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Abstract 

Consumption of a good at one point in time is a substitute for consumption of the same good an 
instant earlier or later. Utility functions which conform to this fact must necessarily be non-time 
separable, as Hindy, Huang, and Kreps show. When agents’ utility functions are non-time separable 
in the required way, the price space consists of semimartingales with an absolutely continuous 
compensator. In general, this space is not closed under taking pointwise maxima, that is, it is not a 
lattice. Therefore, neither the Mas-Colell/Richard  existence theorem nor the determinacy theorem 
by Shannon/Zame apply. In a paper with Peter Bank, existence is established for such intertemporal 
economies; here, I show that generically, the number of equilibria is finite and that equilibrium 
allocations depend continuously on endowments. The notion of genericity is (finite) prevalence as 
developed by Anderson/Zame. 
 
Keywords: Hindy-Huang-Kreps preferences, prevalence, local substitution, determinacy 
 
JEL Classification: D91 
 
 
 
 
 
 
_________________________ 
This paper was written while the author was visiting University of California, Berkeley.  
I would like to thank Robert Anderson and Chris Shannon for useful comments. Support of a research grant 
by Deutsche Forschungsgemeinschaft is gratefully acknowledged. 
This paper is available on-line at the California digitial Library/ escholarship website:  
http://repositories.cdlib.org/iber/econ/ and at the publications website for the University of California, Berkeley, 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/9311907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

Two cornerstones of General Equilibrium Theory are existence and generic
finiteness of equilibria. In finite dimensions, Arrow and Debreu [3] use Kaku-
tani’s fixed point theorem to establish existence, and Debreu [6] shows that
Sard’s theorem yields local uniqueness for almost all initial endowment vec-
tors. For infinite–dimensional commodity spaces, existence is ensured by the
Mas-Colell/Richard Theorem ([12], [1]), and generic finiteness is established
by Shannon and Zame[14]. These theorems cover most relevant economic
models, with one notable exception: the important class of intertemporal
economies where preferences exhibit local substitution ([8]). Peter Bank and
I [4] show that equilibria for local substitution economies exist. Here I es-
tablish generic finiteness.

Two assumptions Shannon and Zame make are not satisfied here: in
general, the price space is not a lattice, and aggregate endowment is not
strictly positive. The main contribution of the present paper is therefore to
prove generic determinacy without these assumptions.

Strict positivity of aggregate endowment may seem an innocuous assump-
tion, and the results do of course hold true if one retains it; however, there
might be reason to avoid it in the present context where endowments are
(random) measures on the time axis. I would like to cover the cases where
there is only positive supply at some fixed points in time, or, for that matter,
only at one point in time, thus including discrete time models. Of course, a
measure with a finite support is not strictly positive (in the sense that the
order ideal it generates is weakly dense in the commodity space).

Strict positivity of aggregate endowment is used by [14] in order to extend
certain price functionals from the order ideal to the whole commodity space.
In the present context, one can use another approach; since the structure of
the model provides explicitly a candidate for a price functional, it must only
be shown that the candidate has indeed the desired properties (cf. [4], [7]),
and the abstract extension problem does not arise. The relevant arguments
for that part have been developed in my paper with Peter Bank [4].

The lattice property of the price space is used by Shannon and Zame in
order to establish joint continuity of the excess spending map. The critical
point here is that the weighted maximum of utility gradients is not necessar-
ily a continuous linear functional on the commodity space. However, it turns
out that continuity is needed only on the order interval formed by zero con-
sumption and aggregate endowment, and, as I show, maxima of continuous

1



linear functional are indeed continuous on order intervals. A sketch of the ar-
gument is as follows. The order ideal generated by aggregate endowment can
be identified with a suitable L∞–space; on this space, the weighted maximum
of utility gradients is a continuos linear functional, and order intervals are
weak–* compact; this makes it possible to establish continuity in the original
topology on the order interval formed by zero and aggregate endowment.

As is well known from the finite–dimensional case ([6]), the number of
equilibria can be infinite, even with smooth preferences. However, the set
of initial endowment vectors for which this occurs is of Lebesgue measure
zero, and it is said that generically, the number of equilibria is finite. In the
absence of a Lebesgue measure (i.e. a translation invariant measure which
assigns positive measure to all nonempty open sets) for infinite dimensional
spaces, another concept of genericity is needed. Here, ’generically’ will mean
that the set of initial endowment vectors with finitely many equilibria is
finitely prevalent in the set of nondegenerate initial endowment vectors, a
concept introduced into the economics literature by Anderson and Zame [2].

The paper is organized as follows. The next section presents the model
and examples of utility functions covered in this paper. Section 2 states the
main result and contains its proof. The appendix collects some supplemen-
tary proofs.

1 Assumptions, Preliminaries, Examples

Consider a stochastic pure exchange economy with a finite number m of
agents. Let (Ω,FT , (Ft, 0 ≤ t ≤ T ),P) be a filtered probability space satis-
fying the usual conditions of right continuity and completeness; F0 is P-a.s.
trivial.

A nonnegative, nondecreasing, rightcontinuous and adapted process C =
(Ct)t≥0 is called an optional random measure. If X = C−C ′ for two optional
random measures, then X is called a signed optional random measure, and
the commodity space X is the space of all signed optional random measures.
Agents’ consumption set X+ consists of all optional random measures C with
ECT < ∞. An ordering ≤ is given on X via X ≤ Y iff X − Y ∈ X+. For
C ∈ X+, the order interval is

[0, C] = {D ∈ X+ : 0 ≤ D ≤ C} .

The Hindy–Huang–Kreps norm on X is given by ‖X‖HHK =
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E
∫ T

0
|Xt|dt+E|XT | . On the consumption set, this norm induces the topology

of weak convergence in probability plus L1–convergence of total cumulative
consumption. This topology captures the notion of local substitutability of
consumption as shown by Hindy, Huang [8] and Hindy, Huang, and Kreps
[9].

The m agents are described by their utility functions U i : X+ → R, i =
1, . . . ,m. Throughout, we take utility functions and aggregate endowment
Ē ∈ X+, Ē 6= 0 as fixed, and we vary the vector of initial endowments
(Ei)i=1,...,m in the set

D =

{(
Ei

)
i=1,...,m

∈ Xm
+ : Ei 6= 0,

m∑
i=1

Ei = Ē

}
.

Therefore, one can identify an economy with an endowment vector (Ei) ∈ D
in the sequel. Optional, nonnegative processes ψ with

0 < 〈ψ, Ē〉 ∆
= E

∫ T

0

ψtdĒt <∞

are called price processes. The set of all price processes is denoted Ψ. An
allocation is a vector (Ci)i=1,...,m ∈ Xm

+ . It is feasible if
∑m

i=1C
i ≤ Ē. The set

of feasible allocations will be denoted by Z. An (Arrow–Debreu) equilibrium
for the economy (Ei) ∈ D consists of a feasible allocation (Ci)i=1,...,m and
a price process ψ such that, for any i = 1, . . . ,m, the consumption plan
Ci maximizes agent i’s utility over all Di satisfying the budget–constraint
〈ψ,Di〉 ≤ 〈ψ,Ei〉.

A vector of initial endowments (Ei) ∈ D is called determinate if the num-
ber of equilibria for the economy (Ei) is finite and the equilibrium allocation
correspondence

(F i) ∈ D 7→
{
(Ci) ∈ D : (Ci) is equilibrium allocation for (F i)

}
is continuous at (Ei). Here, I shall show that the set of determinate en-
dowments is finitely prevalent in D, a concept introduced into the conomics
literature by [2]. A Borel subset D0 ⊂ D is called finitely prevalent in D if
there exists a finite–dimensional subspace V of X and an element F ∈ X
such that the intersection V ∩ (F + D) is not a Lebesgue null set in V , and
for all G ∈ X the sets V ∩ (G + (D\D0)) are Lebesgue null sets in V . The
subspace V is called a probe (cf. [10]). Prevalence is defined for completely
metrizable sets only, so we note as a preliminary fact proved in the appendix:
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Lemma 1 The metric space (X+, ‖·‖HHK) is complete.

Another requirement for determinacy is that utility functionals are
smooth and strictly concave. As in [14], we assume quadratic concavity with
respect to an adapted norm in the sense of the following definition.

Assumption 2 The utility functions U i have the following properties:

1. U i is strictly increasing and continuous,

2. there exist a mapping ∇U i : X+ → Ψ, a norm ‖·‖i on X and constants
B,K > 0 such that

(a) on [0, Ē], the topology induced by ‖·‖i coincides with the topology
induced by ‖·‖HHK,

(b) for all C ∈ [0, Ē] and all X ∈ X∣∣〈∇U i(C), X〉
∣∣ ≤ B ‖X‖i ,

(c) for all C,C ′ ∈ X+, C ′′ ∈ [0, Ē]∣∣〈∇U i(C)−∇U i(C ′), C ′′〉
∣∣ ≤ B ‖C − C ′‖i ,

(d) for all C,C ′ ∈ [0, Ē]

U i(C ′)− U i(C) ≤ 〈∇U i(C), C ′ − C〉 −K ‖C ′ − C‖2
i .

Example 3 Hindy–Huang–Kreps utility functions satisfy Assumption 2.
For β, η > 0 and X ∈ X set

zX
t = e−βt

∫ t

0

eβsdXs

yX
t = ηe−βt + zX

t .

Let u, v : R+ → R be twice continuously differentiable with strictly positive
first and strictly negative second derivative. Set for δ > 0 and C ∈ X+

U(C) = E
∫ T

0

e−δtu
(
yC

t

)
dt+ Ev

(
yC

T

)
.
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Define a norm on X via

‖X‖R

∆
= E

∫ T

0

∣∣zX
t

∣∣dt+ E
∣∣zX

T

∣∣ .
The subgradient of U at C ∈ X+ is

∇U(C)t = E
[∫ T

t

e−δsu′
(
yC

s

)
e−β(s−t)ds

∣∣∣∣Ft

]
+ E

[
e−β(T−t)v′

(
yC

T

)∣∣Ft

]
.

We claim that U , ∇U and ‖·‖R satisfy Assumption 2 if aggregate endowment
Ē is bounded a.s. This is shown in the appendix.

2 Generic Determinacy

Here is the road to determinacy. In a first step, efficient allocations are
parametrized by a finite–dimensional set of so–called utility weights. This
is the usual welfare approach to general equilibrium pioneered by Negishi
[13]. The weighted maximum of utility gradients at an efficient allocation is
a candidate for an equilibrium price since it supports the associated efficient
allocation. Moreover, and most importantly, all equilibria correspond to
some utility weights vector. This is shown in Subsection 2.1. The proof of
the parallel results in [14] uses their assumption that aggregate endowment is
strictly positive. Hence, I present a different proof of these facts here, which
relies on my previous work with Peter Bank [4].

Every equilibrium corresponds to a zero of the (finite–dimensional!) ex-
cess spending map, and determinacy will follow from regularity of this map.
As Shannon and Zame show, it sufiices to have Lipschitz continuity in the
utility weights and continuity in endowments. Lipschitz continuity follows
from quadratic concavity of utility functions, the concept introduced by
Shannon and Zame. For continuity in endowments, however, Shannon and
Zame rely on the lattice structure of the price space, what is impossible
in the present framework. The important remark is that the maximum of
continuous linear functionals (albeit not being necessarily continuous on the
commodity space) is continuous on order intervals — and that is all what is
needed here (Subsection 2.2).

Theorem 4 Under Assumption 2, the set of determinate endowments is
finitely prevalent in the set D of all nondegenerate endowments.

The proof of generic determinacy is given in Subsection 2.3.
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2.1 Parametrizing Efficient Allocations and Equilibria

Introduce the set

Λ
∆
=

{
λ ∈ Rm : ∀i λi > 0,

m∑
i=1

λi = 1

}

and its closure Λ̄. A feasible allocation (Ci) ∈ Z is called λ–efficient for
λ ∈ Λ̄ if it maximizes the weighted sum of utilities

∑
λiU i(Di) over all

feasible allocations (Di) ∈ Z.
The following results are as in [14]. Unfortunately, we cannot use their

proofs, because they assume strictly positive aggregate endowment. Fortu-
nately, however, one can rely on our existence paper [4].

Lemma 5 For λ ∈ Λ̄ there exists a unique λ–efficient allocation (Ci
λ). It

satisfies

〈ψλ − λi∇U i
(
Ci

λ

)
, Ci

λ〉 = 0 (i = 1, . . . ,m) (1)

for

ψλ
∆
= maxλi∇U i

(
Ci

λ

)
. (2)

Proof : [4, Lemma 1]. 2

Lemma 6 1. Let (Ci) ∈ Xm
+ and ψ ∈ Ψ form an equilibrium. Then there

exist λ ∈ Λ and L > 0 such that

Ci = Ci
λ (3)

ψ = Lψλ P⊗ dĒ − a.e. (4)

〈ψλ, C
i
λ − Ei〉 = 0 . (5)

2. If (5) holds true for some λ ∈ Λ, then (Ci
λ) and ψλ form an equilibrium.

Proof : For 1. , let ((Ci), ψ) be an equilibrium. In particular, ψ supports
the allocation (Ci). Lemma 3 in [4] yields nonnegative ki ≥ 0 such that

ψ = max ki∇U i(Ci) P⊗ dĒ − a.e. (6)

and 〈ψ − ki∇U i(Ci), Ci〉 = 0 . (7)
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Note that not all ki can be zero, because else ψ = 0 /∈ Ψ. Moreover, strict
monotonicity of utility functions implies that∑

Ci = Ē . (8)

Now, by Lemma 1 in [4], (6), (7), and (8) show that (Ci) is λ–efficient for

λi ∆
= ki∑

kj , and by uniqueness, Ci = Ci
λ. I show next that λi > 0. λi = 0

implies Ci
λ = 0, and therefore U i(Ci) < U i(Ei), a contradiction to (Cj) being

an equilibrium. Hence, λ ∈ Λ and Ci = Ci
λ, which establishes (3). From this,

and (6), we obtain (4), and (5) is the equilibrium budget constraint.
Now assume that (5) holds true for some λ ∈ Λ. (Ci

λ) is a feasible
allocation by definition. We must show that Ci

λ maximizes utility over agent
i’s budget set. So, assume that 〈ψλ, D〉 ≤ 〈ψλ, E

i〉. Concavity of U i, (1), (5),
and the budget constraint imply

U i(D)− U i(Ci
λ) ≤ 〈∇U i(Ci

λ), D − Ci
λ〉

≤ 1

λi
〈ψλ, D − Ci

λ〉

=
1

λi
〈ψλ, D − Ei〉 ≤ 0 .

Therefore, Ci
λ is agent i’s demand given ψλ, and the proof is complete. 2

2.2 Continuity of the Excess Spending Map

The topological dual X ∗
HHK consists of semimartingales ψ = M + A, where

M is a bounded martingale and A is an absolutely continuous process whose
derivative A′ is bounded a.e., see [8]. In general, this space is not a lattice,
that is, it is not closed with respect to taking pointwise maxima. To see this,
suppose the information filtration is generated by a Brownian motion M .

Set τ
∆
= inf {t ≥ 0 : |Mt| = 1} and ψ

∆
=M τ , Brownian motion stopped at 1 or

−1. Then ψ ∈ X ∗
HHK , and, of course 0 ∈ X ∗

HHK . By the Tanaka formula,
max{ψ, 0} = M ′ +L, where M ′ is a bounded martingale, and L is Brownian
local time stopped at τ . One of the remarkable features of diffusions is
that their local time, while being nondecreasing, is not absolutely continuous
([11]). Therefore, max{ψ, 0} /∈ X ∗

HHK —the topological dual is not a lattice.
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So one of the Shannon/Zame assumptions (A2) is not satisfied here, and
we must find a way to proceed without it. A careful reading of Shannon and
Zame’s proof shows that this assumption is needed only at one, but crucial
point, where one has to show that the excess spending map, or E 7→ 〈ψλ, E〉,
is continuous in endowments. Since X ∗

HHK is not a lattice, we cannot hope
that this holds true on the whole commodity space X . Fortunately, we need
it only on the order interval [0, Ē]. As the next lemma shows, we do have
continuity there.

Lemma 7 For λ ∈ Λ, the mapping E 7→ 〈ψλ, E〉 is continuous on [0, Ē].

Proof : Let λ ∈ Λ be given and assume that ‖En − E‖HHK → 0 in [0, Ē].

Denote by an
∆
= 〈ψλ, En〉. By Lemma 5, (1), we have 0 ≤ an ≤ 〈ψλ, Ē〉 =∑

i λ
i〈∇U i(Ci

λ), C
i
λ〉. Since ∇U i(Ci

λ) is a positive linear functional, and by
Assumption 2, 2 (b), we have 〈∇U i(Ci

λ), C
i
λ〉 ≤ 〈∇U i(Ci

λ), Ē〉 ≤ B
∥∥Ē∥∥

i
.

Thus, the sequence (an) is bounded, and has, therefore, limit points. Let
a be such a limit point, that is, a = limk〈ψλ, Enk

〉 for some subsequence
(nk). We must show that a = 〈ψλ, E〉. This is not clear, at first, since we
do not know whether ψλ belongs to the HHK–dual or not. However, by
the same reasoning as above, 〈ψλ, Ē〉 ≤ B

∑
i λ

i
∥∥Ē∥∥

i
< ∞. Therefore, ψλ

belongs to L1(P⊗dĒ), and is thus a continuous linear functional on the space
L∞(P⊗ dĒ).

The order interval [0, Ē] is compact in the weak*–topology on L∞(P ⊗
dĒ). Hence, we may assume without loss of generality that limk〈ψλ, Enk

〉 =
〈ψλ, F 〉 for some F ∈ [0, Ē]. It only remains to be shown that F = E.
This follows from the fact that the HHK dual X ∗

HHK ⊂ L1(P⊗ dĒ) because
X ∗

HHK consists of bounded semimartingales. For every ψ ∈ X ∗
HHK , we have

therefore 〈ψ,E〉 = lim〈ψ,Enk
〉 = 〈ψ, F 〉, which implies E = F . 2

For later use, we record the following continuity results from Shan-
non/Zame which do not use their critical assumptions A2 (strict positivity
of aggregate endowment) and A5 (price space is a lattice).

Lemma 8 (Shannon/Zame) 1. The mapping λ 7→ Ci
λ is locally Lip-

schitz continuous with respect to ‖·‖i and continuous with respect to
‖·‖HHK.

2. the mapping λ 7→ (〈ψλ, C
i
λ〉) is locally Lipschitz,
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3. For E ∈ [0, Ē], the mapping λ 7→ (〈ψλ, E〉) is locally Lipschitz, uni-
formly in E.

Proof : 1. is Lemma 5.1., 2. is Lemma 6.1., (i) and 3. is Lemma 6.1., (ii)
in [14]. 2

Corollary 9 The mapping (λ,E) 7→ (〈ψλ, E〉) is jointly continuous on Λ×
[0, Ē].

Proof : Let λn → λ in Λ and ‖En − E‖HHK → 0 in [0, Ē]. Set ψn
∆
=ψλn .

By Lemma 7, we know |〈ψλ, En − E〉| → 0. Lemma 8 yields a constant L > 0,
independent of (En) and E, such that |〈ψn − ψ,En〉| ≤ L ‖λn − λ‖ → 0.
Altogether, we obtain

|〈ψn, En〉 − 〈ψ,E〉| ≤ |〈ψn − ψ,En〉|+ |〈ψ,En − E〉| → 0 .

2

2.3 Proof of the Theorem

Proof : As a preliminary, we need to show that the set

Dd
∆
= {(Ei) ∈ D : (Ei) is determinate} of determinate endowments is a Borel

set. The argument is as in [14], p. 650. Note that joint continuity of the map-
ping (λ, (Ei)) 7→ 〈Ψλ, C

i
λ −Ei〉 is needed for that. This follows from Lemma

8 and Corollary 9.
We introduce the m− 1–dimensional set

V ∆
=

{(
αiĒ

)
: αi ∈ R,

∑
αi = 1

}
.

The set V ∩D =
{(
αiĒ

)
: αi > 0,

∑
αi = 1

}
has positive Lebesgue measure

in V . In order to establish V as a probe, it remains to be shown that for
every F ∈ Xm the set V ∩ (F +D −D0) has Lebesgue measure zero in V . So
fix some F ∈ Xm and assume that G ∈ V ∩ (F +D −D0). This implies that
Gi = αiĒ = F i + Ei for some positive αi with

∑
αi = 1 and some E ∈ D.1

1In particular,
∑

F i = 0 follows.
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Introduce the open set ∆
∆
=

{
λ ∈ Rm−1 : λi > 0,

∑m−1
i=1 λi < 1

}
in Rm−1 and

the function

σ :∆ → Rm−1

λ 7→
(
〈ψλ, C

i
λ〉

〈ψλ, Ē〉

)
i=1,...,m−1

.

σ is well–defined because 〈ψλ, Ē〉 ≥ λ1〈∇U1(C1
λ), Ē〉 > 0, since∇U1(C1

λ) ∈ Ψ
by Assumption 2. By Lemma 8, σ is locally Lipschitz continuous. By Lemma
6, the number of equilibria of the G–economy is equal to the number of λ ∈ Λ
with σ(λ) = α. Hence, it is enough to show that the number of solutions
to σ(λ) = α is finite for almost every α. By Sard’s theorem for Lipschitz
functions, almost every α ∈ Rm−1 is a regular value for σ. For a regular value
α, solutions of σ(λ) = α are locally unique. Due to utility maximization, the
solutions belong to the set {λ ∈ ∆ : U i(Ci

λ) ≥ U i(αiĒ)}. Since U i(αiĒ) > 0
(strict monotonicity) and Ci

λ is continuous in λ by Lemma 8, this set is
compact. Every closed and locally isolated subset of a compact set is finite,
so the number of equilibria for the G-economy is finite.

The proof that the equilibrium allocation correspondence is continuous
at G is as in Shannon/Zame. For the sake of completeness, I prove here
in a slightly different way that the equilibrium allocation correspondence
is lower hemicontinuous at (αiĒ) for regular values α. Let α be a regular
value of σ, and σ(λ∗) = α. Fix ε > 0. We have to find δ > 0 such that the

mapping S(λ, (Ei))
∆
= 〈ψλ, C

i
λ−Ei〉 has a zero in Bε

∆
= {λ ∈ Λ : ‖λ− λ∗‖ < ε}

for every (Ei) ∈ D with
∥∥Ei − αiĒ

∥∥
HHK

< δ, i = 1, . . . ,m. Since α is
a regular value, we know from the above that λ∗ is locally unique; choose
η ≤ ε with Bη ∩ {S(·, (αiĒ)) = 0} = {λ∗}. This implies that the degree at
zero deg(S(·, (αiĒ)), Bη) 6= 0. It is enough to show that this translates to

S(·, (Ei)) when (Ei) is close to (αiĒ). Let µ
∆
= min‖λ−λ∗‖=η S(λ, (αiĒ)). Set

T ((Ei))
∆
= max

λ∈B̄η

∥∥S(λ, (Ei))− S(λ, (αiĒ))
∥∥ = max

λ∈B̄η

∥∥〈ψλ, α
iĒ − Ei〉

∥∥ .

By the Maximum Theorem ([5]) and Corollary 9, T is continuous, and
T ((αiĒ)) = 0. Hence, there exists δ > 0 such that |T ((Ei))| < µ when-
ever

∥∥Ei − αiĒ
∥∥

HHK
< δ. For such an initial endowment (Ei), consider the

homotopy H(t, λ)
∆
= tS(λ, (Ei))− (1− t)S(λ, (αiĒ)). H(t, ·) has no zeros on

the boundary of Bη, since for λ ∈ ∂Bη,

|H(t, λ)| ≥
∥∥S(λ, (αiĒ))

∥∥− t
∥∥S(λ, (Ei))− S(λ, (αiĒ))

∥∥ > µ− tµ ≥ 0 .
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By homotopy invariance of the degree, we conclude that deg(S(·, (Ei)), Bη) =
deg(S(·, (αiĒ)), Bη) 6= 0, and we are done. 2

A Proof of Lemma 1

Proof : Let (Cn) be a Cauchy sequence in X+. The
metric space (X+, ‖·‖HHK) is a subspace of the metric space
(L1 (Ω× [0, T ],O,P⊗ (dt+ δT )) , ‖·‖HHK), where O denotes the op-
tional σ–field. Since L1–spaces are complete, there exists an optional
process Z ∈ L1 (Ω× [0, T ],O,P⊗ (dt+ δT )) with lim ‖Cn − Z‖HHK = 0.
By passing to a subsequence if necessary, we may assume without loss
of generality that Cn → Z P ⊗ (dt+ δT )– a.e. This shows that Z is
nonnegative, nondecreasing, and rightcontinuous a.e. Denote by Z̄ the
optional, nonnegative, and nondecreasing process which satisfies Z̄ = Z
P ⊗ (dt+ δT )– a.e. Then lim

∥∥Cn − Z̄
∥∥

HHK
= 0 and and Z̄ ∈ X+, which

shows completeness. 2

B On Hindy–Huang–Kreps Utility Functions

I prove here the claim made in Example 3. The utility function U is strictly
increasing because so are u and v. Continuity of U with respect to ‖·‖HHK

is shown in [4] (for v = 0, but it is easy to adapt the argument). It is easy to
see that ‖·‖R is indeed a norm on X , and that the topology coincides with
the ‖·‖HHK–topology on X+.

Therefore, I focus on the remaining conditions 2, (b) through (d) in As-
sumption 2. yC is uniformly bounded away from zero since η > 0. Therefore,
u′(yC

t ) and v′(yC
T ) are uniformly bounded by some constant B. Note that

by partial integration 〈∇U(C), X〉 = E
∫ T

0
e−δtu′

(
yC

t

)
zX

t dt + Ev′
(
yC

T

)
zX

T .
Therefore,

|〈∇U(C), X〉| ≤ BE
∫ T

0

∣∣zX
t

∣∣dt+ E
∣∣zX

T

∣∣ ,
which is 2 (b).

Next, assume that aggregate endowment is bounded a.e. This implies, of
course, that zĒ is bounded a.e., say by B > 0. Lipschitz continuity of u′ and
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v′ yields a constant L such that

|〈∇U(C)−∇U(C ′), C ′′〉| ≤ LE
∫ T

0

∣∣∣yC
t − yC′

t

∣∣∣zĒ
t dt+ LE

∣∣∣yC
T − yC′

T

∣∣∣zĒ
T

≤ LB ‖C − C ′‖R .

u and v are quadratically concave since they are twice continuously diffen-
tiable and strictly concave (compare [14]). Hence, there exists a constant
K > 0 such that

u(y)− u(z) ≤ u′(z)(y − z)−K(y − z)2

v(y)− v(z) ≤ v′(z)(y − z)−K(y − z)2

for all y, z ∈ [0, B]. This yields quadratic concavity, as the following inequal-
ities show for C,D ∈ [0, Ē]:

U(D)− U(C) = E
∫ T

0

e−δt
(
u

(
yD

t

)
− u

(
yC

t

))
dt+ E

(
v

(
yD

T

)
− v

(
yC

T

))
≤ E

∫ T

0

e−δtu′
(
yC

t

) (
yD

t − yC
t

)
dt+ Ev′

(
yC

T

) (
yD

T − yC
T

)
−K E

∫ T

0

e−δt
(
yD

t − yC
t

)2
dt−KE

(
yD

T − yC
T

)2

≤ 〈∇U(C), D − C〉 −Ke−δT ‖D − C‖2
R .

The last line uses the Cauchy–Schwarz inequality.
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