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§ 1 Introduction

In an innovative series of papers, Lager (1999, 2001) has applied rent-
theoretical techniques to the issue of pollution abatement in a multi-
sectoral economy. Lager’s results are based on a somewhat restrictive
existence result from rent theory, and as such in need of extension. The
present paper provides one such extension in the form of a novel exis-
tence result, and offers some structural insights into the technological
pre-conditions for implementing a pollution targets via permit markets of
pollution quotas or dually via a system of pollution taxes.

We consider a situation where the regulator issues a system of annual
pollution quotas to firms, in the form of tradeable pollution permits. The
market price of such permits corresponds to the rent payments needed to
obtain scarce land as an input. If the government can estimate these permit
prices, it can replace the actual permit market by a corresponding system
of pollution taxes.

Is there a system of commodity prices and pollution taxes that makes
the technological choices of cost-minimizing producers consistent with
the pollution target? Non-trivial examples of environmentally constrained
economies where no consistent system of equilibrium prices exists have
long been known and have puzzled the multi-sectoral theorist; see d’Agata
(1983, 1984) for instructive early discussions. One of the most advanced
existence results in this area is by Salvadori (1986),originally given in a
rent context. Lager (2001) has translated Salvadori’s result into a pollution
context. Salvadori proves that a given final demand vector can be supported
by a price-quantity equilibrium if the money interest rate is lower than the
maximum balanced growth rate that is feasible under the environmental
constraint — an instructive but weak result, since the potential for bal-
anced growth is very limited if environmental constraints are tight.
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We extend the earlier results Salvadori and Lager and show that a given
final demand vector can be supported by a competitive price-tax-quantity
equilibrium if the money interest rate does not exceed the unconstrained
maximum growth rate and if, in addition, there is a sufficiently strong
substitution potential between labour and environmental inputs at the
given demand vector. Balanced growth still serves as a key reference point,
but only as a means of checking the productivity of the current technology,
not as an actual feasibility requirement on the actual growth path of the
economy.

The natural framework for our analysis is Linear Complementarity
Theory — we formulate our equilibrium conditions as a Linear Comple-
mentarity Problem and show that this problem admits a solution. Our
proof is constructive; we show that the equilibria we discuss can be com-
puted by the Lemke Complementary Pivoting Algorithm.

The paper is organised as follows. Section 2 sets up framework and no-
tation. Section 3 states and interprets our equilibrium conditions. Sec-
tion 4 gives numerical examples. Section 5 provides the background from
linear complementarity theory and establishes the link to Dantzig and
Manne’s Complementarity Construction Theorem. Section 6 discusses
earlier existence results by Bidard, Salvadori and Lager. Section 7 states
our technological substitution assumption. Section 8 states our existence
theorem: a price-quantity solution to the equilibrium conditions from
Section 3 does exist if technology satisfies the substitution assumption
from Section 7, and this solution can effectively be computed by the Lemke
algorithm. Section 9–10 then furnish the proof of the theorem. Section 12
gives the conclusion. The Appendix presents an implementation of the
rent algorithm in the Python programming language.

§ 2 Framework and Notation

2.1 Motivation We wish to identify the equilibrium choice of technique
and choice of production levels of cost-minimizing producers in a self-
contained period.

Production generates by-prtoducts that need to be disposed in the en-
vironment. The environment has a limited “carrying capacity” for the
absorption of such by-products.

To protect the environment, the government imposes emission stan-
dards on producers. These standards may be implemented either directly,
as a system of tradable emission permits, or dually, as a system of emission
taxes that reflect the shadow price of the carrying capacity.
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We refer to the imposed emission targets as “carrying capacities”. Every
output is a potential emission into the environment, and there is one car-
rying capacity for each potential emission. We refer to the rental price of
a carrying capacity as a “emission charge”. Such charges may come about
as market prices of tradable permits or as emission taxes.

Producers choose their activities x from the common “book of blue-
prints” (A, `,B) that lists all known production processes. Each production
process has constant returns and is of type

( a ` ) → b,

where a are commodity inputs, ` are labour inputs and b are commodity
outputs (including emissions). Inputs precede outputs by one period.

Within any individual process, we allow for arbitrary patterns of joint
production (in b) Any process may generate outputs that need to be ab-
sorbed by the existing carrying capacity. There is no a priori distinction
between desirable commodities and undesirable pollutants; whether a par-
ticular type of commodity is an economic “good” or an economic “bad”
is determined endogeneously as part of the overall price-quantity equilib-
rium solution.

A commodity turns out to be desirable if it is produced without the
need to make emissions into the environment and will have a positive
price but a zero emission charge. By contrast, if a commodity turns out to
be undesirable, it will lead to a binding constraint in carrying capacity and
will carry a positive emission charge but a zero price.

Processes that use desirable commodities as inputs will have to pay for
these commodities as a cost element; processes that use undesirable com-
modities act as abatement processes and receive revenue for the reduction
in emission charges that they bring about.

Technology allows for a wide range of substitution possibilites, and
“choice of technique” is endogenous to the equilibrium solution. The
number N of processes in the book-of-blueprints is much larger than the
number M + Q of commodities and emissions, and only a small subset
of the available processes will be active in equilibrium; cost-minimizing
producers will choose processes that are profitable and reject processes
that make losses. In competitive equilibrium, there are no pure profits and
all active processes will break even under commodity prices p, emission
charges y, wage rate w and interest rate r:

pb = (1 + r)pa + y[b− a] + w`.
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The supply of labour is perfectly elastic at nominal wage rate w. The inter-
est rate is treated as given. In addition to consumption goods, final demand
d may also include additional capital goods for an unbalanced expansion
of producton that goes beyond the replacement of worn-out stocks. For
given carrying capacity s and given final demand d, we are seeking a price-
quantity equilibrium in which commodity prices p, dosposal charges y and
activity levels x are simultaneously determined by the Rule of Free Goods
and the Rule of Profitability.

Emission charges y act as a penalty on the use of carrying capacity and
ensure that processes that save on carrying capacity but have high unit
costs can compete with cheaper but more pollute-intensive processes.
As aggregate production expands and the pollution-constraint becomes
tighter, higher emission charges force cost-minimizing producers to adopt
production processes that are sufficiently emission-saving to make in-
creased output levels consistent with the fixed carrying capacity supplies.

2.2 Notation and Assumptions There are M commodities and hence po-
tential emissions 1 type of labour (in unlimited supply), N processes, and
Q types of carrying capacity (Q = M). Typical labels: Process n, commodity
m, carrying capacity q.

In technology matrices A, B, columns refer to processes, rows refer to
commodities and resources. We write aj

i for the entry in row i and column
j of matrix A. The jth column and ith row of matrix A are denoted by A[j]

and A[i], respectively. Similarly, we write pj or p[j] for the jth entry of row
vector p and xi or x[i] for the ith entry of column vector x. Transposition of
A is denoted by AT.

A (M×N) Commodity inputs. Nonnegative. Every column A[n] of A

is nonzero (no process without capital inputs).
B (M×N) Commodity outputs. Nonnegative. Every row B[m] of B is

nonzero (all commodities are potential outputs).
` (1×N) Labour inputs. Strictly positive (no process without labour

inputs).
x (N× 1) Activity levels of processes during the period. Nonnega-

tive.
d (M× 1) Final demand for commodities, at the end of the period.

Nonnegative and nonzero.
s (Q× 1) Carrying capacities during the period. Strictly positive.

(Q = M)
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p (1×M) Commodity prices during the period (stationary). Nonneg-
ative.

y (1×M) Emission charges at end of period. Nonnegative.
w scalar Nominal wage rate at end of period, positive.
r scalar Nominal interest rate, strictly positive.

§ 3 Equilibrium Conditions

Our setup is similar to Salvadori (1986), Bidard (1991) and Lager (2001). For
given demand d, carrying capacity s and interest rate r, we wish to find
nonnegative prices p, emission charges y, wages w and activity levels x

that satisfy Conditions 3.1–3.5 below.

3.1 Condition [Physical Feasibility] Under activity levels x, no commod-
ity or carrying capacity must be in excess demand.

Bx ≥ Ax + d, (1)

[B−A]x ≤ s + d. (2)

Commodities m or carrying capacities q for which the weak inequality in
3.1 is an equality are not in excess supply and are called scarce.

3.2 Condition [No Excess Profits] Under commodity prices p and emis-
sion charges y, no process must make profits in excess of the interest rate.

pB ≤ (1 + r)A + y[B−A] + w`. (1)

Processes n for which the weak inequality in 3.2 is an equality are not loss
making and are called profitable.

3.3 Condition [Rule of Free Goods] Every commodity m or carrying ca-
pacity q that is in excess supply under activities x must be free under
prices p and emission charges y.

B[m]x > A[m]x + d[m] ⇒ p[m] = 0. (1)

s[q] + d[q] > [B−A][q]x ⇒ y[q] = 0. (2)

By 3.3, commodities m and carrying capacities q are either priced (if scarce)
or free (if in excess supply).
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3.4 Condition [Rule of Profitability] Every process n that makes losses
under commodity prices p and emission charges y must be idle under
actvities x.

pB[n] < pA[n](1 + r) + y[B−A][n] + w`[n] ⇒ x[n] = 0. (1)

By 3.4, processes n are are either active (if profitable) or idle (if loss making).

3.5 Normalisation All prices and emission charges are in terms of labour:
w = 1.

3.6 Definition [Cost-Minimizing Equilibrium] A triple (p,y,x) satisfying
3.1–3.5 is called a Cost-Minimizing Equilibrium (for the given final de-
mand d, carrying capacity s and interest rate r).

By standard complementarity arguments (exploiting the nonnegativity of
all choice variables), conditions 3.3–3.4 can be replaced by the following
two balance conditions:

3.7 Balance Condition [Output equals Demand] The value of output
pBx equals the sum of capital replacement pAx, and final demand pd.
Similarly, the value of the available carrying capacity ys equals the value
of the carrying capacity that is used by emissions, y[B-A]x, net of final
demand for emissions, yd.

pBx = pAx + pd, (1)

ys + yd = y[B−A]x. (2)

3.8 Balance Condition [Output equals Income] The value of output pBx

equals the sum of capital replacement pAx, profits rpAx, emission charges
y[B-A] and wage bill w`x.

pBx = (1 + r)pAx + y[B−A]x + w`x. (1)

3.9 Observation [Symmetric Duality if r=0] In the special case where the
interest rate r is set to zero in 3.2 and 3.4, system 3.1–3.4 reduces to a
dual pair of linear programmes, and we can solve separately for prices and
quantities. For quantities, we merely need to solve

min
x

`x s.t. 3.1, (P)
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(disregarding prices p and charges y), and for prices, we merely solve

max
p,y

pd− ys s.t. 3.2 (with r = 0),
(D)

(disregarding quantities x). Solutions x∗ from (P) and (p∗,y∗) from (D) will
then also solve system 3.1–3.4. By the Duality Theorem of Linear Pro-
gramming, programs (P)/(D) will admit optimal solutions if the quantity
constraint 3.1 and the price constraint 3.2 are both feasible. Since 3.2 is
trivially feasible by setting all prices and rents to zero, in the special case
of zero interest rates the mere feasibility of the quantity constraint 3.1
is a sufficient condition for the existence of a price-quantity equilibrium
solution to system 3.1–3.4.

3.10 Observation [Asymmetric Duality if r>0] Under positive interest
rates (r > 0), the price constraint (3.2) is no longer symmetrically dual to
the quantity constraint (3.1) and the symmetry between prices and quanti-
ties is broken; prices and quantities then can no longer be found separately
but need to be determined jointly. As a consequence of the asymmetry
between (3.1) and (3.2), under r > 0 the Duality Theorem of Linear Pro-
gramming no longer applies and mere feasibility of quantity constraint
(3.1) is no longer a sufficient condition for a price-quantity equilibrium
solution to 3.1–3.4. Instead, we need to find a Fixed Point where prices
and quantities support each other in a Nash-like fashion: Prices assign
value only to those goods that are scarce under the given activity levels,
and processes are active only if they are profitable under the given prices.
For a classic discussion of such asymmetric duality relationships in the
context of the von Neumann model, see Los (1976).

§ 4 Numerical Examples

To simplify our examples, we distinguish between ordinary commodities
that do not require carrying capacity, on the one hand, and pure polluting
emissions that are never useful in production or consumption.

Matrix C denotes the emission matrix of these pure pollutants.

4.1 Example [Existence: 1 Commodity, 1 Pollutant, r=0] [Based on Bidard
(1987).] Consider a technology with one commodity and one type of pol-
lutant. There are two processes; A = (2, 1), C = (2, 3), B = (6, 6), ` = (2, 2).
Carrying capacity is s = 12. Final demand is d = 22. The interest rate is
zero, r = 0. Condition 3.1 admits feasible solutions: say, x1 = 6, x2 = 0 or
x1 = 3, x2 = 2. Hence by Observation 3.9 an equilibrium to 3.1–3.4 must
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exist. The solution to program (D) is p∗ = 1, y∗ = 1, and the solution to
program (P) is x∗1 = 3, x∗2 = 2, hence p = 4, y = 1, x1 = 3, x2 = 12, is a
Cost-Minimizing Equilibrium.

4.2 Example [Non-existence: 1 Commodity, 1 Pollutant, r>0] As Example
4.1, but with an interest rate of r = 1 or 100%. Running process 1 on
its own satisfies condition 3.1; if x1 = 51/2, x2 = 0, production [B − A]x
exactly meets final demand d and carrying capacity s are not fully utilised
by pollutants Cx. Prices p = 1 and emission charges y = 0 would be consis-
tent with condition 3.3 and would make process 1 break even. But under
these prices and rents, process 2 would make an extra-profit of 2, thus
violating condition 3.2. Running process 2 on its own violates condition
3.1, since process 2 uses too much carrying capacity for the given final
demand. Thus, neither process 1 nor process 2 can be run on their own. The
only remaining configuaration is to run process 2 jointly with process 1.
To make both processes break even at the same time, prices and charges
would need to be p = −1, y = −2, which would violate the nonnegativity
condition. Thus, no equilibrium exists for this economy. To allow for an
equilibrium solution, either interest rate r has to fall (leading to lower
commodity prices that don’t give extra-profits to process 2 if process 1
breaks even), or demand d has to fall (making it possible to run process 2 on
its own). At the given interest rate and the given final demand, technology
does not admit a consistent price-quantity solution.

4.3 Example [Ensuring existence by removing a process] As Example 4.2,
but eliminate process 2 from technology: A = (2), C = (2), B = (6), ` = (2).
As before, s = 12, d = 22, r = 1. In this reduced technology, x1 = 51/2, p = 1
and y = 0 are a Cost-Minimizing Equilibrium.

4.4 Example [Ensuring existence by adding a process] As Example 4.2,
but this time add an additional third process: A = (2, 1, 1), C = (2, 3, 21/2),
B = (6, 6, 6), ` = (2, 2, 4). As before, s = 12, d = 22, r = 1. In this extended
technology, p = 31/2, y = 4, x1 = 0, x2 = 2, x3 = 22/5 is a Cost-Minimizing
Equilibrium.

We see that in these simple examples, non-existence of a Cost-Minimizing
Equilibrium is due to an interest rate that makes the available production
processes inconsistent with each other (Example 4.2). Such inconsistency
can be remedied, either by removing one of the clashing processes (Exam-
ple 4.3) and achieving an equilibrium in which carrying capacity is under-
utilised, or by adding a further process that allows for the full utilisation
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of carrying capacity. The next two examples show similar features for
slightly more complex cases.

4.5 Example [3 Commodities, 1 Pollutant] [d’Agata (1983)] Consider a
technology with three types of commodities and one type of pollutant.
There are five processes;

A =

(

0 0 1 1 1
0 0 4 1 1
1 6 1 4 3

)

, B =

(

10 0 0 0 0
0 10 0 0 0
0 0 10 10 10

)

, d =

(

900
600
190

)

,

C = ( 0 0 10 10 10 ) , ` = ( 10 10 10 10 22 ) , s = ( 1000 ) .

The interest rate is 1/2, r = 50%. Inspection shows that the subsystems
comprising only processes {1, 2, 3}, {1, 2, 3, 4} or {1, 2, 3, 5} each admit an
equilibrium solution, but the entire system of processes {1, 2, 3, 4, 5} does
not. For example, for subsystem {1, 2, 3, 4}, the equilibrium solution is:
x1 = 100, x2 = 971/2, x3 = 912/3, x5 = 81/3, p1 = 21/2, p2 = 10, p3 = 10,
y = 11/8. But under these prices and emission charges, process 5 would yield
an extra-profit of 27/8. Similarly, under subsystem {1, 2, 3, 5}, process 4
would yield an extra profit. Thus as a whole, under emission constraint s

the system (A,C, `,B) does not admit an equilibrium for the given demand
d and interest rate r, but if certain processes are eliminated from the book-
of-blueprints, the resulting subsystem does admit an equilibrium.

4.6 Example [2 commodities, 2 pollutants] [d’Agata (1984).] Consider a
technology with two types of commodities and two types of pollutant.
There are four processes;

A =
(

3 1 1 2
1 3 2 1

)

, B =
(

10 10 0 0
0 0 10 10

)

, d =
(

150
350

)

,

C =
(

10 0 20 0
0 50 0 10

)

, ` = ( 10 15 1 5 ) , s =
(

1000
1000

)

.

The interest rate is 15/8, r = 162.5%. The situation is similar to Exam-
ple 4.5. Inspection shows that the subsystem comprising only processes
{1, 2, 4}, admits an equilibrium solution, but the entire system of processes
{1, 2, 3, 4} does not. For subsystem {1, 2, 4}, the equilibrium solution is:
x1 = 2010/317, x2 = 1113/317, x4 = 44252/317, p1 = 151/5, p2 = 111/5, y1 = 0,
y2 = 3/10. But under these prices and rents, process 3 would yield an extra-
profit of 17 Similarly for other feasible subsystems. Thus, as in 3.14, the
system (A,C, `,B) does not admit an equilibrium for the given s, d and
r, but if certain processes are eliminated from the book-of-blueprints, the
resulting subsystem does admit an equilibrium.
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Counter-examples 4.2, 4.5, 4.6 highlight the non-trivial nature of the ex-
istence issue for equilibrium problem 3.1–3.4. In these counter-examples,
non-existence is the result of a fundamental inconsistency between the
different processes that are available to cost-minimizing producers. Such
inconsistencies could never arise if the price system was symmetrically
dual to the quantity system (Observation 3.9 and Example 4.1). Because
the money interest rate introduces a fundamental asymmetry into price-
quantity duality (Observation 3.10), even an economy that contains a vi-
able sub-system capable of an equilibrium path may well be unable to sup-
port such a path. Intuitively, the interest rate charged on all capital invest-
ment “distorts” the physical productivity relationships between processes
and sometimes makes processes profitable in price space that should not
become active in quantity space.

What are the deeper sources of such inconsistencies between processes?
Under what circumstances will the intervention of the interest rate not
allow for “the wrong” processes to become profitable? This question has
been waiting for a comprehensive answer ever since counter-examples
like 4.5 and 4.6 were discovered some two decades ago. We shall assess
the scope of various existence theorems on land rents (and hence emis-
sion charges) in the light of their ability to explain these classic counter-
examples.

§ 5 Skew-Dual LCPs

From a programming viewpoint, system 3.1–3.5 forms a Linear Comple-
mentarity Problem; see Lemke (1968) for an incisive classic article and
Cottle/Pang/Stone (1992) for a deep and comprehensive survey. Our ex-
istence result will be based on Dantzig and Manne’s (1974) far-reaching
Complementarity Construction Theorem, which we re-state here in the
context of our model.

5.1 Complementarity Problem [LCP] Consider two given constraint ma-
trices M and M of the same order (say, m×m), with associated constraint
vectors q (m×1) and q (n×1) and slack vectors w (m×1) and w (n×1).
Find nonnegative choice variables z (n×1) and z (m×1) that satisfy S1–S3:

[

w1

w2

]

=

[

q1

q2

]

+

[

O M1

−MT
2 O

] [

z1

z2

]

,
(S1)

w ≥ O, (S2)

wTz = 0. (S3)
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A more general version of the Dantzig/Manne result allows for quadratic
valuations, by allowing for the two zero submatrices on the main diagonal
of M to become nonzero; see Jones (1982).

5.2 Lemke Algorithm Consider constraint (S1) from problem 5.1, and
extend it to (L1) by a covering vector c of order (m + n)× 1:

w = q + Mz + cθ, (L1)

where entry c[i] of covering vector c is strictly positive. Scalar θ is required
to be nonnegative. The set of nonnegative triples (z,w, θ) saisfying (L1)
forms an unbounded convex polyhedron (the feasible set of Problem 5.1).
Any point in the feasible set that satisfies complementarity condition (S3)
is called an almost-complementary solution (a.c.) to Problem 5.1. If fur-
thermore θ = 0, then (z,w, θ) is a complementary solution to Problem
5.1. The basic a.c. solutions are vertices of the feasible set, and every
such vertex has either one or two neighbouring a.c. vertices. The Lemke
algorithm starts by setting θ = 1; this identifies a convenient initial a.c.
vertex:

z = 0, w = q + c ≥ O.

From this initial vertex, the algorithm then proceeds by pivoting along
a uniquely identified path of neighbouring a.c. vertices (by changing the
covering variable θ), until it reaches a terminal a.c. vertex with no second
neighbouring a.c. vertex. At this terminal a.c. vertex, the covering variable
θ is either zero or positive. If θ = 0, the vertex represents a complementary
solution and the problem is solved. By contrast, if θ > 0, the algorithm
has not succeeded in finding a complementary solution (termination in a
ray). Linear Complementarity Theory is concerned with finding conditions
under which one can be sure that the termination in a ray will not happen.

5.3 Definition [Skew Duality] Suppose that in S1, constraint matrices M

and M satisfy the condition

[M1 −M2] ≥ O; (S4)

we then say that Problem S1–S3 is a skew-dual Linear Complentarity Prob-
lem.

5.4 Observation [3.1–3.4 is a Skew Dual LCP] Inspection of 3.1–3.4 shows
that it satisfies S1–S4 from 4.1–4.2. Set
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q1 =
[ −d

s + d

]

, q2 = `T, z1 =

[

pT

yT

]

, z2 = x,

M1 =

[

[B−A]

− [B−A]

]

, M2 =

[

[B− (1 + r)A]

− [B−A]

]

.

We then have:

[M −M] =
[

rA

O

]

.

Since A is nonnegative and r is positive, this confirms that [M −M] ≥ O,
as required by condition S4.

Intuitively, positive values of θ represent proportional reductions in
final demand requirements d and emission targets s. The sequence of
almost-complementary solutions produced by the Lemke Algorithm can
be interpreted as the equilibrium solutions to a sequence of economies
with identical technology but with variously reduced final demand and
emission requirements. In the terminall complementary solution, this
demand reduction has vanished and final demand has returned to its true
level.

Performing the Lemke pivoting process on this sequence of demand-
reduced almost-complementary economies has some resemblance with
the “market algorithm” discussed in Bidard’s (1990) algorithmic approach
to the choice-of-technique problem.

5.5 Cross-Dual Constraints Consider the skew-dual LCP S1–S4 from 5.1–
5.2. We define a dual set of constraints, obtained by exchanging the roles
of M and M: Find nonegative z and z that satisfy

[

w1

w2

]

=

[

q1

q2

]

+

[

O M2

−MT
1 O

] [

z1

z2

]

,
(D1)

w ≥ O. (D2)

5.6 Theorem [Dantzig/Manne 1974] Consider a skew-dual LCP. If S1–S2
from 5.1 and D1–D2 from 5.4 each admit a nonnegative solution, then
there exist a complementary solution satisfying S1–S3. Moreover, this
solution can effectively be computed by the Lemke Complementary Piv-
oting Algorithm.
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In the cost-minimizing equilibrium 3.1–3.4, the cross-dual constraints
D1–D2 obtain by treating the quantity constraint 3.1 as a price constraint
and treating the price constraint 3.2 as a quantity constraint. It is instruc-
tive to write out the details of these cross-dual constraints:

5.7 Cross-Dual Quantity Condition Even if all input requirements A are
increased by a uniform expansion factor (1+r), it must be possible to find a
feasible nonnegative activity vector x that satisfies final demand without
violating the land constraint:

Bx ≥ (1 + r)Ax + d, (1)

s + d ≥ [B−A]x. (2)

5.8 Cross-Dual Price Condition Even if the interest rate is zero, it must
be possible to find a nonnegative price vectors p and y that give no excess
profits to any process:

pB ≤ pA+y[B−A] + w`. (1)

Thus, with regards to problem 3.1–3.4, the Dantzig/Manne Theorem
5.6 can be re-stated:

5.9 Theorem [Dantzig/Manne Restated] If 3.1 and 5.6 each admit a fea-
sible nonnegative quantity solution x, and if 3.2 and 5.7 each admit a fea-
sible nonnegative price solution (p,y), then system 3.1–3.4 admits a com-
plementary price-quantity equilibrium solution (p,y,x); moreover, this
equilibrium solution can effectively be computed by the Lemke Comple-
mentary Pivoting Algorithm.

Theorem 4.8 gives a sufficient, not a necessary condition for equilib-
rium. Failure to meet the requirements of the Theorem does not imply
nonexistence of equilibrium.

Recall from Observation 3.10 that in problem 3.1–3.4, the symmetric
duality relationship between prices and quantities is broken, resulting in
the need to solve for prices and quantities simultaneously. The skew-
duality condition S4 from 5.3 requires that the asymmetry between prices
and quantities is such that the price constraint becomes weaker (input
costs are augmented by the interest rate). Conditions 5.7–5.8 then require
that the asymmetry between prices and quantities is “not too strong” —
the quantity matrix [B − A] can still serve as a price constraint (5.7), and
the price matrix [B− (1 + r)A] can still serve as a quantity constraint (5.8).
Theorem 5.9 asserts that a joint price-quantity solution can be found, pro-
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vided that the asymmetry between prices and quantities is kept in check
by these cross-dual conditions.

5.10 Observation [Trivial Solution to 3.2/4.7] Because labour inputs ` are
positive, 3.2 and 5.8 always admit a feasible solution: p = O, y = O.

5.11 Observation [5.7 implies 3.1] If 5.7 admits a feasible solution, then
so does 3.1.

In the light of these observations, we only have to worry about condi-
tion 5.7. Because 5.7 requires the possibility of a uniform expansion of all
processes x (at expansion rate r), it potentially clashes with the emission
constraint. Only for very low values of interest rate r or low values of final
demand will this condition be feasible.

5.12 Example [4.3 revisited] In Example 4.3, with r = 1, process 1 has a
net product of 6−1 = 5 ssociated with 6 units of gross output. The process
requires 2/6 = 1/3 units of land per unit of gross output. There are 12 units
of lands available. Thus, the process could produce up to 12/1/3 = 36 units
of gross output. 36 units of gross output become 36 × 5/6=30 units of net
output, and equilibrium would be possible for final demand of up to 30
units. Howver, the cross-dual feasibility constraint requires that balanced
growth at rate r be feasible. Under r = 1, process 1 a balanced-growth r-net
product of 6 − (1 + r)1 = 4, compared with its net product of 6 − 1 = 5.
Thus, under balanced growth at rate r, the process could produce only a
net product of 36× 4/6 = 24 units. The Dantzig/Manne Theorem correctly
predicts equilibria for demand below 24 units, but is unable to predicts to
predict the equilibria between 24 and 30 units.

§ 6 Previous Existence Results

Salvadori (1986) was the first to apply the Dantzig/Manne theorem to the
land rent problem; see also Kurz/Salvadori (1995). Lager (2002) has applied
the same result to permit markets. Salvadori’s approach was simply to
posit that 4.6 is feasible.

6.1 Theorem [Salvadori 1986] Assume that Condition 5.7 is feasible.
Then there exists an equilibrium solution to system 3.1–3.4.

Proof By Observations 5.10–5.11.



sec 7 Substitution Potential 15

Salvadori’s direct application of the Dantzig/Manne result to problem
3.1–3.4 is effective but very limited in scope. As illustrated in Example
5.12, for reasonsably large interest rates r, the cross-dual quantity con-
straint 4.6 will only be feasible if final demand d is small. Thus, for 3.1–
3.4 to satisfy the conditions of Theorem 6.1, either the interest rate has
to be much smaller than the productivity of [B − A] suggests, or the level
of final demand has to be much smaller than is physically feasible. This
restrictiveness of condition 5.7 is clearly undesirable. As Salvadori pointed
out in his paper, there are many relevant cases where an equilibrium is
known to exist and yet 5.7 is not feasible.

§ 7 Substitution Potential

In Section 4, we encountered cases where a positive interest rate cre-
ated cost-inconsistencies between processes that made an economic price-
quantity equilibrium impossible. Under what circumstances would the
intervention of the interest rate remain compatible with equilibrium?
Salvadori’s Theorem 6.1 gives a partial answer, by identifiying a strong
physical feasibility requirement that serves as a sufficient condition for
existence (and whose violation therefore serves as a necessary condition
for non-existence). However, being based on a physical feasibility require-
ment, Salvadori’s result fails to address one of the key features of the
counter-examples from Section 4: the fact that expanding the book-of-
blueprints (and hence expanding the range of feasible production plans)
may well destroy the possibility of an equilibrium solution, rather than
confirming it.

In order to explore the deeper sources of equilibrium, we need to study
the precise inter-relationships between the various individual processes,
rather than merely checking for global feasibility. This is what we do in
the present section. We impose a substitution requirement on the range of
possible relationships between alternative feasible production plans, and
we later show that this requirement ensures equilibrium. Cases of non-
existence of equilibrium, like Examples 4.4–4.5, must then necessarily
violate this substitution requirement; if “the wrong” processes have be-
come profitable under the intervention of the interest rate, then it must
be the case that there is a lack of “Input Flexibility” between the various
alternative production plans.

More precisely, our condition requires that whenever a commodity or
land-type is scarce under current activities, it must be possible to provide
the same net outputs with slightly lower levels of non-labour inputs (but
presumably with higher levels of labour inputs).
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7.1 Assumption [Input Flexibility] Consider an activity vector x under
which there would be at least one scarce commodity in 3.1(1) and at least
one carrying capacity that is in short supply or excess demand in 3.1.(2):

∃m : [B−A][m]x = d[m], ∃q : s[q] + d[q] ≤ [B−A][q]x.

Then we can find an activity vector x′ that satisfies:

[B−A][m]x
′ ≥ d[m] ∀m for which [B−A][m]x = d[m] (1)

[B−A][q]x > [B−A][q]x
′, ∀q for which [B−A][q]x ≥ s[q] + d[q] (2)

A[m]x ≥ A[m]x
′ ∀m for which A[m]x > 0. (3)

That is, under activities x′ final demand is met for all scarce commodities,
there are strictly smaller emissions for all scarce carrying capacities, and
the use of scarce capital stocks is not larger than under activities x.

Intuitively, vector x′ saves on emissions and capital inputs, while pos-
sibly using larger amounts of labour.

The reader will recognise a distant family relationship between the state-
ment of our flexibility condition 7.1 and the statement of the familiar non-
tightness condition from Malinvaud-type multisectoral theory, as in Kurz
(1969). Nontightness requires that the use of nonproducible inputs can be
reduced by increasing the use of producible inputs; flexibility condition 6.1
requires that the use of scarce inputs (capital goods and carrying capacity)
can be reduced by increasing the use of non-scarce inputs (labour).

7.2 Assumption [Balanced Growth] In the absence of emission con-
straint, balanced growth at rate r covering d would be feasible. That
is, there exists a nonnegative activity vector x satisfying:

[B− (1 + r)A]x ≥ d.

7.3 Observation [Convexity] The set of final demand vectors d for which
conditions 7.1 and 7.2 admit a solution is nonempty and convex and
contains the origin.

7.4 Example [4.2 revisited] Inspection of Example 4.2 shows that condi-
tion 6.1(2) will be violated if x is given by x1 = 3, x2 = 2. In this case,
land-use could not be reduced without increasing capital use.
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7.5 Example [4.4 revisited] Inspection of Example 4.4 shows that the in-
troduction of the third process removes the lack of input flexibility from
Example 4.2. By adding a process that uses less capital but more labour
than process 2, we allow for a reduction in land use (compared with x

x1 = 3, x2 = 2), without increasing the use of capital goods. (say, xpp x1 = 3,
x2 = 0, x3 = 2).

7.6 Example [4.3 revisited] Alternatively, in Example 4.3, removing pro-
cess 2 also removes the lack of input flexibility, simply by removing the
scarcity of land (under the given final demand).

§ 8 Existence Theorem

We are now able to state our main result. If there is input flexibility be-
tween land and labour, the restrictions of Salvadori’s Theorem 6.1 can be
removed:

8.1 Theorem [Equilibrium for Given Demand] Let final demand d, car-
rying capacity s and interest rate r be given. Suppose Assumptions 7.1–7.2
on the set of feasible activity vectors x are satisfied for the given d, s and
r. Then there exists a price-quantity equilibrium solution (x,p,y) to 3.1–
3.5; this solution can be computed by applying the Lemke Algorithm to a
related “Extended System” (described in Section 9).

8.2 Corollary [Existence of Equilibrium] Let interest rate r be given. An
economy in which balanced growth at rate r would be feasible if carry-
ing capacity was abundant will admit a cost-minimizing equilibrium for
some final demand vector d.

Proof Theorem 8.1 is proved in Section 10 below. Corollary 8.2 follows
from Theorem 8.1 and Observation 7.3.

§ 9 The Extended System

To prove our Theorem from Section 8, we need to work in an extended
version of the original Linear Complementarity Problem 3.1-3.4, the so-
called Extended System. The present section sets up the Extended System;
Section 10 then does the proof of Theorem 8.1.

We wish to extend the scope of Dantzig and Manne’s Theorem from
Section 5 to a wider range of economies than those covered by Salvadori’s
Theorem 6.1. Recall that the Cross-Dual Feasibility Conditions 5.7–5.8
are merely a sufficient, not a necessary condition for a solution to 3.1–
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3.4. From an algorithmic point of view, Conditons 5.7–5.8 ensure that
the pivoting sequence of the Lemke algorithm can proceed through the
entire sequence of almost-complementary solutions without terminating
in a ray. We shall show that an unblocked progression of the Lemke piv-
oting sequence can be ensured by embedding the original problem 3.1–
3.4 in a wider problem, called the Extended System. By construction, the
Extended System always satisfies the extended versions of conditions 5.7–
5.8, and thus it permits an equilibrium solution. Our existence theorem
then shows that under the substitution conditions from Section 7, the
equilibrium solution to the Extended System will also be an equilibrium
solution to the original system 3.1–3.4.

The Extended System relaxes the emission constraint by adding a new
“pure abatement process” to technology (A,B, `). The new process has no
commodity inputs and produces no commodity outputs; its only function
is to absorb emissions in proportion to carrying capacity s. This artifi-
cial process has very high labour inputs. We stress that this new process
is entirely artificial. If conditions 7.1–7.2 are met, then any equilibrium
solution to the Extended System will discard the artificial process as too
expensive and will employ only the processes available in the original
system 3.1–3.4.

Extended System In the statement of the Dantzig-Manne theorem, ex-
tend system 3.1–3.4 by an additional fictitious process, labelled 0. This
process requires no commodity inputs and produces no commodity out-
puts, but at the end of the period it absorbs inputs in proportion to carrying
capacity s. (In other words, it creates carring capacity.) Process zero has
finite but arbitrarily large labour requirements, L. We denote the activity
level of Process 0 by γ. Thus, for system S1–S3 from 4.1, we define:

q1 =
[ −d

s + d

]

, q2 =
[

`T

L

]

, z1 =

[

pT

yT

]

, z2 =
[

x

γ

]

,

M1 =

[

[B−A] O

− [B−A] s

]

, M2 =

[

[B− (1 + r)A] O

− [B−A] s

]

.

Linear Complementarity Theory traditionally uses “augmented systems”
that are quite similar to our Extended System; see Section 3.7 in Cot-
tle/Pang/Stone (1992) for a range of relevant results. The traditional aim
of such extensions is to find a convenient initial vertex for a pivoting se-
quence. Our aim is different; we do not need to start the pivoting sequence
(which is already ensured by setting θ to unity in the Lemke algorithm),
but we might need to prevent termination in a ray at the intermediate
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stages. These different aims are reflected in different extensions. In tradi-
tional “augmented systems”, the artificial process covers the negative part
of constraint vector q (corresponding to final demand d in our system),
whereas in our Extended System, the artificial process covers the positive
part of q (corresponding to land stocks s).

In more explicit form, the Extended System requires that we augment
3.1–3.4 to:

9.1 Condition [Quantities]

Bx ≥ Ax + d. (1)

s + sγ + d ≥ [B−A]x. (2)

9.2 Condition [Prices]

pB ≤ pA(1 + r) + y[B−A] + w`. (1)

ys ≤ L. (2)

9.3 Condition [Complementarity on Quantities]

pBx = pAx + pd. (1)

ys + ysγ + yd = y[B−A]x. (2)

9.4 Condition [Complementarity on Prices]

pBx = (1 + r)pAx + y[B−A]x + w`x. (1)

ysγ = Lγ. (2)

9.5 Lemma [Solution to Extended System] Under Assumption 7.2, the
Extended System admits a nonnegative equilibrium solution (p,y,x, γ).

Proof We apply Theorem 5.9 to the Extended System 8.1–8.4. By exten-
sion of Observations 5.10–5.11, the cross-dual price condition can trivially
be satisfied by setting all prices and emission charges to zero. The extended
cross-dual quantity condition (corresponding to Condition 5.7) is as fol-
lows:

Cross-Dual Quantity Condition

Bx ≥ (1 + r)Ax + d, (1)

s + sγ + d ≥ [B−A]x. (2)
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By setting γ sufficiently large, the emission constraint from Condition (2)
effectively becomes nonbinding, and Assumption 7.2 then ensures that
Condition (1) is feasible. The Lemma then follows from Theorem 5.9 and
extension of Observations 5.10–5.11.

9.6 Lemma [Extended System and Cost-Minimizing Equilibrium] The
Extended System 9.1-9.4 reduces to a Cost-Minimizing System 3.1–3.4 if

ys < L.

Proof By 9.4(2), ys < Lγ implies that γ = 0 (Process 0 is idle). All other
equilibrium relationships from 9.1–9.4 then reduce to 3.1–3.4.

§ 10 Proof of Theorem 8.1

Consider the feasibility constraints

[B−A]x ≥ O, (1)

[B−A]x ≤ s + d. (2)

This system may be bounded or unbounded. We consider each of these two
cases in turn.

First, suppose that constraints (1)–(2) are unbounded (for nonnegative
activities x). In that case, the original (non-extended) problem 3.1–3.5 sat-
isfies the cross-dual quantity condition 5.7 by virtue of Assumption 7.1
and we are done without referring to the Extended System.

Second, suppose that constraints (1)–(2) are bounded (for nonnegative
activities x). In that case, we apply the Lemke algorithm to the Extended
System.

Let (p,y,x, γ) be a solution to 9.1–9.4. By Lemma 9.5 such a solution
does exist. By Lemma 7.6, we need to show that ys < L. The proof is by
contradiction. If no carrying capacity is scarce under x (that is, [B−A]x <

s+sγ+d in 9.1(2)), then complementarity condition 9.3(2) requires y = O and
we are done. Suppose therefore that some carrying capacity is in fact scarce
and y is nonzero, and suppose ys = L, contrary to our claim. By 9.1(2), scarce
carrying capacity implies that equilibrium activities x must be nonzero.
For x to be nonzero, the positivity of ` and profitability 9.4(1) then implies
that at least one produced commodity must be scarce. By complementarity
9.3(1), this commodity must have a positive price. Consider a vector x′ that
satisfies Assumption 7.1; by construction, compared with x this activity
vector will weakly under-utilize all priced commodities and will strictly
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under-utilize all carrying capacities that carry a positive rent. Premultiply
7.1(1) by p and 7.1(2) by y:

pBx′ ≥ pAx′ + pd and (A1)

y[B−A]x > y[B−A]x′. (A2)

In A2, the inequality of 7.1(2) is preserved because by complementarity
9.3(2) emission charge y[i] is positive only if [B−A][i]x is positive. Similarly,
postmultiply the inequalities in 9.2(1) by x′:

pBx′ ≤ (1 + r)pAx′ + y[B−A]x′ + w`x′. (A3)

By A1 and A3:

pd ≤ rpAx′ + y[B−A]x′ + w`x′. (A4)

By 9.3–9.4:

pd = rpAx + y[B−A]x + w`x. (A5)

Hence, combining A4 with A5,

rpA[x′ − x] + w`[x′ − x] ≥ y

[

[B−A]x− [B−A]x′
]

.
(A6)

By A2, A6, 7.1(2) and 9.3(2), ys = L then implies

rpA[x′ − x] + w`[x′ − x] > α(L + Lγ) (A7)

for some positive α. Hence, since γ ≥ 0,

rpA[x′ − x] + w`[x′ − x] > αL. (A8)

On the lefthand side of A8, the labour term w`[x′− x] is bounded above by
the positivity of ` and by the boundedness assumption on the constraint
system (1)–(2). The capital term rpA[x′−x] is negative by virtue of Assump-
tion 7.1(3). Thus, the lefthand side of A8 is bounded above. By contrast, the
righhand side of A8 can be made arbitrarily large by setting L arbitrarily
large, since α is independent of L. Thus, for sufficiently large values of L,
the inequality in A8 will be violated, yielding the desired contradiction.
Hence, we must have ys < L, and the fictitious Process 0 can not be active
in equilibrium, γ = 0, as desired. This ends the proof.
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§ 11 Conclusion

The framework discussed in this paper offers a complementary pivoting
framework to finding a cost-minimizing choice of technique for an envi-
ronmentally constrained multisectoral economy, thereby extending earlier
results by Salvadori (1986) and Bidard (1991) and expanding the scope of
algorithmic approaches to the choice-of-technique problem (Bidard 1990).

Existence Theorem 8.1 shows that in an emission-constrained econ-
omy, a cost-minimizing equilibrium does exists for a wide range of final
demand vectors, provided that the available technology allows for a suf-
ficiently strong substitution potential between labour and other inputs.
The ability of producers to switch to less pollution-intensive production
methods puts an effective check on emission charges, and the presence of
this price check stabilises the search for an equilibrium solution in the
pivoting sequence of the Lemke algorithm. The “Extended System” from
Section 9 exploits this natural price check.

By using a constructive existence proof based on a well-understood al-
gorithmic technique (the Lemke algorithm), Theorem 8.1 not only iden-
tifies the actual equilibrium conditions (Conditions 7.1–7.2), it also offers
a deeper analytical understanding of the the sources of equilibrium, as re-
vealed by the ultimate replacement of the artificial abatement process 0 by
a real production process in the pivoting sequence of the Extended System.
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Appendix:

LCP Implementation in Python

The attached printouts show an effective implementation of the LCP algorithm for
computing emission charges, written in the Python language. The programme refers
to “land” and land rents; “land” stands for carrying capacity, and “rent” stands for the
corresponding emission charge. Matrix C is the emission matrix. Appendix A shows
the data file, Appendix B shows the underlying programme file, and Appendix C
shows the screen output of the Python session. All files can be downloaded from:
www.keele.ac.uk/depts/ec/web/People/martind.html

A1 Input File

[1] ######################################################

[2] ## file lcpdata.py by Martin Diedrich, 28 Oct 2001 ##

[3] ######################################################

[4] ## Use jointly with program module lcpcomp.py

[5] ## and raional-number module yarny.py

[6] ######################################################

[7] ## Requires Python, for use with an interactive shell

[8] ## (preferably: use in the IDLE shell)

[9] ######################################################

[10] ## Author: Martin Diedrich, Keele Economics

[11] ## email: m.e.diedrich@econ.keele.ac.uk

[12] #####################################################

[13] # INPUT OF REQUIRED FILES: lcpcomp.py and yarny.py

[14] #from lcpcomp import *

[15] from lcpcomp import *

[16] from yarny import Rat

[17] ######################################################

[18]

[19]

[20] #####################################################

[21] # BASIC PARAMETERS

[22] # Interest Factor (1+r)

[23] R=Rat(2,1,2)

[24] # Number of Commodities

[25] COMM=2

[26] # Number of Land types

[27] LAND=2

[28] # Number of Processes

[29] PROC=4

[30] # Number of extra processes for profitability check

[31] EXTRA=2

[32]

[33] #####################################################

[34] # TECHNOLOGY Inputs A, Outputs B, Land C

[35] # Commodity Inputs (nonnegative)

[36] # Think of a1, a2 as column vectors.

[37] a1=[3, 1]

[38] a2=[1, 3]

[39] a3=[1, 2]

[40] a4=[2, 1]

[41] # Commodity Outputs (nonnegative)

[42] b1=[10, 0]

[43] b2=[10, 0]

[44] # NB: disable process 3, else b3=[0,10]

[45] b3=[ 0, 0]

[46] b4=[ 0, 10]

[47] # Land Inputs (nonnegative)

[48] c1=[10, 0]

[49] c2=[0 ,50]

[50] c3=[20, 0]

[51] c4=[ 0,10]

[52] # Input-Output Matrices

[53] # Adjoin a,b,c columns into A,B,C matrices

[54] A=[a1,a2,a3,a4]

[55] B=[b1,b2,b3,b4]

[56] C=[c1,c2,c3,c4]

[57]

[58] #####################################################

[59] ## Constraint vectors of LCP. Vectors l,d,s will be

[60] ## stacked into constraint vector q=[-d,s,l].

[61] # Labour Costs (strictly positive)

[62] l=[Rat(10),Rat(15),Rat(1),Rat(5)]

[63] # Final Demand (nonnegative, nonzero)

[64] d=[Rat(150),Rat(350)]

[65] # Land Stocks (nonnegative)

[66] s=[Rat(1000),Rat(1000)]

[67]

[68]

[69] ######################################################

[70] # CHECK EXTRA PROCESS for profitability under (p,y)

[71] ######################################################

[72] # Here: e1,e2 identical to processes 3&4 from example

[73] # Inputs

[74] ea1=[1, 2]

[75] ea2=[2, 1]

[76] # Outputs

[77] eb1=[0, 10]

[78] eb2=[0, 10]

[79] # Land Inputs

[80] ec1=[20, 0]

[81] ec2=[0, 10]

[82] # Extra Matrices

[83] EA=[ea1,ea2]

[84] EB=[eb1,eb2]

[85] EC=[ec1,ec2]

[86] # Labour Inputs

[87] EL=[Rat(1),Rat(5)]

[88]

[89] ######################################################

[90] # Show intermediate steps? =1 if YES, =0 if NO

[91] showsteps=0

[92] ######################################################

[93]

[94] ######################################################

[95] # CONSTRUCTING AND PROCESSING LCP

[96] # Don’t touch this!

[97] ######################################################

[98] setupM(R,A,B,C,d,s,l,COMM,LAND,PROC,showsteps,\

[99] EA,EB,EC,EL,EXTRA)

[100] ######################################################

[101] # Done

[102]



26 Emission Targets M.E. Diedrich

A2 Program File

[1] ######################################################

[2] ## file lcpcomp.py by Martin Diedrich, 28 Oct 2001 #

[3] ## Python module for Lemke Algorithm in Rent Model #

[4] ######################################################

[5] ## Use jointly with input file lcpdata.py

[6] ######################################################

[7] ## Preliminary Version:

[8] ## Version 0.2 (28 Oct 2001)

[9] ## Author: Martin Diedrich, Keele Economics

[10] ## email: m.e.diedrich@econ.keele.ac.uk

[11] ######################################################

[12] ## Needs to be initiated from the interactive Python

[13] ## shell by data file lcpdata.py.

[14] ## USAGE:

[15] ## Place files lcpcomp.py (this file), lcpdata.py

[16] ## andyarny.py in the Python path. Then type

[17] ## "import lcpdata" in the Python shell and watch.

[18] ## Modify lcpdata.py to change data input.

[19] ######################################################

[20] ## Solves the rent problem as an LCP, using the Lemke

[21] ## Algorithm. Implements some ideas from J.A.Tomlin,

[22] ## Mathematical Programming Study, Vol 7 (1978).

[23] #####################################################

[24] ## GLOBAL VARIABLES (for link lcpdata->lcpcomp):

[25] ## Function setupM() declares the following

[26] ## variables as global:

[27] ## nLand, nZO, nZT, nZZ, nZC, dD, sS, lL

[28] ## aA, bB, cC, rR, MO, MR, M, q, sss

[29] ## nEZT, nEZZ, lEL, aEA, bEB, cEC

[30] ######################################################

[31] ######################################################

[32]

[33]

[34] ######################################################

[35] ## Preparatory Functions: Matrix Operations

[36] # Vector plus Vector

[37] def vecadd(x,y):

[38] z=x[:]

[39] i=0

[40] while i<len(x):

[41] z[i]=x[i]+y[i]

[42] i=i+1

[43] return z

[44]

[45] # Scalar multiple of vector

[46] def scalvect(a,x):

[47] z=x[:]

[48] i=0

[49] while i<len(x):

[50] z[i]=a*x[i]

[51] i=i+1

[52] return z

[53]

[54] # Scalar multiple of matrix

[55] def scalmat(a,m):

[56] n=m[:]

[57] j=0

[58] while j<len(n):

[59] n[j]=m[j][:]

[60] i=0

[61] while i<len(n[j]):

[62] n[j][i]=a*m[j][i]

[63] i=i+1

[64] j=j+1

[65] return n

[66]

[67] # Matrix transposition

[68] def transpo(m):

[69] n=[]

[70] r=len(m[0])

[71] c=len(m)

[72] i=0

[73] j=0

[74] while j<r:

[75] nn=[]

[76] i=0

[77] while i<c:

[78] nn.append(m[i][j])

[79] i=i+1

[80] n.append(nn)

[81] j=j+1

[82] return n

[83]

[84] # Matrix plus Matrix

[85] def matadd(M,N):

[86] Z=M[:]

[87] j=0

[88] while j<len(M):

[89] Z[j]=M[j][:]

[90] i=0

[91] while i<len(M[0]):

[92] Z[j][i]=M[j][i]+N[j][i]

[93] i=i+1

[94] j=j+1

[95] return Z

[96]

[97] ######################################################

[98] # CONSTRUCTING THE LCP MATRICES

[99] # Check Dimensions

[100] def testMatrix(M,m,n):

[101] if not len(M)==n:

[102] print ’\n INPUT ERROR: check columns in: ’,M

[103] if not len(M[0])==m:

[104] print ’\n INPUT ERROR: check rows in: ’,M

[105]

[106] def testVector(X,ll):

[107] if not len(X)==ll:

[108] print ’\n INPUT ERROR: check: ’,X

[109]

[110] # Form matrix (B,0)

[111] def ExtendMat(B,C):

[112] dimC=len(C[0])

[113] Z=[]

[114] j=0

[115] while j<len(B):

[116] ZZ=B[j][:]

[117] i=0

[118] while i<dimC:

[119] ZZ.append(0)

[120] i=i+1

[121] Z.append(ZZ)

[122] j=j+1

[123] return Z

[124]

[125] # Form matrix (A,C)

[126] def JoinMat(A,C):

[127] Z=[]

[128] j=0

[129] while j<len(A):

[130] ZZ=A[j][:]+C[j][:]

[131] Z.append(ZZ)

[132] j=j+1

[133] return Z

[134]

[135] # Net Product [(B,0)-(A,C)]

[136] # A with interest factor, Disc

[137] def MakeNetmat(B,A,C,Disc):

[138] BB=ExtendMat(B,C)

[139] YA=scalmat(-Disc,A)

[140] YC=scalmat(-1,C)

[141] AA=JoinMat(YA,YC)

[142] MM=matadd(BB,AA)

[143] return MM

[144]

[145] # Righthand Side "q"

[146] def makeRHS(d,s,l):

[147] dd=scalvect(-1,d)

[148] q=dd+s+l

[149] return q

[150]

[151] # Reduced final demand if covering vector active:

[152] def adjD(a,q):

[153] ap=1-a

[154] D=scalvect(ap,dD)

[155] return D

[156]

[157] #####################################################

[158] ## DEFINE matrix "M" from submatrices "m" and "n"

[159] ## m,n onto antidiagonal, rest set to zero

[160] def makeM(m,n):

[161] M=[]

[162] a=len(m)

[163] b=len(n)

[164] r=a+b

[165] j=0

[166] while j<b:

[167] MM=[]

[168] i=0
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[169] while i<b:

[170] MM.append(0)

[171] i=i+1

[172] while i<r:

[173] MM.append(n[j][i-b])

[174] i=i+1

[175] M.append(MM)

[176] j=j+1

[177] while j<r:

[178] MM=[]

[179] i=0

[180] while i<b:

[181] MM.append(m[j-b][i])

[182] i=i+1

[183] while i<r:

[184] MM.append(0)

[185] i=i+1

[186] M.append(MM)

[187] j=j+1

[188] return M

[189]

[190] ######################################################

[191] # INPUT FROM FILE lcpdata.py

[192] def setupM(R,A,B,C,d,s,l,p,y,x,showsteps,\

[193] EA,EB,EC,EL,EXTRA):

[194] global nLand, nZO, nZT, nZZ, nZC, dD, sS

[195] global lL, aA, bB, cC, rR, MO, MR, M, q, sss

[196] global nEZT, nEZZ, lEL, aEA, bEB, cEC

[197] sss=showsteps

[198] [rR,aA,bB,cC,dD,sS,lL]=[R,A,B,C,d,s,l]

[199] [nZC,nLand,nZT,nZO,nZZ]=[p,y,x,p+y,p+y+x]

[200] [aEA,bEB,cEC,lEL,nEZT]=[EA,EB,EC,EL,EXTRA]

[201] nEZZ=p+y+EXTRA

[202] testMatrix(A,nZC,nZT)

[203] testMatrix(B,nZC,nZT)

[204] testMatrix(C,nLand,nZT)

[205] testVector(l,x)

[206] testVector(d,p)

[207] testVector(s,y)

[208] testMatrix(EA,nZC,nEZT)

[209] testMatrix(EB,nZC,nEZT)

[210] testMatrix(EC,nLand,nEZT)

[211] testVector(EL,EXTRA)

[212] MO=MakeNetmat(B,A,C,1)

[213] MR=MakeNetmat(B,A,C,R)

[214] MMR=scalmat(-1,MR)

[215] MMR=transpo(MMR)

[216] M=makeM(MO,MMR)

[217] q=makeRHS(d,s,l)

[218] dolcp(M,q)

[219]

[220]

[221] ######################################################

[222] ## create Lemke Tableau

[223]

[224] # I of size m

[225] def slackmat(M):

[226] S=M[:]

[227] j=0

[228] while j<len(M):

[229] S[j]=M[j][:]

[230] i=0

[231] while i<len(M):

[232] if i==j:

[233] S[j][i]=1

[234] else:

[235] S[j][i]=0

[236] i=i+1

[237] j=j+1

[238] return S

[239]

[240] # Artificial covering vector f=-q if q<0

[241] def artivec(q):

[242] f=q[:]

[243] j=0

[244] while j<len(q):

[245] if q[j]<0:

[246] f[j]=q[j]

[247] else:

[248] f[j]=0 # set zero if not needed

[249] j=j+1

[250] return f

[251]

[252] ## L = [f, I, - M, q]

[253] def lemkemat(M,q):

[254] S=slackmat(M)

[255] f=artivec(q)

[256] C=scalmat(-1,M)

[257] L=[f] # covering

[258] j=0

[259] while j<len(S):

[260] L.append(S[j]) # slacks

[261] j=j+1

[262] j=0

[263] while j<len(C):

[264] L.append(C[j]) # processes

[265] j=j+1

[266] L.append(q) # RHS vector

[267] return L

[268]

[269] ######################################################

[270] ## Initial Step

[271]

[272] ## Find most negative entry "k" in RHS q

[273] def initight(q):

[274] mm=0

[275] j=0

[276] while j<len(q):

[277] mm=min(mm,q[j])

[278] if mm==q[j]:

[279] k=j

[280] j=j+1

[281] return k

[282]

[283] ## Pivot in f-column, about row k

[284] def iniclear(L,q):

[285] k=initight(q) # k = tight row

[286] LL=L[:]

[287] pivel=L[0][k] # k-element of f-column

[288] j=0

[289] while j<len(L): # create pivot row

[290] LL[j]=L[j][:]

[291] LL[j][k]=1.0*L[j][k]/pivel

[292] j=j+1

[293] LLL=LL[:]

[294] pivcol=LL[0]

[295] j=0

[296] while j<len(L): # subtract x-pivot row

[297] LLL[j]=LL[j][:]

[298] i=0

[299] while i<len(q):

[300] if not i==k:

[301] LLL[j][i]=LL[j][i]-pivcol[i]*LL[j][k]

[302] i=i+1

[303] j=j+1

[304] com=[k+1,0] # [tight constraint, new var]

[305] return [LLL,com] # (1,2,3,...)

[306]

[307] ######################################################

[308] ## INDEX OF BASIC VARIABLES

[309] ## Implemented as pair of "dictionaries":

[310] ## "ConInd" maps constraints (rows) into basic vars

[311] ## "VarInd" maps basic variables into constraints

[312]

[313] ## Prepare Index Constraint -> Var;

[314] ## Initially only slacks active: ConInd[i]=i+1 (all i)

[315] def prepConInd(M):

[316] ConInd={}

[317] i=1

[318] while i<len(M)+1:

[319] ConInd[i]=i #Constraint 1 covered by slack 1

[320] i=i+1

[321] ConInd[’p’]=0

[322] return ConInd

[323]

[324] ## Prepare Index for Var -> Constraint:

[325] ## Initially only slacks active: VarInd[i+1]=i all i

[326] def prepVarInd(M):

[327] VarInd={}

[328] VarInd[0]=’p’

[329] i=1

[330] while i<len(M)+1:

[331] VarInd[i]=i #Constraint 1 covered by slack 0

[332] i=i+1

[333] return VarInd

[334]

[335] ######################################################

[336] ## MAIN PIVOT STEP

[337] ## Update the Index: Re-assign leaving constraint

[338] ## and identify new entering variable

[339] def upIndy(ConInd,VarInd,com,h,Alist,rhs):

[340] inVar=’X’

[341] outVar=’Y’

[342] NewConInd=ConInd.copy()

[343] NewVarInd=VarInd.copy()

[344] oldPiVar=ConInd[’p’]

[345] outVar=ConInd[com[0]] # old tight constraint

[346] if outVar==0:

[347] del NewConInd[’p’]
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[348] elif outVar<h+1:

[349] inVar=outVar+h # slack out?

[350] NewConInd[’p’]=inVar

[351] NewVarInd[inVar]=’p’

[352] else:

[353] inVar=outVar-h # process out?

[354] NewConInd[’p’]=inVar

[355] NewVarInd[inVar]=’p’

[356] NewConInd[com[0]]=com[1] # new var 0,1,2,...

[357] del NewVarInd[oldPiVar]

[358] del NewVarInd[outVar]

[359] NewVarInd[com[1]]=com[0]

[360] if not VarInd[0]==’p’: # store pivot details

[361] art=rhs[VarInd[0]-1] # in "Alist"

[362] if art>1:

[363] art=’leave 0’

[364] else:

[365] art=’enter 1’

[366] Alist.append([outVar,inVar,art])

[367] return [NewConInd,NewVarInd,Alist]

[368]

[369] ## Index of Pivot Column

[370] def PivColIn(ConInd):

[371] kc=ConInd[’p’]

[372] return kc

[373]

[374] ## Index of Pivot Row

[375] def PivRowIn(L,kc):

[376] qq=L[len(L)-1][:]

[377] cc=L[kc][:]

[378] mm=100000000000000000L

[379] i=0

[380] kr=-1 #-1 if stop

[381] while i<len(qq):

[382] if cc[i]>0.00000000001: # entry>0?

[383] rr=1.0*qq[i]/cc[i] # MinRatio test

[384] mm=min(mm,rr)

[385] if mm==rr:

[386] kr=i

[387] i=i+1

[388] return kr

[389]

[390] ## Main Pivoting Operation

[391] def pivotstep(L,ConInd,r,h):

[392] kc=PivColIn(ConInd)

[393] kr=PivRowIn(L,kc)

[394] if kr==-1: #stop!

[395] OFFF=1

[396] LLL=L[:]

[397] com=[0,0] # finished

[398] else:

[399] OFFF=0

[400] pivel=L[kc][kr] # Pivot Element

[401] LL=L[:]

[402] j=0

[403] while j<r: # Create Pivot Row

[404] LL[j]=L[j][:]

[405] LL[j][kr]=1.0*L[j][kr]/pivel

[406] j=j+1

[407] LLL=LL[:]

[408] pivcol=LL[kc]

[409] j=0

[410] while j<r: # Create 0 in Piv Column

[411] LLL[j]=LL[j][:]

[412] i=0

[413] while i<h:

[414] if not i==kr:

[415] LLL[j][i]=LL[j][i]-pivcol[i]*LL[j][kr]

[416] i=i+1

[417] j=j+1

[418] com=[kr+1,kc] #[Leave Constraint, Enter Var]

[419] return [LLL,com,OFFF]

[420]

[421]

[422] ######################################################

[423] ####### Display Output ###########

[424] ######################################################

[425]

[426] def PrintMat(a):

[427] j=0

[428] while j<len(a):

[429] print ’Process’,j+1

[430] print ’ ’,a[j]

[431] j=j+1

[432]

[433] def PrintSystem(L,g,h):

[434] print ’\n Main LCP System’

[435] print ’\n Commodity Inputs:’

[436] PrintMat(aA)

[437] print ’\n Commodity Outputs:’

[438] PrintMat(bB)

[439] print ’\n Land Inputs:’

[440] PrintMat(cC)

[441] print ’\n Labour Costs:’

[442] print lL

[443] print ’\n Interest Factor (1+r):’

[444] print rR

[445] print ’\n Final Demand:’

[446] print dD

[447] print ’\n Land Stocks:’

[448] print sS

[449]

[450] def PrintInitialStep(L,ConInd,VarInd,step):

[451] print ’\n Initial Index: Step’, step

[452] print ConInd

[453] print VarInd

[454]

[455] def PrintStep(ConInd,VarInd,step):

[456] h=nZO+nZT

[457] print ’\n #######################################’

[458] print ’ ############# STEP ###############’

[459] print ’\n PIVOTING STEP: ’, step

[460] print ’("p" is entering variable)’

[461] print ’\n Constraint -> Basic Variable’

[462] print ’P= 1 ..’,nZC, ’; Y= ’, nZC+1,’ ..’,nZO,\

[463] ’; X= ’,nZO+1,’ ..’,nZO+nZT

[464] print ConInd

[465] print ’\n Basic Variable -> Constraint’

[466] print ’W= 1 ..’,nZO+nZT,’P= ’, h+1,’ ..’, h+nZC,\

[467] ’; Y= ’, h+nZC+1,’ ..’, h+nZO,\

[468] ’; X= ’,h+nZO+1,’ ..’, h+nZO+nZT

[469] print VarInd

[470]

[471] def zType(a):

[472] h=nZZ

[473] if a==0:

[474] zn=[’Covering ’, a]

[475] elif a<nZC+1:

[476] zn=[’ p-slack ’,a]

[477] elif a<nZO+1:

[478] zn=[’ y-slack ’,a-nZC]

[479] elif a<nZZ+1:

[480] zn=[’ x-slack ’,a-nZO]

[481] elif a<h+nZC+1:

[482] zn=[’ price p ’,a-h]

[483] elif a<h+nZO+1:

[484] zn=[’ rent y ’,a-h-nZC]

[485] elif a<h+nZZ+1:

[486] zn=[’ act x ’,a-h-nZO]

[487] else:

[488] zn=[’start/stop’, ’’]

[489] return zn

[490]

[491] def printSwitch(a):

[492] print zType(a[0])[0],zType(a[0])[1],’out ->’,\

[493] zType(a[1])[0],zType(a[1])[1],’in’,\

[494] ’ | theta =’,a[2]

[495]

[496] def printPivot(aMESSG,Alist):

[497] print ’\n’, aMESSG,\

[498] ’PIVOT RECORD: (var out -> var in)’

[499] i=0

[500] while i<len(Alist):

[501] printSwitch(Alist[i])

[502] i=i+1

[503]

[504] def printBasis(L,VarInd,h,g,Alist,aMESSG):

[505] slacks=[]

[506] prices=[] # only if >0

[507] rents=[] # only if >0

[508] aprices=[] # all

[509] arents=[] # all

[510] activs=[]

[511] i=1

[512] while i<h+1:

[513] if i in VarInd.keys():

[514] if not VarInd[i]==’p’:

[515] slacks.append([i,L[g+1][VarInd[i]-1]])

[516] i=i+1

[517] while i<h+nZC+1:

[518] if i in VarInd.keys():

[519] if not VarInd[i]==’p’:

[520] prices.append([i-h,L[g+1]\

[521] [VarInd[i]-1]])

[522] aprices.append(L[g+1]\

[523] [VarInd[i]-1])

[524] else:

[525] aprices.append(0)

[526] i=i+1
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[527] while i<h+nZO+1:

[528] if i in VarInd.keys():

[529] if not VarInd[i]==’p’:

[530] rents.append([i-h-nZC,L[g+1]\

[531] [VarInd[i]-1]])

[532] arents.append(L[g+1]\

[533] [VarInd[i]-1])

[534] else:

[535] arents.append(0)

[536] i=i+1

[537] while i<h+nZZ+1:

[538] if i in VarInd.keys():

[539] if not VarInd[i]==’p’:

[540] activs.append([i-h-nZO,L[g+1]\

[541] [VarInd[i]-1]])

[542] i=i+1

[543] print ’\n ’,aMESSG,’SOLUTION: ’

[544] print ’\n Up to’, nZC,\

[545] ’commodity prices [Commodity,Price]:’

[546] print prices

[547] print ’\n Up to’,nLand,\

[548] ’land rents [Land Type, Rent]:’

[549] print rents

[550] print ’\n Up to’,nZO,’from’,nZT,\

[551] ’activities [Process, Activity Level]:’

[552] print activs

[553] printPivot(aMESSG,Alist)

[554] return [aprices, arents]

[555]

[556] def showStepsol(L,VarInd,h,g,Alist,q):

[557] print ’\n INTERMEDIATE STEP SOLUTION’

[558] print ’\n Scale of Covering Vector:’

[559] if not VarInd[0]==’p’:

[560] art=L[g+1][VarInd[0]-1]

[561] if not art>1:

[562] print art

[563] DD=adjD(art,q)

[564] print ’\n Reduced Demand (by covering vector):’

[565] print dD,’reduced to’, DD

[566] else:

[567] print ’ covering vector off’

[568] printBasis(L,VarInd,h,g,Alist,’INTERMEDIATE’)

[569]

[570] def showsol(L,VarInd,h,g,OFFF,Alist):

[571] print ’\n #######################################’

[572] print ’ ########################################’

[573] print ’\n Final Step: LCP SOLUTION’

[574] if OFFF==1:

[575] print ’\n NO SOLUTION - Lemke blocked!’

[576] printPivot(’PIVOTING ABORTED ---’, Alist)

[577] print ’Termination in ray: theta->inf’

[578] else:

[579] pricerent=printBasis(L,VarInd,h,g,Alist,\

[580] ’COMPLETE’)

[581] return pricerent

[582]

[583]

[584] ######################################################

[585] ## MAIN RUNNING COMMAND: Do Lemke LCP on (M,q)

[586] ######################################################

[587]

[588] def dolcp(M,q):

[589] MM=M[:]

[590] Alist=[[’Y’,0,’inf’]]

[591] h=len(q)

[592] g=2*h

[593] step=0

[594] L=lemkemat(M,q)

[595] PrintSystem(L,g,h)

[596] r=len(L)

[597] a=iniclear(L,q)

[598] ConInd=prepConInd(M)

[599] VarInd=prepVarInd(M)

[600] if sss==1:

[601] PrintInitialStep(a[0],ConInd,VarInd,step)

[602] Indy=upIndy(ConInd,VarInd,a[1],h,Alist,a[0][g+1])

[603] [ConInd,VarInd,Alist]=Indy

[604] step=step+1

[605] OFFF=0

[606] while OFFF==0 and 0 in ConInd.values():

[607] if sss==1:

[608] PrintStep(ConInd,VarInd,step)

[609] a=pivotstep(a[0],ConInd,r,h)

[610] if sss==1:

[611] showStepsol(a[0],VarInd,h,g,Alist,q)

[612] OFFF=a[2]

[613] if OFFF==0:

[614] Indy=upIndy(ConInd,VarInd,a[1],h,\

[615] Alist,a[0][g+1])

[616] [ConInd,VarInd,Alist]=Indy

[617] step=step+1

[618] PSOL=showsol(a[0],VarInd,h,g,OFFF,Alist)

[619] if nEZT>0:

[620] ProfBasis(PSOL,h,g,aEA,bEB,cEC,lEL,nEZT)

[621]

[622]

[623] ######################################################

[624] ## EXTRA COMMAND: Do profit checks on extra procs

[625] ######################################################

[626]

[627] def ProfBasis(psol,h,g,xa,xb,xc,xl,xxx):

[628] print ’\n #######################################’

[629] print ’ ########################################’

[630] print ’\n CHECK EXTRA PROCESSES FOR PROFITS’

[631] pprices=psol[0]

[632] prents=psol[1]

[633] print ’prices ’, pprices

[634] print ’rents ’, prents

[635] n=0

[636] while n<xxx:

[637] print ’\n Extra Process’,n+1

[638] print ’Commodity Inputs’ ,xa[n]

[639] print ’Land Inputs’ ,xc[n]

[640] print ’Labour Inputs’ ,xl[n]

[641] print ’Commodity Outputs’ ,xb[n]

[642] capval=0

[643] landval=0

[644] outval=0

[645] m=0

[646] while m<nZC:

[647] ent=xa[n][m]

[648] pri=pprices[m]

[649] capval=capval+ent*pri

[650] m=m+1

[651] valr=(rR-1)*capval

[652] m=0

[653] while m<nLand:

[654] ent=xc[n][m]

[655] pri=prents[m]

[656] landval=landval+ent*pri

[657] m=m+1

[658] labval=xl[n]

[659] m=0

[660] while m<nZC:

[661] ent=xb[n][m]

[662] pri=pprices[m]

[663] outval=outval+ent*pri

[664] m=m+1

[665] totcost=capval+valr+labval+landval

[666] profit=outval-capval-valr-labval-landval

[667] print ’\n Costs and Revenues of Extra Process’,\

[668] n+1

[669] print ’Capital Value:’, capval,’ Interest:’,valr

[670] print ’Land Costs:’,landval,\

[671] ’ Labour Costs:’, labval

[672] print ’Total Costs:’, totcost,\

[673] ’ Total Revenue:’, outval

[674] print ’Profits:’, profit

[675] n=n+1

[676] # done

[677]
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A3 Screen Output

[1] >>> import lcpdat

[2]

[3] Main LCP System

[4]

[5] Commodity Inputs:

[6] Process 1

[7] [3, 1]

[8] Process 2

[9] [1, 3]

[10] Process 3

[11] [1, 2]

[12] Process 4

[13] [2, 1]

[14]

[15] Commodity Outputs:

[16] Process 1

[17] [10, 0]

[18] Process 2

[19] [10, 0]

[20] Process 3

[21] [0, 0]

[22] Process 4

[23] [0, 10]

[24]

[25] Land Inputs:

[26] Process 1

[27] [10, 0]

[28] Process 2

[29] [0, 50]

[30] Process 3

[31] [20, 0]

[32] Process 4

[33] [0, 10]

[34]

[35] Labour Costs:

[36] [10, 15, 1, 5]

[37]

[38] Interest Factor (1+r):

[39] 2+1/2

[40]

[41] Final Demand:

[42] [150, 350]

[43]

[44] Land Stocks:

[45] [1000, 1000]

[46]

[47] #######################################

[48] ########################################

[49]

[50] Final Step: LCP SOLUTION

[51]

[52] COMPLETE SOLUTION:

[53]

[54] Up to 2 commodity prices [Commodity,Price]:

[55] [[1, 15+1/5], [2, 11+1/5]]

[56]

[57] Up to 2 land rents [Land Type, Rent]:

[58] [[2, 3/10]]

[59]

[60] Up to 4 from 4 activities [Process, Activity Level]:

[61] [[1, 20+10/317], [2, 11+13/317], [4, 44+252/317]]

[62]

[63] COMPLETE PIVOT RECORD: (var out -> var in)

[64] start/stop out -> Covering 0 in | theta = inf

[65] p-slack 2 out -> price p 2 in | theta = enter 1

[66] x-slack 4 out -> act x 4 in | theta = 1

[67] p-slack 1 out -> price p 1 in | theta = 1

[68] x-slack 2 out -> act x 2 in | theta = 1

[69] y-slack 2 out -> rent y 2 in | theta = 127/277

[70] x-slack 1 out -> act x 1 in | theta = 127/277

[71] Covering 0 out -> start/stop in | theta = leave 0

[72]

[73] #######################################

[74] ########################################

[75]

[76] CHECK EXTRA PROCESSES FOR PROFITS

[77] prices [15+1/5, 11+1/5]

[78] rents [0, 3/10]

[79]

[80] Extra Process 1

[81] Commodity Inputs [1, 2]

[82] Land Inputs [20, 0]

[83] Labour Inputs 1

[84] Commodity Outputs [0, 10]

[85]

[86] Costs and Revenues of Extra Process 1

[87] Capital Value: 37+3/5 Interest: 56+2/5

[88] Land Costs: 0 Labour Costs: 1

[89] Total Costs: 95 Total Revenue: 112

[90] Profits: 17

[91]

[92] Extra Process 2

[93] Commodity Inputs [2, 1]

[94] Land Inputs [0, 10]

[95] Labour Inputs 5

[96] Commodity Outputs [0, 10]

[97]

[98] Costs and Revenues of Extra Process 2

[99] Capital Value: 41+3/5 Interest: 62+2/5

[100] Land Costs: 3 Labour Costs: 5

[101] Total Costs: 112 Total Revenue: 112

[102] Profits: 0

[103] >>>

[104]



KERP Keele Economics Research Papers — Recent Contributions

All papers in the kerp series are available for downloading from the Keele
Economics website, via www.keele.ac.uk/depts/ec/kerp.

2002/21 Damaged Durable Goods
Jong-Hee Hahn

2002/20 Unemployment Insurance under Moral Hazard and Limited Commitment:
Public vs Private Provision Jonathan P Thomas and Tim Worrall

2002/19 The Water Poverty Index: an International Comparison
Peter Lawrence , Jeremy Meigh and Caroline Sullivan

2002/18 Price-Capping regulation as a protectionist strategy in developing countries
Peter Lawrence and Arijit Mukherjee

2002/17 Licensing and the Incentive for Innovation
Arijit Mukherjee and Soma Mukherjee

2002/16 Joint Production Games with Mixed Sharing Rules
Richard Cornes and Roger Hartley

2002/15 Sequential Models of Bertrand Competition for Deposits and Loans under
Asymmetric Information Frédérique Bracoud

2002/14 Consumption Patterns over Pay Periods
Clare Kelly and Gauthier Lanot

2002/13 Licensing under Asymmetric Information
Arijit Mukherjee

2002/12 Emission Targets and Equilibrium Choice of Technique
Martin E Diedrich

2002/11 Dissipation In Rent-Seeking Contests With Entry Costs
Richard Cornes and Roger Hartley

2002/10 Advantageous or Disadvantageous Semi-collusion
Arijit Mukherjee

2002/09 Licensing in a Vertically Separated Industry
Arijit Mukherjee

2002/08 U-shaped Paths of Consumption and Phys. Capital in Lucas-type Growth Models
Farhad Nili

2002/07 On the Variance Covariance Matrix of the M.L. Estimator of a Discrete Mixture
Gauthier Lanot

2002/06 Monotonicity and the Roy Model
Arnaud Chevalier and Gauthier Lanot

2002/05 Capacity Commitment and Licensing
Arijit Mukherjee

2002/04 Household Credit and Saving: Does Policy Matter?
Peter Lawrence

2002/03 Innovation, Licensing and Welfare
Arijit Mukherjee

2002/02 Historical Schools of Economics: German and English
Keith Tribe



KERP Keele Economics Research Papers — Recent Contributions

All papers in the kerp series are available for downloading from the Keele
Economics website, via www.keele.ac.uk/depts/ec/kerp.

2002/01 R&D, Licensing and Patent Protection
Arijit Mukherjee

2001/09 Export and Direct Investment as a Signal in Global Markets
Arijit Mukherjee and Udo Broll

2001/08 The Welfare Effects of Quality Degradation with Network Externalities
Jong-Hee Hahn

2001/07 Cost Padding in Regulated Monopolies
Spiros Bougheas and Tim Worrall

2001/06 Is the Unskilled Worker Problem in Developing Countries Going Away?
Ed Anderson

2001/05 Does Society Prefer Small Innovation?
Arijit Mukherjee

2001/04 Bilateral Merger in a Leadership Structure
Tarun Kabiraj and Arijit Mukherjee

2001/03 Imitation, Patent Protection and Welfare
Arijit Mukherjee and Enrico Pennings

2001/02 R&D Organization and Technology Transfer
Arijit Mukherjee and Sugata Marjit

2001/01 International Joint Venture and the Technology of the Future
Sugata Marjit, Arijit Mukherjee and Tarun Kabiraj

2000/20 Gift-Giving, Quasi-Credit and Reciprocity
Tim Worrall and Jonathan P Thomas

2000/19 Land Rents and Competitive Equilibrium
Martin E. Diedrich

2000/18 Monopoly Quality Differentiation with Top-quality Dependent Fixed Costs
Jong-Hee Hahn

2000/17 Time Consistency and Intergenerational Risk Sharing
Tim Worrall

2000/16 The Maximum Interest Rate on an Unbalanced Growth Path
Martin E. Diedrich

2000/15 Nonlinear Pricing of a Telecomm. Service with Call and Network Externalities
Jong-Hee Hahn

2000/14 Rent- seeking by Players with Constant Absolute Risk Aversion
Richard Cornes and Roger Hartley

2000/13 Differential Interest Rates on Unbalanced Growth Paths
Martin E. Diedrich

2000/12 Functional Quality Degradation of Software with Network Externalities
Jong-Hee Hahn

2000/11 Network Competition and Interconnection with Heterogeneous Subscribers
Jong-Hee Hahn





issn 1352-8955

Department of Economics
Keele University

Keele, Staffordshire st5 5bg
United Kingdom

tel: (44) 1782 583091
fax: (44) 1782 717577

email: economics@keele.ac.uk
web: www.keele.ac.uk/depts/ec/web/


	k12.pdf
	Introduction
	Framework and Notation
	Equilibrium Conditions
	Numerical Examples
	Skew-Dual LCPs
	Previous Existence Results
	Substitution Potential
	Existence Theorem
	The Extended System
	Proof of Theorem 8.1
	Conclusion
	References
	Appendix
	Input File
	Program File
	Screen Output



