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1-Introduction 
     
    The aim of this work is to characterize optimal growth path in an OLG economy without 
using the assumptions of time preference theory on a social level, because such assumptions 
introduce necessarily inequality between the different generations of the society. 
    Section2 expounds the economic motivations of the problem and optimality concepts. 
    Section3 presents main formal definitions and assumptions. 
    Section4 sets up the first order necessary condition for Pareto optima and, with additional 
assumptions on U, particularly concavity and differentiability on the border, it studies the 
sufficiency of the first order condition to guarantee the Pareto-optimality of a bequests plan. 
    Section5 analyses examples of Pareto-optimal bequests plans particularly steady states 
ones. 
    The concept of consensual optimality, properties of consensual optimality criterions and 
relation between consensual optima and Pareto optima are worked out in section5. Section6 
shows that, under assumption of intra-life time neutrality, golden rule is an asymptotical 
property of optimal growth paths. Section7 determines to what extent optimal growth paths 
are consistent with egoist spontaneous equilibrium. 
 
     

2-Motivation 
 
2.1-Infinite horizon sum 
 
    Optimization mathematics allowed to build economic models where decisive economic 
parameters like the rate of savings or the rate of technical change, were no longer data of the 
models, but results explained and computed by the models. 
    This increases the explanatory power of growth models but make them reckon on the 
assumption of infinite horizon sum. 
    Indeed, if we denote u the instantaneous utility function and c(t) the consumption at date t, 
the total utility of the society is supposed to be: 
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    Thus, to find the best growth path of economic growth, one maximizes the above criterion 
over c(t) under an evolution constraint like: 
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 where a is the rate of capital depreciation, f the production function, k the capital and c the 
consumption. 
    The discrete version of this kind of optimality criterion is a discounted sum of utility levels, 
depending on time-periods or generations in OLG models: 
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    Thus, the economy would behave like an infinite-lived individual with a time discount rate 
equivalent to the intergenerational discount rate. 
    As shown by Barro (1974), with operative intergenerational transfers, this is acceptable in 
the context of the usual assumptions of time-preference theory and with a positive rate of own 
generation preference. 
    On the personal level, time-preference theory assumes that one always prefers present 
goods to future goods. Although this can be criticized in absence of uncertainty and 
irrationality, it is not the purpose of this work. 
    However, the concept of "best growth path" is mainly concerned about social optimality 
which relation to time-preference theory is somewhat questionable: is it natural for social 
optimality to prefer present time over future? or present generations over distant ones? 
    Therefore, we can relevantly ask if we should keep on using the same time-preference 
assumptions when looking for the best growth path and if we should keep on using an infinite 
horizon sum criterion which inevitably favours present generations to the detriment of distant 
ones. 
    If we should not favour present generations to the detriment of distant ones, as pointed out 
by Allais (1946) or Mankiw (2001), how can we then compute a social optimum and test its 
economic efficiency without using the infinite horizon sum? 
    This is the object of the present work. 
    First of all, we have to specify the concepts of Pareto optimality and consensual optimality 
that form social optimality and will be used to define the optimal growth path. 
     
 
2.2-Pareto optimality 
 
    To understand optimality problems in OLG models, we need first to look for Pareto-
optimal consumption allocations c(t). This issue has been first studied by theorists like 
Cass(1972), Balasko-Shell(1980) and Wilson(1980), but with different mathematical tools 
and in a somewhat different context, probably more general because of the focus of this work 
on capital accumulation. However, this work permits (I hope) to give some interesting results 
in an issue as central as capital accumulation in growth theory. 
    Inter-generation Pareto-optimality of a consumption allocation means that it is not possible 
to find a better way to distribute the consumption so as to strictly enhance the utility of one 
generation without diminishing utilities of one or more other generations. 
    In the beginning of its economic life, a given generation receives a capital as heritage. It 
consumes and invests during it's life and disappears bequeathing a capital . 

hk
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    During its life, given and , the generation chooses the consumption c(t) that 
maximizes its individual intra-life utility. 

hk lk

    Let be the capital inherited by the first generation , the capital bequeathed by to 
, the capital bequeathed by to and so on... 
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    Given the vector bequests plan , each generation maximizes its individual 
intra-life utility and determines its consumption and its life-utility . 
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    Thus, we can see that the allocation of consumption and the distribution of utility between 
generations depends only on the vector K. So, we can speak of inter-generation Pareto-
optimality of the vector K: a bequests plan K is Pareto-optimal if there is no other bequests 
plan that enhances strictly the utility of one generation without diminishing the utilities of one 
or more other generations. 



    If we exclude technical changes, the utility level reached with a heritage and a bequest 
depends only on , . So, we can write: 
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    We can immediately see that if K is Pareto-optimal, it is a solution to the program 
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2.3-Consensual optimality 
 
    The concept of Pareto-optimality corresponds to the idea of efficient use of resources, but it 
does not take into account the social consensus underlying social stability and durability. For 
example, a situation where a unique individual owns all the wealth can be Pareto-optimal, but 
it is clearly not a socially stable situation and a social optimum. 
    Consequently, an optimal growth path has not only to be a Pareto-optimum, but it has also 
to respect a consensual criterion Ψ reflecting the social consensus. Consensual optimality is 
then given by the program S(Ψ): 
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    The form of Ψ depends on the political system, social values...It is just as if Ψ expresses the 
preferences of an "out of the society and time" planner who incarnates the values and has 
widely agreed moral authority. We can think about this criterion as a kind of intergenerational 
GDP. 
     
 

3-Formalism 
 
    To concentrate on optimality problems, consider an OLG economy without demographic 
growth and where individuals of each generation are exactly similar. Moreover, exclude intra-
generational exchanges to eliminate wealth-distribution and prices questions. Exclude also, as 
a first approach, technical change. Capital accumulation is achieved through bequests from 
one generation to the next one. 
 
 
3.1-Definitions 
 
    Denote the sequence of bequests from one generation to the next one 
and  the level of utility a generation reaches with a heritage and a bequest , 
where U is a functional defined on a subset strictly included in . 
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   is then the life-utility. It is distinct from the instantaneous utility u(c(t)) one 
achieves at the instant t with a consumption c(t). 
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    Name the sequence  : a bequests plan. 1)( ≥= iibB
    Let be the set of real positive and bounded sequences, a real positive number. +∞l 0k
    Denote: 
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    Suppose that is closed, and that it is such as the interior of D is not empty. Let Ψ be a 
Frechet-differentiable functional on . 
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    A bequests plan K is a Pareto-optimal bequests plan if and only if it is solution to 

for all i≥1 and K is a consensual optimum if and only if it is solution to S(Ψ). )(KPi

    The aim of this work is to characterize Pareto-optimal bequests plans and consensual 
optima. This amounts to characterize solutions of and S(Ψ). )(KPi

     
 
3.2-Assumptions 
 
    The following assumptions will be adopted when necessary: 
 
  ·   is strictly included in R², closed and with a non-empty interior uD
  ·  The interior of D is not empty 
  ·  U is of class C1 on the interior of   , and continuous on  uD uD
  ·  ≻0 (  is the derivative of U with respect to its first variable) UD1 UD1

  ·   Convex, U concave. One can then show easily that D is also convex. uD
 
     
    The condition that U is C1 is a condition of preferences regularity. 
    The concavity of U means that every mixing between 2 bequests plans is preferred to the 
worst of them, which is a usual and acceptable assumption. 
    The condition ≻0 means that life utility increases when one gets more heritage, which 
seems also quite reasonable. 

UD1

     
    When the utility  of generation comes from an optimization program like: ),( 1 ii bbU − ig
 



  subject to : k+c(t)=f(k(t))-a·k(t); ∫
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where u is the instantaneous utility function, δ is a function weighing instantaneous utilities of 
consumption during the life, a the rate of capital depreciation, f the production function and T 
the life period, we assume that u and f are concave and increasing and that f′ decreases 
below the parameter a.1
 
 We can then verify that the sequence of bequests is bounded. 
    We see also that for all there is  and  such that: 0≥hk maxlk lùink
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    and 
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    So,  is indeed strictly included in R². This means that, with a heritage , whatever be 
the consumption sacrifice consented, one cannot bequeath more than , and whatever be 
the consumption abuse, one cannot bequeath less than . 

uD hk
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    Hence, generally, it comes out that if a bequests plan K is at the frontier of D then: either 
the bequest of at least one generation is extreme, or there is a tendency, even episodically, to 
this behaviour when time goes to infinity. 
     
 

4-Pareto-optimality of a bequests plan 
 
4.1-Necessary condition 
     
    Assumptions on U: 
 
  ·   is strictly included in R², closed and with a non-empty interior uD
  ·  The interior of D is not empty 
  ·  U is of class C1 on the interior of  , and continuous on  uD uD
  ·  ≻0 UD1

 
    Assumptions on K: 
 

  ·  K is an interior point to D and such that . 
o
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1 Since the object of this work is not the critique of the decreasing returns hypothesis, but that 
of infinite horizon optimization, I choose to stay in the framework of neoclassical concave 
production function. 
 



  ·  There is i≥2 such that . 0),(1
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    Suppose that . +− ∪∈ LLK
     
    Under these assumptions, we have: 
     
    Proposition2 If K is a Pareto-optimal bequests plan then for all i≥1 we have: 
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4.2-Sufficiency 
     
    Assumptions on U : 
 
  ·   is strictly included in R², closed, convex and with a non-empty interior uD
  ·  U is of class C1 on the interior of  , and continuous on . uD uD

  ·   and  are extendable by continuity on . UD1 UD2

o

uuu DDD −=∂

  ·  ≻0 UD1

  ·  The interior of D is not empty 
  ·  U concave 
 
    U is then Frechet-differentiable on the border of  and D is closed and convex. uD
     
    Proposition3 Under the previous assumptions on U, let  and i such that if i≻1 we 

have:  
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 then K is solution of ■ )(KPi

     
    Proposition4 Under the previous assumptions on U, let DK ∈  such that for all i≥1 we 
have . 0),( 12 pii kkUD −
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then K is a Pareto-optimal bequests plan.■ 
     

    Theorem1 Under the previous assumptions on U, let  such that 

 and such that for all i≥1 we have  . Then K is a Pareto-optimal 
bequests plan if and only if 
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5-Examples of Pareto optimal plans 
 
5.1-A region of Pareto-optima 
 
    We adopt in all this section the same assumptions than in paragraph3-2 and 4-2. 
    Define the open region (supposed not empty)  between the two lines : −l
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figure1. 
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    If K is in  (as defined in §4-1), this means graphically that from a given index n, K's 
components are in , under the line L without approaching it. 

−L

−l
    We then, apply theorem1: 
     
    Proposition5 Under the assumptions of paragraph3-2 and 4-2 on U, all bequests plans 
which components are, from a given index in  without approaching the line L , are Pareto-
optima.■ 

−l

     

     
Figure 1: A region of Pareto-optima in a heritage-bequest diagram 

 
 

 



    This condition implies that, for "most" generations we have: 
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which means that if generation  decreases its bequest by one unit, it wins less than 
what is lost by generation . The condition 

ng
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can be taken as an interiority condition with respect to the set of relevant bequests plans. 
     
 
5.2-Steady state Pareto-optima 
 
    At the point  , the line h=l is tangent to a line U(h,l)=U*, so we have ),( ** kk
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Such a point does not necessarily exist. But if it does2, a steady state bequests plan tending to 

 is an optimal steady state bequests plan with respect to the criterion *k
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    We will suppose henceforth that  exists and that . *k 0),( **

2 ≠kkUD
    None of the steady state bequests plans which limits are over  is Pareto- optimum. All 
steady state bequests plans under are Pareto-optima. 
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    Let B* be a steady state bequests plan which components are equal to  from a given 
index. 

*k

     
    Proposition6 B* is Pareto-optimal.■ 
     
    The criterion  gives best plans for remote generations. Thus B* is the 

best steady state plan for remote generations. 
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    If the economy begins with , generations have to bequeath less than they 
inherit until they reach . If they do not, not only their bequests plan will not be good for 
remote generations but also it will not even be Pareto-optimal. 
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    If the economy begins with , either it can tend to a steady state limit with a 
Pareto-optimal bequests plan, or it can tend to the limit  which is better for remote 
generations but requires from immediate generations to bequeath more. Consequently, if 

, one cannot enhance utility level of remote generations without decreasing 
immediate generations ones. 

*
0 kk ≤ *kk p∞
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*
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2 The question of existence of k* is not a difficult problem. To lighten the text, it has been avoided. 
Nevertheless, it is addressed in a forthcoming work. 
 



     
The condition implies that *kk ≤∞
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which means that, asymptotically, one unit decrease of bequest adds less utility than what is 
lost by the simultaneous and equal decrease of heritage. 
    If we consider long run interest, each generation should increase bequest until its 
marginal utility for next generation comes to heritage marginal utility. Then we get to the 
value where *k
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6-Consensual optimum 
 
6.1-First order condition 
 
    We adopt in all this section the same assumptions than in last section. Denote 

( )( )[ ]11 ,)( ≥−= iii bbUBG . Denote c the set of real converging sequences. 
    As defined in section2, a consensual optimum is a bequests plan maximizing an inter-
generations criterion Ψ(G(B)), where Ψ(x) is a Frechet-differentiable function from  to R. 

Suppose that . Suppose also that Ψ is increasing and concave
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increase in the utility of generation  without change for other generations, increases the 

value of Ψ. For example, we can take a linear criterion where . 
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    The necessary first order condition is 
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    The first order condition gives: 

                                                 
3 For the same reason than the concavity of U 
 

4 See  proposition1 in appendix for the definition of 
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 for all i≥1. 
    and: 
     
    Proposition7 Under the assumptions of paragraph3-2 and 4-2, all interior maximizers of 

the criterion Ψ(G(B)) verifying 0))((
1

≠
∂
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  and   for all i≥1, where Ψ is 

a Frechet-differentiable function on , are Pareto-optima.■ 
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6.2-Egalitarianism 
 
    First, we define some interesting properties for Ψ. 
 
    Definition1 Ψ is non-saturable at infinity if and only if  for all 0))((' fBG∞Ψ DB ∈ . 
 
    This property means that the consensual criterion always increases strictly when utility of 
remote generations increases strictly. Thus this property warrants that the criterion is sensitive 
to long run interest. 
 
    Definition2 Ψ is "locally egalitarian" at a point G if and only if   for all i≥1. 0)(' =Ψ Gi

 
    As seen in section2, one of the essential reasons to work in an OLG context is the 
preoccupation about equality between generations. Even if equality is not a demanded 
condition, we need at least to compare it to the analysed situation5

    The following proposition clarifies definition2: 
 
    Proposition8 Let s be a one-to-one mapping on N* and define  the transformation on  
such that,  for , . Then, Ψ is locally egalitarian at a point G if and 
only if: 

ŝ ∞l

∞∈= lgG i )( )()(ˆ )(isgGs =

 
)(ˆ)()( GsGGG ∆•Ψ=∆•Ψ δδ  

 
for all s and for all ∆G in c, in a given neighbourhood of G.■ 
 
    The above condition means that if we change components order in ∆G, it does not change 
the consensual value. Thus, it expresses the idea of an equal importance of wealth increase for 

                                                 
5 For much of the ideas developed here, I am indebted to M. Allais's "Economie et interet". I found also a more 
accessible exposé of some important issues in Macroeconomics of G.Mankiw. For example, about 
intergeneration equality we can read p116: "We then see that optimal capital accumulation is essentially function 
of the importance that we give to  present and future generations. If we put them (generations) on the same level, 
(optimal path) will have to reach the golden rule's capital level." This is exactly what is shown in present and 
next section. 
Notice that original G.Mankiw text is certainly somewhat different from what I quoted because I translated back 
to English the French translation available to me. Nevertheless, I hope that the meaning is preserved. 
 



all generations in the eyes of what we called social consensus or "out of society and time" 
planner in section2. 
     
 
6.3-Egalitarianism versus efficiency in steady states case 
 
    Suppose now that the solution K is in c. It is equivalent to say that K is a steady state plan. 
Take ∆B in c. Then cBKG ∈∆•)(δ . Denote  and 

 and . We then have 
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    If Ψ is non-saturable at infinity, we have necessarily . Then K converges to . 0'' =+ hl uu *k
    With the help of proposition7 we deduce: 
     
    Theorem2 If the criterion defining a consensual optimum is non-saturable at infinity, all 
steady state bequests plans that are interior consensual optima converge necessarily to . 
Let K be such an interior consensual optimum such that for all i≥1. If Ψ is 
not locally egalitarian at G(K), then K is Pareto-optimal.■ 

*k
0),( 12 pii kkUD −

 
    Hence, as long as non-saturability at infinity, which means sensitivity at infinity, is 
respected, changing the criterion Ψ can only change the speed of convergence to  (number 
of generations necessary to get close enough to ) but not the "destination" . 

*k
*k *k

    The second assertion of theorem2 is somewhat amazing : local egalitarianism does not 
warrant efficiency (Pareto-optimality), while its opposite (favouritism) does. 
    To try to find more "optimistic" properties for egalitarianism, let's define global 
egalitarianism: 
 
    Definition3 Ψ is "globally egalitarian" if and only if 
 

0)(' =Ψ Gi  
 
 for all i≥1 and for all G in c. 
 
    The following proposition clarifies definition3: 
 
    Proposition9 Let s be a one-to-one mapping on N* and define s)  as in proposition8. Then, 
if  Ψ is globally egalitarian, we have: 
 
 Ψ( (G))=Ψ(G) ŝ
 
 for all s and for all G in c6.■ 
 

                                                 
6 Although the reciprocal implication seems true, I have failed yet to prove it. 
 



    Remark: If we suppress the condition G in c in the definition of global egalitarianism and 
∆G in c in the definition of local egalitarianism, these concepts would be tighter but much 
more difficult to characterize. So, I kept G in c. 
 
    Let K be an interior consensual optimum for the non-saturable-at-infinity criterion Ψ such 
that Ψ is not locally egalitarian at G(K) and for all i≥1. We then have (see 

above) 
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. This implies that  never reaches 

endlessly ( , ) which means that there is, at least episodically, a deviant generation that 
gets away from . However, K is Pareto-optimal. 
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    If Ψ is globally egalitarian, we see that every plan which components are equal to  from 
a given index is a consensual optimum (but not necessarily an interior one). In this case, all 
consensual optima are not necessarily Pareto-optima, but some of them are. For example, the 
plan where first generations bequeath their maximum bequest until they reach  and then the 
lasting generations stay at , is a consensual optimum and a Pareto optimum. This plan is 
the faster way to reach . 

*k

*k
*k

*k
    Observing that this plan is the best state for long run interest, we can assert: 
 
    Proposition10 A globally egalitarian non-saturable-at-infinity consensual criterion 
enables the fastest consensus-optimal and Pareto-optimal attainment of the best state for long 
run interest . Whereas with a non locally egalitarian, non-saturable-at-infinity consensual 
criterion, every consensual optimum is Pareto optimal but there is endlessly a deviant 
generation from ■ 

*k

*k
     
 
6.4-Optimal growth path 
 
    As said in section2, an optimal growth path has to be Pareto-optimal and consensus-
optimal. We limit henceforth the concept of optimal growth path to steady state ones. 
    Denote  the limit of a steady state bequests plan. = ( ) means that from a given 
index n we have , =( ) means that  with , =( ) means 
that  with , =( ) means that  with oscillations round . 

∞k ∞k =*k
*kkn = ∞k −*k *kkn → *kkn p ∞k +*k

*kkn → *kkn f ∞k +−*k *kkn → *k
    With a globally egalitarian criterion (non saturable at infinity), the following table 
characterizes steady state plans to show up which ones are optimal growth paths. 
 
 

∞k  *kp  −*k  =*k  +−*k  +*k  *kf  
Pareto 
optimality 

yes ? yes ? ? no 

Consensual 
optimality 

no yes yes Yes yes no 

 
 



    For the cases  ,  and ,  we cannot apply theorem1. +*k −*k +−*k )(
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. The 

interpretation is that the bequests plan must not tend "too rapidly" to . *k
    Consequently, only  is doubtlessly an optimal growth path. On top of that, the plan 

 is the fastest to reach . 
=*k

=*k *k
     
 
 

7-Golden rule 
     
    The golden rule : capital marginal productivity = rate of capital depreciation, characterizes 
the best steady state in an economy governed by a Solow model, which is one of the first, the 
simplest, but more insightful models in growth theory. In this model, the sharing between 
consumption and saving is not the result of an optimization decision, but a fixed parameter as 
supposed in keynesian theory. Indeed, Solow's goal was to criticize Harrod-Domar model by 
accepting all its keynesian assumptions except that of fixed proportions production . Solow's 
economy converges to a steady state depending on the savings rate. The golden rule steady 
state is obtained by imposing the golden savings rate equal to the quotient of marginal 
productivity on average productivity. 
    Here, under intra-life time neutrality assumption, we find similar results, but with a 
dynamic of savings behaviours governed by the needs of consensual optimality and Pareto 
optimality. 
    Intra-life time neutrality means that a generation does not care when it consumes, as long as 
it is during its lifetime. Thus, the discount rate ρ in the expression of life utility 

is taken 0.∫ −T t dtetcu
0

))(( ρ 7

 
    Proposition11 Suppose that U(h,l) comes from the resolution of the following program: 
 

  subject to :  k+c(t)=f(k(t))-a·k(t) ;  ∫=
T

c dttculhU
0

))((max),(

 k(0)  = h ; k(T)=l and c∈[0,f(k)] 
 
where u is a concave function, C1on ]0,+∞[, such that all paragraph3-2 and 4-2 conditions 
on U are verified. Then any optimal growth path verifies the golden rule, and the asymptotic 
savings rate is the golden savings rate. Moreover, this is true for any bequests plan tending to 
■ *k

 

 
7 This assumption may look as naive but ρ≠0 would mean that consumption in the beginning of life weighs more 
than in other periods of life, which would not reflect life utility, but utility at a given time. 



    The savings rate tends to 
)(

)(' *

*
*

kf
kkf .     

    We look now to the savings behaviours necessary to reach . *k
    If  : Suppose that before generation1, economy was stationary at . A 

generation who will enhance bequest will have to enhance its savings rate above 

*
0 kk p 0kk =

)(kf
ka . So 

it will necessarily sacrifice utility as we have seen in section4. In figure2, curved arrows 
represent trajectories of "sacrificed "generations and discontinuities represent jumps from a 
generation to the next one. 
     

 
Figure 2:  The optimal growth path in a ),( λk 8diagram 

 

    As we get closer to , the savings rate will decrease back to *k
)(kf

ka  and the life utility 

U(h,l) will increase. Hence, the efforts accepted by immediate generations will benefit to 
the infinity of remote generations and there is not another way to reach . *k
    If : As said in section4, staying in this situation is not Pareto-optimal. Decreasing 
savings rate is good for immediate generations as for remote ones. Economy will depart 
from region3 and end to and savings rate will decrease to its golden rule level. 

*
0 kk f

*k
    If : Generations will just have to keep a constant consumption 

which warrants the golden savings rate. 

*
0 kk =

*** )( akkfc −=
     
 

8-Welfare analysis 
 
8.1-Selfish and altruistic utility 
 
    If anyone behaves only according to what his pure selfishness dictates, the optimal growth 
path would not be stable. The first generation that is free to deviate would do it and bequeath 
the minimum capital. This capital  is determined by minl
 

0),(' min
* =lkU l  

                                                 
8 λ is the “shadow price” of the capital k. In mathematical words, it is the adjoint variable of k. 



    If the generation does not bequeath , it must be because of one of the three following 
reasons: 

minl

    First, it can be compelled by the planner. But it is hard to imagine that. Planner can fix 
prices or production, but not bequests. 
    Second, it can be so altruistic that it maximizes the consensual criterion Ψ instead of its 
utility. This supposition is not completely utopian because some people determine their 
behaviour according to collective interests. For example, some Europeans don’t buy Japanese 
cars although they may be competitive, because it would lead to European GDP decrease. We 
can also combine individual utility U an consensual criterion Ψ and use something like 
λU+(1-λ)Ψ. 
    Thirdly, we can suppose that individual utility depends on heirs’ utility. This assumption 
appears as the more appropriate to our problem. We can name it : familial altruism or 
intergenerational altruism. This concept have been used by Brenheim-Ray(1987) or 
Lakshmi(2002). The point is then to see if this limited altruism could lead to optimal growth 
path. In other words, we try to find out what familial altruism intensity can lead to the 
optimal growth path. 
    We suppose that we can decompose the individual utility V as follows: 
 

V=U+A 
 
    where U is the classical selfish utility depending on personal consumption and A is the 
altruistic utility depending on the capital bequeathed to next generation. Thus 
 

V(h,l)=U(h,l)+A(l) 
 
 where U is the utility function used in previous sections (with assumptions of paragraph3-2 ) 
and A is the altruistic utility. 
    A has to be increasing with l since altruistic feelings are satisfied when bequest increases. 
We also suppose that A is C1 and strictly concave9on R. 
     
 
8.2-Honour your heir, but not more than yourself! 
 
    Define as spontaneous equilibrium a bequests plan where each generation chooses  
solution to: 

ng nk

 
  where h  )(),(max lAlhUl + 1−= nk

                                                

 
    Denote  and  respectively the lower bound and the upper bound of 

. If
)(min hl )(max hl

{ }uDlhl ∈),/( 10

 
9 Concavity requirement on A means decreasing marginal altruistic utility. 
10 The condition means that it is always better to bequest more than 

. Without this condition, adding A to U would not change anything to spontaneous equilibrium and 

economy would go in under-accumulation. The condition  means that it is 

always better to bequest less than . Without this condition, U would be useless and economy would go 
in over-accumulation. 

0))(('))(,(' minmin ≥+ hlAhlhU l

)(min hl
0))(('))(,(' maxmax ≤+ hlAhlhU l

)(max hl

 



 0  and  ))(('))(,(' maxmax ≤+ hlAhlhU l 0))(('))(,(' minmin ≥+ hlAhlhU l

 then 
     
    Proposition12 If a spontaneous equilibrium is an optimal growth path, then 
 

)('),(' *** kAkkU h =  
    ■ 
 
    The left hand side of the equation above is the increase of selfish utility resulting from an 
increase of heritage by one unit. The right hand side is the increase of altruistic utility 
resulting from an increase of bequest by one unit. The interpretation is that spontaneous 
equilibrium cannot be optimal growth path unless generations feel (asymptotically) about 
their heirs as they feel about themselves. 
    If , then which implies . So if 
feelings toward heirs are deficient, economy will stay in under accumulation. 

)('),(' ∞∞∞ kAkkU h f 0),('),(' f∞∞∞∞ + kkUkkU lh
*kk p∞

    Similarly, if  then . If feelings toward heirs are excessive, 
economy will go in over accumulation. 

)('),(' ∞∞∞ kAkkU h p *kk f∞

     
 
8.3-Transitory state 
 
    Denote )( 1−= nn kk ϕ  the relation between and in a spontaneous equilibrium. The 
condition  is necessary for a spontaneous equilibrium to be an optimal 
growth path, but it is not sufficient. We have to make sure that the sequence 

1−nk nk
)('),(' *** kAkkU h =

)( 1−= nn kk ϕ  
converges. 
    Assume that U and A are C1 on their definition sets. 
    If there is α in ]0,1[ such that 
 

α
ϕ

ϕϕ
))(,(''

))(,(''))((''
hhU

hhUhA lh
ll −−p  

 
for all h for which the last expression is defined, then, under the condition 

, consensual optimality is warranted but still not Pareto optimality. )('),(' *** kAkkU h =
    The last condition can be replaced with 
 

),(''),('')('' ***** kkUkkUkA lhll −−p  
 
if we want only to have convergence for  close enough to . 0k *k
     
    If 0)(' =kϕ in a neighbourhood of , which is equivalent to *k
 

0),('' =kkU lh  
 
and if  is in this neighbourhood, we will be in the case ( ) which is an optimal growth 
path. 

0k =*k



 
 

 
 
 
 
 

9-Conclusion     
 

    The need to specify the concept of optimal growth path without infinite horizon sum, has 
lead me to try to mathematically characterize optimality between generations in an OLG 
economy. 
    For Pareto-optimality, we establish that, under some conditions, that for "most" generations 
we should have: 

),(),( 1112 +− ≤− nnnn kkUDkkUD  
  
which means that if generation  decreases its bequest by one unit, it wins less than what is 
lost by generation . 

ng

1+ng
    To complete the concept of Pareto-optimality, this paper introduces consensual optimality 
with egalitarian and non-saturable-at-infinity criterion. These concepts are used for the 
definition of optimal growth paths, which are shown to converge necessarily to the capital  
defined by 

*k

 
0),(),( **

1
**

2 =+ kkUDkkUD  
 
    Moreover, with intra-life time neutrality, observes the golden rule. *k
    Then, with the use of familial altruistic utility, we have shown that if marginal altruistic 
utility of bequest is equal to marginal selfish utility of heritage, spontaneous equilibrium is 
consistent with optimal growth path. 
 
    However, bequests plans which are not in have not been examined here, 
particularly Pareto optima that cross cyclically the line L. They don't meet regularity 
requirement, but their study should be interesting. For example, it could help know to what 
extent changes in bequeathing behaviour affects long period economic cycles. 

+− ∪ LL

    It should also be interesting to drop intra-life time neutrality assumption and see 
consequences on golden rule observance. 



 
Appendix 

 
The infinite part of the differential of a Frechet-differentiable function on  ∞l
 
    Proposition1  Let c be the set of real converging sequences, f a function from  to R, 
Frechet-differentiable at , and  the sequence of c obtained by setting to 0 the n 
first terms of a sequence h of c. 

∞l

∞∈ lx0 )(hrn

    Then, the following limit exists: 
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We denote it : 
 

 )( 0xf
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