · · · .

Corollary 3 A stationary equilibrium of the difference equation yt+1 = f(yt) exists and

is unique and globally (asymptotically) stable if f : R→ R is a contraction mapping,

i.e., if

|f(yt+1)− f(yt)|
|yt+1 − yt|

< 1 ∀t = 0, 1, 2, · · · ,∞,

or if f ∈ C1 and

f 0(yt) < 1 ∀t = 0, 1, 2, · · · ,∞.

Thus, if over the entire domain the derivative of f(yt) is smaller than unity in

absolute value, the map f(yt) has a unique and globally stable steady-state equilibrium.
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2 Multi-Dimensional First-Order Systems

2.1 Linear Systems

Consider a system of autonomous, first-order, linear difference equations

xt+1 = Axt +B, t = 0, 1, 2, · · · ,∞, (13)

where the state variable xt is an n-dimensional vector; xt ∈ <n, A is an nxn matrix of

parameters which are constant across time; A = (aij), aij ∈ <, ∀i, j = 1, 2, ..., n, and

B is a n dimensional column vector of constant parameters; B ∈ <n. The initial value

of the state variable x0 is given.

2.1.1 The Solution

A solution to the multi-dimensional linear system xt+1 = Axt+B is a trajectory {xt}∞t=0
of the vector xt that satisfies this equation at any point in time and relates the value

of the state variable at time t, xt to the initial condition x0 and the set of parameters

embodied in the vector B and the matrix A. Given the value of the state variable

at time 0, x0, the method of iterations generates a pattern that constitutes a general

solution.

x1 = Ax0 +B;

x2 = Ax1 +B = A(Ax0 +B) +B = A2x0 +AB +B;

x3 = Ax2 +B = A(A2x0 +AB +B) +B = A3x0 +A
2B +AB +B;

...

xt = Atx0 +A
t−1B +At−2B + ...+AB +B

= Atx0 +
Pt−1

i=0A
iB.

(14)
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Unlike the one-dimensional case, the solution depends on the sum of a geometric

series of matrices rather than of scalars.

Lemma 2
t−1X
i=0

Ai = [I −At][I −A]−1 if |I −A| 6= 0.

Proof. Since

t−1X
i=0

Ai[I −A] = I +A+A2 + ...+At−1 − [A+A2 +A3 + ...+At] = I −At.

Post-multiplication of both sides of the equation by the matrix [I − A]−1 establishes

the lemma, noting that [I −A]−1 exists if and only if |I −A| 6= 0. 2

Using the result in Lemma 2 it follows that

xt = A
t[x0 − [I −A]−1B] + [I −A]−1B if |I −A| 6= 0. (15)

Thus, the value of the state variable at time t, xt depnds on the initial condition

x0 and the set of parameters embodied in the vector B and the matrix A. As will

become apparent, the qualitative aspects of the the dynamical system will be determined

by the parameters of the matrix A.

2.1.2 Existence and Uniqueness of Stationary Equilibria

The qualitative analysis of the dynamical systems can be examined in relation to a

steady-state equilibrium of the system. A steady-state equilibrium of this n-dimentional

system is a value of the n-dimentional vector the state variable xt that is invariant under

further iterations of to the dynamical system. Thus, once each of the state variables

reaches its steady-state level, the system will not evolve in the absence of exogenous

perturbations.
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Definition 5 A steady-state equilibrium of a system of difference equations xt+1 =

Axt +B is a vector x ∈ <n such that

x = Ax+B.

Following the Definition, in analogy to the analysis of the one-dimensional system,

there exists a unique steady-state equilibrium

x = [I −A]−1B if |I −A| 6= 0. (16)

Analogous to Proposition 2 , the following result concerning the uniqueness of steady-

state equilibrium holds:

Proposition 5 A steady-state equilibrium of the system xt+1 = Axt + B is unique if

and only if

|I −A| 6= 0.

Remark 1 The necessary and sufficient condition for uniqueness is the non-singularity

of the matrix I−A. It is analogous to the requirement that a 6= 1 in the one-dimensional

case.

In light of (16), the solution to the system can be written as

xt = A
t(x0 − x) + x if |I −A| 6= 0. (17)

If the matrix A is a diagonal matrix there exists no interdependence between

the different state variables and each of the state variables can be analyzed separately

according to the method developed in Section 1.1. However, a more general form of

the matrix A, which implies interdependence across the state variables, requires an

elaborate method of solutions. This method transforms a system of interdependent state

variables, into a system of independent state variables that can be analyzed according

to the method developed in Section 1.1.
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2.1.3 Examples of a 2-D Systems:

The following examples demonstrate the method of solution that will be adopted in

the case of multi-dimensional dynamical systems. This method is formally derived in

subsequent subsections.

A. Explicit Solution and Stability Analysis

Example 1: (An Uncoupled System)

Consider the two-dimensional, first-order, homogeneous difference equation8

∙
x1t+1
x2t+1

¸
=

∙
2 0
0 0.5

¸ ∙
x1t
x2t

¸
, (18)

where x0 ≡ [x10, x20].

Since x1t+1 depends only on x1t, and x2t+1 only on x2t the system can

be uncoupled and each equation can be solved in isolation using the solution method

developed in Section 1.1. Given that

x1t+1 = 2x1t;

x2t+1 = 0.5x2t

(19)

it follows from (4) that
x1t = 2tx10;

x2t = (0.5)tx20.
(20)

and the steady-state equilibrium is therefore

(x1, x2) = (0, 0). (21)

Consequently,

lim
t→∞

x2t = x2 = 0 ∀x20 ∈ < (22)

If x20 > 0, the value of x2t approaches zero monotonically from the positive side, and,

if x20 < 0, it approaches the origin monotonically from the negative side. Furthermore
8The linear system xt+1 = Axt is homogeneous whereas the system xt+1 = Axt + B is non-

homogeneous.
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lim
t→∞

x1t =

⎧⎨⎩ ±∞ if x10 6= 0;

x1 = 0 if x10 = 0.
(23)

Namely, unless the iniital condition of state variable x1t is at its stetady stae value x1 = 0,

the variable diverges monotonically to +∞, if x10 > 0 and to −∞ if x10 < 0.

Figure 2.1, depicts the phase diagram for this discrete dynamical system. The

steady-state equilibrium (i.e., (x̄1, x̄2) = (0, 0)) is a saddle point.9 Namely, unless

x10 = 0, the steady-state equilibrium will not be reached and the system will diverge.

Example 2: (A Coupled System)

Consider the coupled dynamical system∙
x1t+1
x2t+1

¸
=

∙
1 0.5
1 1.5

¸ ∙
x1t
x2t

¸
, (24)

where x0 ≡ [x10, x20] is given.

The system cannot be uncoupled since the two variables x1t and x2t are inter-

dependent. Thus a different solution method is required.

The solution technique converts the coupled system (via a time-invariant matrix)

into a new system of coordinates in which the dynamical system is uncoupled and there-

fore solvable with the method of analysis described in Section 1.1.

The following steps, based on foundations that are discussed in the next subsec-

tions, constitute the required method of solution:

Fin

Step 1: Find the Eigenvalues of the matrix of coefficients A.

The Eigenvalues of the matrix A are obtained as a solution to the system

|A− λI| = 0. (25)

9Note that for ease of visualization, the trajectories are drawn in a continuous manner. The trajec-
tories, however, consist of discrete points.
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¯̄̄̄
a11 − λ a21
a12 a22 − λ

¯̄̄̄
= 0

The implied characteristic polynomial is therefore

C(λ) = λ2 − trAλ+ detA = 0. (26)

Given the dimensionality of the matrix A, it follows that½
λ1 + λ2 = trA
λ1λ2 = detA.

(27)

In light of (24), λ1+λ2 = 2.5, and λ1λ2 = 1. This implies that λ1 = 2 and λ2 = 0.5.

Step 2: Find the eigenvector associated with λ1 and λ2.

The eigenvectors of the matrix A are obtained as a solution to the system

[A− λI]x = 0 for x 6= 0. (28)

Hence, it follows from (24) that the eigenvector associated with the eigenvalue λ1 = 2

is determined by ∙
−1 0.5
1 −0.5

¸ ∙
x1
x2

¸
= 0, (29)

whereas that associated with λ2 = 0.5 is determined by∙
0.5 0.5
1 1

¸ ∙
x1
x2

¸
= 0. (30)

Thus the first eigenvector is determined by the equation

x2 = 2x1, (31)

whereas the second eigenvector is given by the equation

x2 = −x1. (32)

The eigenvectors are therefore given by f1 and f2 (or any scalar multiplication of the

two): f1 = (1, 2) and f2 = (1,−1).
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Step 3: Use the basis [f1, f2] to span <2 (i.e., construct a new system of coordinates

that spans <2).

Since f1 and f2 span <2, ∃y ≡ (y1, y2) ∈ <2 such that

∙
x1
x2

¸
= y1f1 + y2f2 = y1

∙
1
2

¸
+ y2

∙
1
−1

¸
. (33)

Thus,

x ≡
∙
x1
x2

¸
=

∙
1 1
2 −1

¸ ∙
y1
y2

¸
≡ Qy. (34)

Namely, every x ∈ <2 can be expressed in terms of the new system of coordinates,

(y1, y2).

Step 4: Find the geometirc place of the new system of coordinates in (y1, y2) in terms

of the old systme of coordinates (x1, x2).

Since f1 and f2 are linearly independent, Q is non-singular and thus Q−1

exists. Hence, y = Q−1x, i.e.,

∙
y1
y2

¸
= −1

3

∙
−1 −1
−2 1

¸ ∙
x1
x2

¸
(35)

and therefore,

y1 = 1
3
(x1 + x2);

y2 = 1
3
(2x1 − x2).

(36)

Thus,

y1 = 0 ⇔ x2 = −x1

y2 = 0 ⇔ x2 = 2x1

(37)
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Graphically, as shown in Figure 2.2, since y1 = 0 implies being on the y2 axis, and

y2 = 0 implies being on the y1 axis, x2 = 2x1 represents the y1 axis in the new system

of coordinates and x2 = −x1 represents the y2 axis in the new system of coordinates.

Step 5: Show that there exists a 2x2 matrix D, such that yt+1 = Dyt.

In the original system,

xt+1 = Axt. (38)

As follows from Step 3,

xt+1 = Qyt+1 (39)

Thus,
yt+1 = Q−1xt+1

= Q−1Axt (since xt+1 = Axt)

= Q−1AQyt (since xt = Qyt)

= Dyt,

(40)

where D ≡ Q−1AQ.

Step 6: Show that D is a diagonal matrix with the Eigenvalues of A along the

diagonal.

D = Q−1AQ = −1
3

∙
−1 −1
−2 1

¸ ∙
1 0.5
1 1.5

¸ ∙
1 1
2 −1

¸
=

∙
2 0
0 0.5

¸
(41)

Since λ1 = 2 and λ2 = 0.5, it follows that D is a diagonal matrix of the type:

D =

∙
λ1 0
0 λ2

¸
. (42)

Step 7: Find the solution for yt.
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yt+1 =

∙
2 0
0 0.5

¸
yt. (43)

Since the system is uncoupled, it follows from example 1 that

y1t = 2t y10

y2t = (0.5)t y20

(44)

Note that y0 is not given directly. However, since y0 = Q
−1x0, and x0 is given,

y0 can be expressed in terms of x0.∙
y10
y20

¸
= Q−1x0 = −

1

3

∙
−1 −1
−2 1

¸ ∙
x10
x20

¸
(45)

Thus
y10 = 1

3
(x10 + x20)

y20 = 1
3
(2x10 − x20)

(46)

Step 8: Draw the phase diagram of the new system.

The new system yt+1 = Dyt is precisely the system examined in example 1.

Consequently, there exists a unique steady-state equilibrium y = (0, 0) that is a saddle-

point. Figure 2.1 provide the phase diagram of this system.

Step 9: Find the solution for xt.

Since xt = Qyt, it follows from (44) that

∙
x1t
x2t

¸
=

∙
1 1
2 −1

¸ ∙
y1t
y2t

¸
=

∙
1 1
2 −1

¸ ∙
2ty10

(0.5)ty20

¸
(47)

=

∙
2ty10 + (0.5)ty20
2t+1y10 − (0.5)ty20

¸
(48)

where y0 = Q
−1x0 is given by (46).
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Step 10: Examine the stability of the steady-state equilibrium.

Following (47) limt→∞ xt = x = 0 if and only if y10 = 0. Thus, in light of the

value of y10 given by (46)

lim
t→∞

xt = x ⇔ x20 = −x10 (49)

and the steady-state equilibrium x = 0 is a saddle point.

Step 11: Draw the phase diagram of the original system.

Consider Figure 2.2. The phase diagram of the original system is obtained by

placing the new coordinates (y1, y2) in the plane (x1, x2) and drawing the phase

diagram of the new system relative to the coordinates, (y1, y2).

B. Phase Diagrams

The derivation of the phase diagram of these two dimentional systems does not

require an explicit solution of the system of equations. One can generate the amp of

forces that operate on the state variables in any postion in the relevant plain, as a

function of deviations from each state variable from its steady-state value.

Consider Example 2 where∙
x1t+1
x2t+1

¸
=

∙
1 0.5
1 1.5

¸ ∙
x1t
x2t

¸
. (50)

The system can be rewritten in a slightly different manner, i.e., in terms of changes in

the values of the state variables between time t and time t+ 1:

∆x1t ≡ x1t+1 − x1t = 0.5x2t

∆x2t ≡ x2t+1 − x2t = x1t + 0.5x2t.
(51)

Clearly, at a steady-state equilibrium, ∆x1t = ∆x2t = 0.
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Let ‘∆x1t = 0’ be the geometric place of all pairs of x1t and x2t such that x1t

is in a steady-state, and let ‘∆x2t = 0’ be the geometric place of all pairs (x1t, x2t) such

that x2t is in a steady state. Namely,

∆x1t = 0 ≡ {(x1t, x2t)|x1t+1 − x1t = 0}

∆x2t = 0 ≡ {(x1t, x2t)|x2t+1 − x2t = 0}.
(52)

It follows from equations (51) and (52) that

∆x1t = 0 ⇔ x2t = 0. (53)

∆x2t = 0 ⇔ x2t = −2x1t.

Thus, as depicted in Figure 2.3, the geometric locus of ∆x1t = 0 is the entire x1t axis,

whereas that of ∆x2t = 0 is given by the equation x2t = −2x1t.

The two loci intersect at the origin (the unique steady-state equilibrium) where

∆x1t = ∆x2t = 0. In addition

∆x1t =

⎧⎨⎩ > 0 if x2t > 0

< 0 if x2t < 0,
(54)

and

∆x2t =

⎧⎨⎩ > 0 if x2t > −2x1t

< 0 if x2t < −2x1t.
(55)

Since both Eigenvalues are real and positive, the qualitative nature of the dynam-

ical system can be determined on the basis of the information provided in equations

(53) — (55). The system is depicted in Figure 2.3 according to the location of the loci

‘∆x1t = 0’ and ‘∆x2t = 0,’ as well as the corresponding arrows of motion.

Remark. Since the dynamical system is discrete, a phase diagram should not be drawn

before the type of the eigenvalues is verified. If both eigenvalues are real and positive,
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each state variable converges or diverges monotonically. However, if an eigenvalue is

negative, then the dynamical system displays an oscillatory behavior, whereas if the

eigenvalues are complex, then the dynamical system exhibits a cyclical motion. The

arrows of motion in discrete systems can be very misleading and should, therefore, be

handled very carefully.

The exact location of the new system of coordinates can be determined as well. If

the steady-state equilibrium is a saddle, convergence to the steady-state equilibrium is

along a linear segment. Thus,
x2t+1
x1t+1

=
x2t
x1t
, (56)

along this particular segment. Hence, in light of equation (50),

x1t + 1.5x2t
x1t + 0.5x2t

=
x2t
x1t
, (57)

or ¡
x2t
x1t

¢2 − ¡ x2t
x1t

¢
− 2 = 0.

The solutions are therefore x2t
x1t
= [2, −1]. These two solutions to this quadratic equation

are the eigenvectors of the matrix A. They are the two constant ratios that lead into

the steady-state equilibrium upon a sufficient number of either forward or backward

iterations.

Thus, substantial information about the qualitative nature of the phase diagram

of the dynamical system may be obtained without an explicit solution of the system.

C. Stable and Unstable Eigenspaces

The examples above provide an ideal setting for the introduction of the concepts of

a stable eigenspace and an unstable eigenspace that set the stage for the introduction of

the concepts of the stable and unstable manifolds in the context of nonlinear dynamical

systems. In a linear system the stable eigenspace relative to the steady-state equilibrium

x, is defined as the the plain span by the eigenvectors that are associated with eigen

values of modulus smaller than one. Namely,
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Es(x) = span {eigenvectors associate with eigenvalues of modulus smaller than 1}.

In an homogenous two-dimensional autonomous linear system, xt+1 = Axt, the eigenspace

is

Es(x) = {(x1t, x2t)| lim
n→∞

An
µ
x1t
x2t

¶
= x}. (58)

Namely, the stable eigenspace is the geometric locus of all pairs (x1t, x2t) that upon a

sufficient number of forward iterations are mapped in the limit towards the steady-state

equilibrium, x, . The stable eigenspace in the above example is one dimensional. It is

a linear curve given by the equation x2t = −x1t.

The unstable eigenspace relative to the steady-state equilibrium x, is defined as

Eu(x) = span {eigenvectors associate with eigenvalues are of modulus greater than 1}.

In an homogeneous two-dimensional linear system, xt+1 = Axt,

Eu(x) = {(x1t, x2t)| lim
n→∞

A−n
µ
x1t
x2t

¶
= x}. (59)

That is, the geometric locus of all pairs (x1t, x2t) that upon a sufficient number of

backward iterations are mapped in the limit to the steady-state equilibrium . The

unstable eigenspace in the above example is one dimensional as well. It is a linear

locus given by the equation x2t = 2x1t.
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2.1.4 Results From Linear Algebra

Lemma 3 Let A = (aij) be an n× n matrix where aij ∈ <, i, j = 1, 2, · · · , n.

• If the matrix A has n distinct real eigenvalues λ1,λ2, · · · ,λn, then there exists

a nonsingular n× n matrix, Q, such that

A = QDQ−1,

where D is a diagonalized matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 ... 0
0 λ2 0 0 ... 0
0 0 λ3 0 ... 0
0 0 0 λ4 ... 0

: : : :
. . . 0

0 0 0 0 ... λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and Q is a n× n matrix whose columns are the eigenvectors of A.

• If the matrix A has n repeated real eigenvalues λ,λ, · · · ,λ, then there exists a

nonsingular n× n matrix, Q, such that

A = QDQ−1,

where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 0 0 0 0
1 λ 0 0 0 0 0 0
0 1 λ 0 0 0 0 0
0 0 1 λ 0 0 0 0
0 0 0 1 λ 0 0 0
0 0 0 0 1 λ 0 0
0 0 0 0 0 1 λ 0
0 0 0 0 0 0 1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Lemma 4 • If a matrix has n/2 pairs of distinct complex eigenvalues, µ1, µ1, µ2, µ2, · · · , µn/2, µn/2,

where µj ≡ αj + βji, µj ≡ αj − βji, (i ≡
√
−1), then there exists a nonsingular

n× n matrix, Q, such that

A = QDQ−1,

27



where

•

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −β1 0 0 ... ... 0 0
β1 α1 0 0 ... ... 0 0
0 0 α2 −β2 ... ... 0 0
0 0 β2 α2 ... ... 0 0

. . . . . . 0 0

. . . . . . 0 0
0 0 0 0 ... ... αn/2 −βn/2
0 0 0 0 ... ... βn/2 αn/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• If a matrix A has n/2 pairs of repeated complex eigenvalues, µ, µ, µ, µ, · · · , µ, µ,

where µ ≡ α+βi, µ ≡ α−βi, (i ≡
√
−1), then there exists a nonsingular n×n

matrix Q such that A = QDQ−1, where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β 0 0 0 0 0 0 0 0
β α 0 0 0 0 0 0 0 0
1 0 α −β 0 0 0 0 0 0
0 1 β α 0 0 0 0 0
0 0 1 0 α −β 0 0 0 0
0 0 0 1 β α 0 0 0 0
0 0 0 0 1 0 α −β 0 0
0 0 0 0 0 1 β α 0 0
0 0 0 0 0 0 1 0 α −β
0 0 0 0 0 0 0 1 β α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof: By definition of an eigenvector of an n× n matrix A, it is a non-zero vector

x ∈ <n, such that Ax = xλ, ∀λ ∈ <. Namely,

Ax1 = λ1x1,
Ax2 = λ2x2,
...

Axn = λnxn.

Let Q = [x1, x2, x3, · · ·xn] and let D = [λ1,λ2, · · ·λn]I. It follows that

AQ = QD
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and consequently,

A = QDQ−1.

See Hirsch and Smale (1974) for proofs of the remaining results. 2

Lemma 5 Let A be an n× n matrix where aij ∈ <, i, j = 1, 2, · · · , n. Then, there

exists an n× n nonsingular matrix Q such that A = QDQ−1, where

•

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 0 0 ... 0 0

0 D2 0
. . . 0 0

0 0 D3
. . . 0 0

0 0 0
. . . 0 0

0 0 0
. . . 0 0

0 0 0 ... 0 Dm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is the Jordan matrix.

• For distinct real eigenvalues:

Dh = λh,

• For repeated eigenvalues:

Dh =

⎡⎢⎢⎢⎣
λ 0
1 λ

1
. . .

0
. . . 1 λ

⎤⎥⎥⎥⎦ ,

• For distinct complex eigenvalues:

Dh =

∙
αh −βh
βh αh

¸
,
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• For repeated complex eigenvalues:

Dh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β
β α
1 0 α −β
0 1 β α

. . .

1 0
. . .

0 1
. . .

α −β
β α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. Hirsch and Smale (1974). 2

2.1.5 The Solution in Terms of the Jordan Matrix

In light of the discussion of the examples in Section 4.1.3 and the results from linear

algebra, it is desirable to express the solution to the multi-dimensional, first-order, linear

system, xt+1 = Axt + B, in terms of the Jordan Matrix. This reformulation of the

solution facilitates the analysis of the qualitative nature of the multi-dimensional system.

Proposition 6 A non-homogeneous system of first-order linear difference equations

xt+1 = Axt +B,

can be transformed into an homogeneous system of first-order linear difference equations

zt+1 = Azt,

where zt ≡ xt − x, and x = [I −A]−1B.

Proof: Given xt+1 = Axt +B and zt ≡ xt − x, it follows that

zt+1 = A(zt + x) +B − x = Azt − [I −A]x+B.
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Hence, since x = [I −A]−1B,

zt+1 = Azt.

2

Thus, the non-homogeneous system is transformed into a homogenous one by shifting

the origin of the non-homogeneous system to the steady-state equilibrium.

Proposition 7 The solution of a system of non-homogeneous first-order linear differ-

ence equations

xt+1 = Axt +B

is

xt = QD
tQ−1(x0 − x) + x,

where D is the Jordan matrix corresponding to A.

Proof: Let zt ≡ xt − x. It follows from the Lemma 5 and Proposition 6 that

zt+1 = Azt,

where A = QDQ−1 and D is the Jordan matrix. Thus,

zt+1 = QDQ
−1zt.

Pre-multiplying both sides by Q−1 and letting yt ≡ Q−1zt, it follows that

yt+1 = Dyt.

Thus

yt = D
ty0 = D

tQ−1z0 = D
tQ−1(x0 − x).

Furthermore, since Q−1zt = yt, it follows that zt = Qyt, and therefore zt ≡ xt − x =

Qyt. Hence,

xt = Qyt + x = QD
tQ−1(x0 − x) + x.
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2

As will become apparent, the structure of the matrix Dt follows a well-known

pattern. The qualitative nature of the dynamical system can therefore be analyzed via

direct examination of the equation

xt = QD
tQ−1(x0 − x) + x. (60)

2.1.6 Stability

In order to analyze the qualitative behavior of the dynamical system a distinction will

be made among four possible cases each defined in terms of the corresponding nature of

the eigenvalues: (1) distinct real eigenvalues, (2) repeated real eigenvalues, (3) distinct

complex eigenvalues, and (4) repeated complex eigenvalues.

A. The matrix A has n distinct real eigenvalues.

Consider the system

xt+1 = Axt +B.

As was established in Lemma 3 and equation (60), if A has n distinct real eigenvalues

{λ1,λ2, · · · ,λn}, then there exists a nonsingular matrix Q, such that

xt = Qyt + x.

Furthermore,

yt+1 = Dyt,

where

D =

⎡⎢⎢⎣
λ1 0

λ2
· · ·

0 λn

⎤⎥⎥⎦ . (61)
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Following the method of iterations

yt = D
ty0 (62)

where

Dt =

⎡⎢⎢⎣
λt1 0

λt2
· · ·

0 λtn,

⎤⎥⎥⎦ (63)

and therefore,

y1t = λt1y10
y2t = λt2y20

...
ynt = λtnyn0

(64)

Since

xt = Qyt + x,

it follows that

⎡⎢⎢⎢⎣
x1t
x2t
...
xnt

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Q11 Q12 · · · Q1n
Q21 Q22 · · · Q2n

...
Qn1 Qn2 · · · Qnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

λt1y10
λt2y20
...

λtnyn0

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
x1
x2
...

xn,

⎤⎥⎥⎥⎦ , (65)

and therefore

xit =
nX
j=1

Kijλ
t
j + xi, ∀i = 1, 2, · · · , n, (66)

where Kij ≡ Qijyj0.

Equation (66) provides the general solution for xit in terms of the eigenvalues

λ1,λ2, · · ·λn, the initial conditions y10, y20, · · · yn0, and the steady-state value xi. It

sets the stage for the stability result stated in the following theorem.
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Theorem 1 Consider the system xt+1 = Axt +B, where xt ∈ <n and x0 is given.

Suppose that |I − A| 6= 0 and A has n distinct real eigenvalues {λ1,λ2, · · · ,λn}.

Then,

• the steady-state equilibrium x = [I −A]−1B is globally stable if and only if

|λj| < 1, ∀j = 1, 2, · · · , n;

• limt→∞ xt = x if and only if ∀j = 1, 2, · · ·n

{|λj| < 1 or yj0 = 0},

where y0 = Q
−1(x0−x), and Q is a nonsingular n×n matrix whose columns

are the eigenvectors of the matrix A.

Proof: The steady-state equilibrium is globally stable if ∀x0 ∈ <n limt→∞ xit = xi for

all i = 1, 2, · · ·n, Thus if follows from equation (66) that global stability is satisfied if and

only if ∀kij ∈ < limt→∞
P

jKijλ
t
j = 0, namely if and only if |λj| < 1 ∀j = 1, 2 · · ·n. As

follows from equation (66) limt→∞ xit = xi if and only if either |λj| < 1, or [|λj| ≥ 1

and yj0 = 0], ∀j = 1, 2, · · ·n. Thus the second part follows as well. 2

Phase diagrams of 2-D uncoupled systems: Consider the system yt+1 =

Dyt, where D is a diagonal matrix with λ1 and λ2 along the diagonal. It follows

that the steady-state equilibrium is

y = (y1, y2) = (0, 0),

and
y1t = λt1y

0
10;

y2t = λt2y20.
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The phase diagrams of this dynamical systems depend upon the sign of the eigen-

values, their relative magnitude, and their absolute value relative to unity.

(a) Positive Eigenvalues:

• Stable Node: 0 < λ2 < λ1 < 1. (Figure 2.4 (a))

The steady-state equilibrium is globally stable. Namely, limt→∞ y1t = 0 and limt→∞ y2t =

0, ∀(y10, y20) ∈ <2. The convergence to the steady-state equilibrium is monotonic. How-

ever, since λ2 < λ1 the convergence of y2t is faster.

• Saddle: 0 < λ2 < 1 < λ1. (Figure 2.4 (b))

The steady-state equilibrium is a saddle point. Namely, limt→∞ y2t = 0 ∀y20 ∈ <,

whereas limt→∞ y1t = 0 if and only if y10 = 0. The convergence along the saddle path

(i.e., the stable eigenspace or alternatively, the stable manifold) is monotonic.

• Focus: 0 < λ1 = λ2 < 1. (Figure 2.4 (c))

The steady-state equilibrium is globally stable. Namely, limt→∞ y1t = 0 and limt→∞ y2t =

0, ∀(y10, y20) ∈ <2. Convergence is monotonic and the speed of convergence is the same

for each variable. Consequently every trajectory can be placed along a linear curve.

• Source: 1 < λ1 < λ2. (Figure 2.4 (d))

The steady-state equilibrium is unstable. Namely, limt→∞ y1t = ±∞ and limt→∞ y2t =

±∞, ∀(y10, y20) ∈ <2− {0}. The divergence is monotonic. However, since λ2 > λ1 the

divergence of y2t is faster.

(b) Negative Eigenvalues:

• Stable Node (oscillating convergence): −1 < λ2 < λ1 < 0.

35



The steady-state equilibrium is globally stable. The convergence of both variables to-

wards the steady-state equilibrium is oscillatory. Since |λ2| < |λ1| the convergence of

y2t is faster.

• Saddle (oscillatory convergence/divergence) λ2 < −1 < λ1 < 0.

The steady-State equilibrium is a saddle. The convergence along the saddle path is os-

cillatory. Other than along the stable and the unstable manifolds, one variable converges

in an oscillatory manner while the other variable diverges in an oscillatory manner.

• Focus (oscillatory convergence): −1 < λ1 = λ2 < 0.

The steady-state equilibrium is globally stable. Convergence is oscillatory.

• Source (oscillatory divergence): λ2 < λ1 < −1.

The steady-state equilibrium is unstable. Divergence is oscillatory.

(c) Mixed Eigenvalues (one positive and one negative eigenvalue): one variable converges

(diverges) monotonically while the other is characterized by oscillatory convergence

(divergence). Iterations are therefore reflected around one of the axes.

B. The matrix A has repeated real eigenvalues.

Consider the system

xt+1 = Axt +B.

As established previously, if A has n repeated real eigenvalues {λ,λ, · · · ,λ}, then

there exists a nonsingular matrix Q, such that

xt = Qyt + x

and

yt+1 = Dyt,
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where

D =

⎡⎢⎢⎢⎢⎢⎣
λ 0
1 λ
1 λ

. . .

0 1 λ

⎤⎥⎥⎥⎥⎥⎦ (67)

Thus,

yt = D
ty0,

where for t > n

Dt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λt 0 0 0 0 0 0
tλt−1 λt 0 0 0 0 0

t(t−1)λt−2
2!

tλt−1 λt 0 0 0 0
... t(t−1)λt−2

2!
tλt−1 λt 0 0 0

...
. . . t(t−1)λt−2

2!
tλt−1 λt 0 0

...
. . . . . . t(t−1)λt−2

2!
tλt−1 λt 0

...
... t(t−1)···(t−n+2)λ

t−n+1

(n−1)!
. . . . . . . . . t(t−1)λt−2

2!
tλt−1 λt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus,
y1t = λty10;

y2t = tλt−1y10 + λty20;

y3t = t(t−1)λt−2
2!

y10 + tλ
t−1y20 + λty30;

...

ynt = t(t−1)···(t−n+2)λt−n+1
(n−1)! y10 + · · ·+ λtyn0.

(68)

Therefore, ∀i = 1, 2, · · · , n,

yit =
i−1X
k=0

µ
t
k

¶
λt−kyi−k,0, (69)
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where

µ
t
k

¶
=

t!

k!(t− k)! . (70)

Since

xt = Qyt + x,

it follows that ∀i = 1, 2, · · · , n,

xit =
n−1X
m=0

µ
t
m

¶
λt−mKi,m+1 + xi, (71)

where Ki,m+1 are constants that reflect all the product of the i
th row of the matrix Q

and the column of initial conditions (y10, y20, · · · , yn0).

Equation (71) is the general solution for xit in terms of the repeated eigenvalue,

λ, and the initial conditions. This solution sets the stage for the stability result stated

in following theorem.

Theorem 2 Consider the system xt+1 = Axt + B, where xt ∈ <n and x0 is given.

Suppose that |I−A| 6= 0 and A has n repeated real eigenvalues {λ,λ, · · · ,λ}. Then,

the steady-state equilibrium x = [I −A]−1B is globally stable if and only if

|λ| < 1.

Proof: Follows immediately from (71). Note that |λ| ≥ 1 cannot be consistent with

any form of stability, since it would require that yi0 = 0, ∀i = 1, 2, · · · , n, namely, that

the system starts at the steady-state equilibrium. 2

Phase Diagram of the 2-D Case:

38



Consider the system

yt+1 = Dyt,

where

D =

∙
λ 0
1 λ

¸
. (72)

It follows that

yt = D
ty0,

where

Dt =

∙
λt 0
tλt−1 λt

¸
. (73)

Hence
y1t = λty10;

y2t = tλt−1y10 + λty20.
(74)

The derivation of the phase diagram of this uncoupled system is somewhat more

involved. The system takes the form of

y1t+1 = λy1t;

y2t+1 = y1t + λy2t,
(75)

and therefore,
∆y1t ≡ y1t+1 − y1t = (λ− 1)y1t;

∆y2t ≡ y2t+1 − y2t = y1t + (λ− 1)y2t.
(76)

Consequently,

∆y1t = 0 ⇔ {(y1t = 0 or λ = 1)};

∆y2t = 0 ⇔ {(y2t = y1t
1−λ and λ 6= 1) or (y1t = 0 and λ = 1)}.

(77)

The phase diagram of the dynamical system depends upon the absolute magnitude

of the eigenvalue relative to unity and on its sign.
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• Improper (Stable) Node. λ ∈ (0, 1) (Figure 2.5 (a))

∆y1t = 0 if and only if y1t = 0, namely, the y2t - axis is the geometric place of all pair

(y1t, y2t) such that ∆y1t = 0. Similarly, ∆y2t = 0 if and only if y2t = y1t/(1 − λ),

namely the ∆y2t = 0 locus is a linear curve with a slope greater than unity. Furthermore,

∆y1t

⎧⎨⎩ > 0, if y1t < 0

< 0, if y1t > 0
(78)

and

∆y2t =

⎧⎨⎩
< 0, if y2t >

y1t
1−λ

> 0, if y2t <
y1t
1−λ .

(79)

The variable y1t converges monotonically to the steady-state equilibrium, y = 0.

y2t however converges to the steady-state in a non-monotonic fashion. If y20 < 0 and

y1t > 0, then y2t increases monotonically, crossing to the positive quadrant and peaking

when it meets the ∆y2t = 0 locus. Afterwards it decreases monotonically and converges

to the steady-state equilibrium y = 0. The time path of each state variable is shown in

Figure 2.5 (a).

Remark. The trajectories drawn in Figure 2.5 (a) require additional information. In

particular, it should be noted that if the system is in quadrants I or IV it cannot cross

into quadrants II or III, and vice versa. This is the case since if y1t > 0 then y1t+1 > 0

and ∆y1t < 0 whereas if y1t < 0 then y1t+1 < 0 and ∆y1t > 0. The system, thus,

never crosses the y2 - axis. Furthermore, it should be shown that if the system enters

quadrant I or III it never leaves them. This is the case since if y1t > 0 and y2t > 0

then y1t+1 > 0 and y2t+1 > 0, whereas if y1t < 0 and y2t < 0 then y1t+1 < 0 and

y2t+1 < 0.

• Improper Source. λ ∈ (1,∞). (Figure 2.5 (b))
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The locus ∆y1t = 0 remains intact as in the case where λ ∈ (0, 1), whereas the

locus ∆y2t = 0 is a linear curve with a negative slope 1/(1− λ). Furthermore,

∆y1t =

⎧⎨⎩ > 0, if y1t > 0

< 0, if y1t < 0
(80)

and

∆y2t =

⎧⎨⎩
> 0, if y2t >

y1t
1−λ

< 0, if y2t <
y1t
1−λ .

(81)

As depicted in Figure 2.5 (b) the system is unstable.

If λ < 0, the trajectory cannot be approximated by a continuous time trajectory. If

|λ| < 1, the system oscillates between quadrants IV and II or I and III; and, convergence

towards the steady-state equilibrium, y = 0.

• λ = 1. Continuum of unstable steady-state equilibria (Figure 2.5 (c)).

The set of steady-state equilibria the entire y2t axis. However, none is stable.

This non-generic case represents the bifurcation point of the dynamical system. Namely,

an infinitesimal change in the value of λ brings about a qualitative change in the

nature of the dynamical system. In particular, the set of steady-state equilibria changes

from a continuum and unstable equilibria to that a unique globally stable steady-state

equilibrium.

C. The matrix A has distinct complex eigenvalues.

Consider the multi dimensional linear system

xt+1 = Axt +B.

As was established in Section 3.1.4, if A has n/2 pairs of distinct complex eigenvalues

{µ1, µ1, µ2, µ2, · · ·} then there exists a nonsingular matrix Q, such that

xt = Qyt + x
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and

yt+1 = Dyt,

where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −β1 0 0 ... ... 0 0
β1 α1 0 0 ... ... 0 0
0 0 α2 −β2 ... ... 0 0
0 0 β2 α2 ... ... 0 0

. . . . . . 0 0

. . . . . . 0 0
0 0 0 0 ... ... αn/2 −βn/2
0 0 0 0 ... ... βn/2 αn/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (82)

and µj ≡ αj + βji, µj ≡ αj − βji and i ≡
√
−1.

Thus, for all j = 1, 2, · · · , n/2,10

∙
y2j−1,t+1
y2j,t+1

¸
=

∙
αj −βj
βj αj

¸ ∙
y2j−1,t
y2j,t

¸
. (83)

Following the method of iterations, the trajectory of the system {yt}∞t=0 satisfies therefore

the equation

∙
y2j−1,t
y2j,t

¸
=

∙
αj −βj
βj αj

¸t ∙
y2j−1,0
y2j,0

¸
. (84)

This formulation, however, is not very informative about the qualitative behavior

of the dynamical system. In particular, it is not apparent under which values of αj and

βj the system will converge to its steady-state value. Namely, what are the necessary

restricition under which limt→∞ yt = y. If the system is expressed instead in terms

10If n were odd, then there would be an additional real eigenvalue.
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of the “polar coordinates” as will be defined below, the role of αj and βj in the

determination of the stability results becomes apparent.

Consider the geometrical representation of the complex pair of eigen values µj ≡

αj+βji, and µj ≡ αj−βji, in the complex plain, as as Figure 2.6. Let rj ≡ (α2j+β2j )
1/2.

rj is the modulus of the j-th eigenvalue. It follows that αj = rjcos θj and βj = rjsin θj,

and therefore

∙
αj −βj
βj αj

¸
= rj

∙
cos θj −sin θj
sin θj cos θj

¸
. (85)

As established in the following lemma, if the right-hand side of (83) is raised to

power t, the outcome permits a straightforward analysis of the dynamical system.

Lemma 6 ½
rj

∙
cos θj −sin θj
sin θj cos θj

¸¾t
= rtj

∙
cos tθj −sin tθj
sin tθj cos tθj

¸
.

Proof: The lemma follows from the trigonometric identities:

cos (θ1 + θ2) = cos θ1cos θ2 − sin θ1sin θ2;

sin (θ1 + θ2) = cos θ1sin θ2 + sin θ1cos θ2.

2

Theorem 3 Consider the system xt+1 = Axt+B,where xt ∈ <n. Suppose that |I−A| 6=

0 and suppose that A has n/2 pairs {µ1, µ1, µ2, µ2, · · · , µn/2, µn/2} of distinct complex

eigenvalues where µj ≡ αj + βji, µj = αj − βji, and i ≡
√
−1; j = 1, 2, · · · , n/2.

Then, the steady-state equilibrium system is globally (asymptotically) stable if and only

if

rj ≡ (α2j + β2j )
1/2 < 1, ∀j = 1, 2, · · · , n/2.
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Proof: Since

∙
y2j−1,t
y2j,t

¸
= rtj

∙
cos tθj −sin tθj
sin tθj cos tθj

¸ ∙
y2j−1,0
y2j,0

¸
(86)

it follows from the fact that xt = Qyt + x that

xit =
X
j

rtj[Kijcos tθj + K̃ijsin tθj] + xi. (87)

where Kij and K̃ij are the constants associated with the relevant elements of the

matrix Q and the initial conditions y2j−1,0 and y2j,0. Since 0 ≤ |cos tθj| ≤ 1 and

0 ≤ |sin tθj| ≤ 1, it follows that limt→∞ xit = xi if and only if rj < 1 ∀j = 1, 2, · · · , n/2.

2

Phase Diagram of a 2-D system:

Consider the system ∙
y1t+1
y2t+1

¸
=

∙
α −β
β α

¸ ∙
y1t
y2t

¸
, (88)

Namely,
y1t+1 = αy1t − βy2t;

y2t+1 = βy1t + αy2t.
(89)

Depending on the values of the parameters r and β the system may exhibit a variety

of behavior.

(a) Periodic orbit: r = 1

• β > 0 : counter-clockwise periodic orbit (Figures 2.7 (a)).

The system exhibits a counterclockwise periodic orbit. Consider Figure 2.7 (a). Sup-

pose that r = 1, β = 1 and consequently α = 0. Suppose further that the
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initial condition (y10, y20) = (1, 0). It follows from (89) that (y11, y21) = (0, 1),

(y12, y22) = (−1, 0), (y13, y23) = (0,−1) and (y14, y24) = (1, 0). Thus the system is

characterized in this example by a four-period cycle with a counter-clockwise orienta-

tion.

• β < 0 : clockwise periodic orbit (Figure 2.7 (b)).

The system exhibits a clockwise period orbit. Consider Figure 2.7 (b). Suppose

that r = 1, β = −1 and consequently α = 0. Again, starting from (1, 0), the system

exhibits a clockwise four-period cycle; {(1, 0), (0,−1), (−1, 0), (0, 1).} Note that α

governs the pace of the motion.

(b) Spiral sink: r < 1 (Figure 2.7 (c)).

The system is characterized by a spiral convergence to the steady-state equilibrium. If

β > 0 the motion is counter-clockwise, whereas if β < 0 the motion is clockwise.

(c) Spiral Source: r > 1. (Figure 2.7(d)).

The system exhibits a spiral divergence from the steady-state equilibrium with

either counter-clockwise motion (β > 0) or clockwise motion (β < 0).

D. The matrix A has n/2 pairs of repeated complex eigenvalues.

Consider the system xt+1 = Axt + B. As was established in Section 3.1.4, if A

has n/2 pairs of repeated complex eigenvalues {µ, µ, µ, µ, · · ·µ, µ} then there exists a

non-singular matrix Q, such that xt = Qyt + x and yt+1 = Dyt, where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −β 0 0 0 0 0 0 0 0
β α 0 0 0 0 0 0 0 0
1 0 α −β 0 0 0 0 0 0
0 1 β α 0 0 0 0 0
0 0 1 0 α −β 0 0 0 0
0 0 0 1 β α 0 0 0 0
0 0 0 0 1 0 α −β 0 0
0 0 0 0 0 1 β α 0 0
0 0 0 0 0 0 1 0 α −β
0 0 0 0 0 0 0 1 β α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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and µ = α + βi, µ = α − βi, and i ≡
√
−1. Hence, yt = Dty0, where in light of

equation (85)

Dt=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rtcos tθ −rtsin tθ 0 0 0 0
rtsin tθ rtcos tθ 0 0 0 0

trt−1cos(t− 1)θ −trt−1sin(t− 1)θ rtcos tθ −rtsin tθ . . . . . . 0 0

trt−1sin(t− 1)θ trt−1cos(t− 1)θ rtsin tθ rtcos tθ
. . . . . . 0 0

t(t−1)rt−2cos(t−2)θ
2!

− t(t−1)rt−2sin(t−2)θ
2!

trt−1cos(t− 1)θ −trt−1sin(t− 1)θ . . . . . . 0 0
t(t−1)rt−2sin(t−2)θ

2!
t(t−1)rt−2cos(t−2)θ

2!
trt−1sin(t− 1)θ trt−1cos(t− 1)θ . . . . . . 0 0

...
...

. . . rtcos tθ −rtsin t

. . . rtsin tθ rtcos tθ

Thus ∀j = 1, 2, · · · , n/2,

y2j−1,t =
Pt−1

k=0 r
t−k
µ
t
k

¶
[cos(t− k)θy2j−1,0 − sin(t− k)θy2j,0];

y2j,t =
Pt−1

k=0 r
t−k
µ
t
k

¶
[sin(t− k)θy2j−1,0 + cos(t− k)θy2j,0].

(90)

Since xt = Qyt + x the theorem follows:

Theorem 4 Consider the system xt+1 = Axt+B,where xt ∈ <n. Suppose that |I−A| 6=

0 and suppose that A has n/2 pairs of repeated eigenvalues {µ, µ, µ, µ, · · ·}, where

n ≡ α + βi, n ≡ α − βi, and i ≡
√
−1. Then the steady-state equilibrium is globally

stable if and only if

r ≡ [α2 + β2]1/2 < 1.
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2.2 Nonlinear Systems

Consider the system of autonomous nonlinear first-order difference equations:

xt+1 = φ(xt); t = 0, 1, 2, · · · ,∞, (91)

where

φ : <n → <n,

and the initial value of the n-dimensional state variable, x0, is given. Namely,

x1t+1 = φ1(x1t, x2t, · · · , xnt)

x2t+1 = φ2(x1t, x2t, · · · , xnt)

...
...

xnt+1 = φn(x1t, x2t, · · · , xnt).

(92)

2.2.1 Local Analysis

Suppose that the dynamical system has a steady-state equilibrium, x. Namely ∃x ∈ <n

such that x = φ(x). A Taylor expansion of xit+1 = φ(xt), around the steady-state

value, x, yields

xit+1 = φi(xt) = φi(x) +
nX
j=1

φij(x)(xjt − xj) + · · ·+Rn, (93)

where φij(x) is the partial derivative of the function φi(xt) with respect to xjt,

evaluated at x (i.e., φij(x) = ∂φi(xt)/∂xit). Thus, the linearized equation around the

steady-state x is given by

xit+1 = φi1(x)x1t + φi2(x)x2t + · · ·+ φin(x)xnt + φi(x)−
nX
j=1

φij(x)xj. (94)

The linearized system, is therefore:
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⎡⎢⎢⎢⎣
x1t+1
x2t+1
...

xnt+1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

φ11(x) φ12(x) · · · φ1n(x)
φ21(x) φ22(x) · · · φ2n(x)
...

...
...

φn1(x) φn2(x) · · · φnn(x)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1t
x2t
...
xnt

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

φ1(x) −
Pn

j=1 φ
1
j(x)xj

φ2(x) −
Pn

j−1 φ
2
j(x)xj

...
φn(x) −

Pn
j=1 φ

n
j (x)xj

⎤⎥⎥⎥⎦ .

Thus, the nonlinear system has been approximated, locally (around a steady-state

equilibrium) by a linear system,

xt+1 = Axt +B,

where

A ≡

⎡⎢⎣ φ11(x) · · · φ1n(x)
...

...
φn1(x) · · · φnn(x)

⎤⎥⎦ ≡ Dφ(x); (95)

is the Jacobian matrix of φ(xt) evaluated at x, and

B ≡

⎡⎢⎣ φ1(x) −
Pn

j=1 φ
1
j(x)xj

...
φn(x) −

Pn
j=1 φ

n
j (x)xj

⎤⎥⎦ . (96)

As is established in the theorem below the local behavior of the nonlinear dynamical

system can be assessed on the basis of the behavior of the linear system that approximate

the nonlinear one in the vicinity of the steady-state equilibrium. Hence, the eigenvalues

of the Jacobian matrix A determine the local behavior of the nonlinear system according

to the results stated in Theorems 1-4.

Definition 6 Consider the nonlinear dynamical system

xt+1 = φ(xt).

• The local stable manifold, W s
loc(x), of a steady-state equilibrium, x, is

W s
loc(x) = {x ∈ U | lim

n→+∞
φn(x) = x and φn(x) ∈ U ∀n ∈ N};
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• The local unstable manifold, W u
loc(x), of a steady-state equilibrium, x, is

W u
loc(x) = {x ∈ U | lim

n→+∞
φ−n(x) = x and φn(x) ∈ U ∀n ∈ N},

where U ≡ B²(x) for some ² > 0, and φn(x) is the nth iterate of x under φ.

Thus, the local stable [unstable] manifold is the geometric place of all vectors

x ∈ <n in an ²-neighborhood of the steady-state equilibrium whose elements approach

asymptotically the steady-state equilibrium, x, as the number of iterations under the

map φ [φ−1] approaches infinity.

Definition 7 Consider the map φ : <n → <n and let Dφ(x) be the Jacobian matrix

of φ(x) evaluated at a steady-state equilibrium x.

• The stable eigenspace, Es(x), of the steady-state equilibrium, x is

Es(x) = span{eigenvectors of Dφ(x) whose eigenvalues have modulus less than 1}.

• The unstable eigenspace, Eu(x), of the steady-state equilibrium, x, is

Eu(x) = span{eigenvectors of Dφ(x) whose eigenvalues have modulus greater than 1}.

Definition 8 Consider the map φ : <n → <n and let Dφ(x) be the Jacobian matrix

of φ(x), evaluated at a steady-state equilibrium x. The steady-state equilibrium, x is

an hyperbolic fixed point if Dφ(x) has no eigenvalues of modulus one.

Theorem 5 (The Stable Manifold Theorem). Let φ : <n → <n be a C1 diffeomorphism11

with a hyperbolic fixed point x. Then there exist locally stable and unstable manifolds

W s
loc(x) and W u

loc(x), that are tangent, at x̄ to the Eigenspaces E
s(x) and Eu(x) of

the Jacobian matrix Dφ(x), and are of corresponding dimension.

Proof. See Nitecki (1971).

11A diffeomorphism is a smooth function with a smooth inverse.
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2.2.2 Global Analysis.

A global analysis of a multi-dimension nonlinear system is rather difficult. In the context

of a two-dimensional dynamical system, however, a phase diagram in addition to the local

results that can be generated on the basis of the analysis of the linearized system, may

set the stage for a global characterization of the dynamical system. In particular, the

global properties of the dynamical system can be generated from the properties of the

local stable and unstable manifolds:

Definition 9 Consider the nonlinear dynamical system

xt+1 = φ(xt).

• The global stable manifold W s(x) of a steady-state equilibrium, x, is

W s(x) = ∪n∈N{φ−n(W s
loc(x))}.

• The global unstable manifold W u(x) of a steady-state equilibrium, x, is

W u(x) = ∪n∈N{φn(W u
loc(x))}.

Thus the global stable manifold is obtained by the union of all backward iterates under

the map φ, of the local stable manifold (see Figure 3.1).

Theorem 6 provides a very restrictive sufficient condition for global stability that

is unlikely to be satisfied by a conventional economic system. In light of the Contraction

Mapping Theorem, the sufficient conditions for global stability in the one-dimensional

case (Corollary 3) can be generalized for a multi-dimensional dynamical system.

Theorem 6 A stationary equilibrium of the multi-dimensional, autonomous, first-order

difference equation, xt+1 = φ(xt) exists, is unique, and is globally stable if φ : <n → <n

is a contraction mapping.
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3 Higher-Order Difference Equations

3.1 Linear Systems

3.1.1 Second-Order Systems

Consider the one-dimensional, autonomous, second-order difference equation

xt+2 + a1xt+1 + a0xt + b = 0, (97)

where xt ∈ <, a0, a1, b ∈ <, and the initial conditions (x0, x1) are given. In order

to solve this system in a familiar manner, this system can be converted into a two-

dimensional first-order system.

Let xt+1 ≡ yt. Then, the one-dimensional, second-order difference equation is

transformed into a system of two-dimensional first-order linear difference equations.

Since xt+1 ≡ yt implies xt+2 = yt+1, it follows that⎧⎨⎩ yt+1 + a1yt + a0xt + b = 0;

xt+1 = yt,
(98)

or, ⎧⎨⎩ yt+1 = −a1yt − a0xt − b;

xt+1 = yt.
(99)

Thus,

∙
yt+1
xt+1

¸
=

∙
−a1 −a0
1 0

¸ ∙
yt
xt

¸
+

∙
−b
0

¸
, (100)

where the initial conditions of the two state variables y0 = x1 and x0 are given.

Thus, the second-order system has been transformed into a system of two first-

order linear difference equations that can be analyzed according to Theorems 1-4.
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3.1.2 Third-Order Systems

Consider the system

xt+3 + a2xt+2 + a1xt+1 + a0xt + b = 0, (101)

where xt ∈ <, a0, a1, a2, b ∈ <, and the initial conditions (x0, x1, x2) are given.

Let xt+1 ≡ yt, and, xt+2 = yt+1 ≡ zt. Then, the third-order system is trans-

formed into a system of three first-order equations which can be analyzed on the basis

of Theorems 1—4. Since xt+2 = yt+1 = zt implies that xt+3 = yt+2 = zt+1, it follows

that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zt+1 + a2zt + a1yt + a0xt + b = 0;

xt+2 = yt+1

xt+1 = yt

(102)

or ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zt+1 = −a2zt − a1yt − a0xt − b;

yt+1 = zt;

xt+1 = yt.

(103)

Thus, ⎡⎣ zt+1yt+1
xt+1

⎤⎦ =
⎡⎣ −a2 −a1 −a01 0 0

0 1 0

⎤⎦⎡⎣ ztyt
xt

⎤⎦+
⎡⎣ −b0
0

⎤⎦ . (104)

3.1.3 Nth-Order System

Consider an Nth order system

xt+n + an−1xt+n−1 + · · ·+ a1xt+1 + a0xt + b = 0. (105)

Let
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xt+1 ≡ y1t

xt+2 = y1,t+1 ≡ y2t

xt+3 = y1,t+2 = y2,t+1 ≡ y3t

...

xt+n−1 = y1,t+n−2 = y2,t+n−3 = · · · = yn−2,t+1 ≡ yn−1,t

(106)

It follows that xt+n = yn−1,t+1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn−1,t+1
yn−2,t+1
yn−3,t+1
...
...
y3,t+1
y2,t+1
y1,t+1
xt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 ... ... ... ... −a2 −a1 −a0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
...

. . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . .

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn−1,t
yn−2,t
yn−3,t
...
...
y3,t
y2,t
y1,t
xt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b
0
...
...
...
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This is a system of n first-order linear difference equations that can be solved and

analyzed qualitatively according to the methods developed in Sections 1 and 2.

3.2 Nonlinear System

Consider the nonlinear nth-order system

xt+n = φ(xt+n−1, xt+n−2, xt+n−3, · · · , xt).

Let

xt+1 ≡ y1t
xt+2 = y1,t+1 ≡ y2t
xt+3 = y1,t+2 = y2,t+1 ≡ y3t
...
xt+n−1 = y1,t+n−2 = y2,t+n−3 = · · · = yn−2,t+1 ≡ yn−1,t

(107)
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It follows that
yn−1,t+1 = φ(yn−1,t, yn−2,t, yn−3,t, · · · , xt)
yn−2,t+1 = yn−1,t

...
y1,t+1 = y1,t.

(108)

Thus, the nth-order nonlinear system can be represented as a system of n first-order

nonlinear difference equations that can be analyzed according to the methods developed

in Sections 1 and 2.

4 Non-Autonomous Systems

Consider the non-autonomous linear system

xt+1 = A(t)xt +B(t), (109)

and the non-autonomous nonlinear system

xt+1 = f(xt, t). (110)

The non-autonomous system can be converted into an autonomous one.

Let yt ≡ t. Then yt+1 = t+ 1 = yt + 1. Thus the linear system is

xt+1 = A(yt)xt +B(yt);

yt+1 = yt + 1.
(111)

whereas the nonlinear system becomes

xt+1 = f(xt, yt);

yt+1 = yt + 1.
(112)

Namely, the non-autonomous system is converted into a higher dimensional au-

tonomous system. The qualitative analysis provided by Theorems 1—5 that are based on

the behavior of the system in the vicinity of a steady-state equilibrium, is not applicable,

however since there exists no y ∈ < such that y = y + 1 (i.e., time does not come to
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a halt), and thus neither the linear system nor the nonlinear system has a steady-state

equilibrium.12

The method of analysis for this system will depend on the particular form of the

dynamical system and the possibility of redefining the state variables (possibly in terms

of growth rates) so as to assure the existence of steady-state equilibria.

12The relevant state variable, xt, may have a steady-state regardless of the value of yt, nevertheless,
the method of analysis provided earlier is not applicable for this case.
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