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Abstract 
 

The precedent for solving expectational difference equations has been to 
solve converging equations backwards and diverging equations forward by 
assuming the solution is bounded.  This precedent often leads to incorrect 
solutions and has less than rigorous foundations.  More rigorous procedures 
would be to determine the terminal condition in a finite model and take the 
limit of that terminal condition as the horizon goes to infinity.  Also, whether 
one solves forward or backwards depends on the context of the difference 
equation, not on convergence or divergence.   These new procedures reveal 
Woodford’s (2003) model of a cashless economy to be incomplete. 
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Figure 1. Actual vs. targeted time paths  

Logical Pitfalls of Assuming Bounded Solutions to 

Expectational Difference Equations 

 

By David Eagle, Ph.D. and Elizabeth Murff, Ph.D. 

 

I. Introduction 

Many mathematical techniques used in economics came from applications in rocket 

science including Ito calculus, the Wiener process, and much of control theory.  Hence, this 

paper uses a rocket example to assess the reasonableness of the rational expectations precedent 

of assuming a solution is bounded when solving expectational difference equations. 

Suppose a rocket is located in space at 0x .  

The rocket has one thrust to send it off at a 

constant speed.  While the control center has 

targeted a path for the rocket, it has no mechanism 

to control the rocket’s direction.  Define tx  and 

*
tx  to respectively represent the actual and targeted location vectors of the rocket at time t.  

Define *ˆ ttt xxx −≡  , which is the distance between tx  and *
tx .  For the moment, assume the 

solution of tx̂  is bounded as is required by the rational expectations precedent.   If the rocket’s 

actual trajectory differs from the targeted trajectory, then ∞=−
∞→

*lim ttt
xx  (See Figure 1).  

Therefore, the only bounded solution of tx̂  is where the rocket is forever on target.  It would be 

unreasonable to infer that this unique bounded solution to tx̂  means the rocket’s direction is 

“determined” even though no mechanism exists to control the rocket’s direction.  To make that 
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inference would be an abuse of mathematics.  We write this paper to put an end to this type of 

abuse in economics where inferences like this are being made. 

Woodford (2003) develops a model of a cashless economy as the basis for his book 

Interest and Prices, a cornerstone of the New Keynesian Economic literature.  Just as there is no 

steering mechanism in the rocket example, Woodford’s model has no monetary frictions and 

hence no mechanism by which monetary policy affects nominal aggregate demand and hence 

prices.  However, by assuming his solution is bounded, Woodford claims prices are determined 

in his model under various interest-rate policies. 

The precedent for solving expectational difference equations, as established by the 

rational expectations literature, is that one should solve stable roots backwards, unstable roots 

forward, and declare indeterminacy for unit roots.  The precedent also states that if one solves an 

equation forward, then one should assume the solution of that difference equation is bounded. 

This paper traces the history of the precedent for solving expectational difference 

equations.  We find that the justification for making the assumption of bounded solutions was not 

met through any rigorous mathematical proof, but rather through a few examples, an incorrect 

claim to rule out “speculative bubbles”, and another incorrect claim that we are free to make that 

assumption. 

We find examples where this precedent leads to incorrect solutions.  Then we propose a 

more rigorous approach to solve expectational difference equations.  For each expectational 

difference equation one solves forward, one should determine the appropriate terminal condition 

based on a finite version of the model, and then take the limit of that terminal condition as the 

horizon goes to infinity.  We also argue that the direction that we solve an expectational 
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difference equation depends not on divergence or convergence, but on the context of the 

difference equation. 

Section II presents Woodford’s infinite implicit function theorem, which incorporates the 

assumption of a bounded solution.  Section III presents Woodford’s argument that his model is 

complete.  Section IV, the major section of this paper, reviews the literature behind the precedent 

for solving expectational difference equations, discusses several examples where the precedent 

leads to incorrect solutions, and proposes new rigorous procedures.  Section V applies these 

revised procedures to Woodford’s model revealing that it is incomplete.  Section VI clears away 

the smoke and mirrors to show how Woodford’s logic is based on self-destructive policies.  

Section VII discusses additional problems with Woodford’s argument.  Section VIII concludes 

and reflects on the implications of the conclusions. 

 

II. Woodford’s Infinite Implicit Function Theorem 

Woodford’s basis for calling his model complete rests on how to solve expectational 

difference equations.  While this paper’s emphasis is on expectational difference equations, the 

points we discuss here apply to regular difference equations as well.  To simplify things initially, 

consider the following deterministic difference equation where b>1: 

tt bPP =+1  (1) 

Imagine that (1) applies at times t=0,1,2,…,∞.  Also, let {Pt} denote the sequence of Pt for 

t=0,1,2,…, ∞. There are two different schools of thought concerning how to solve these 

“infinite” difference equations.  The “normal” school of thought1 believes that to solve for {Pt}, 

                                                 
1 See Enders (1995) for a sense of the “normal” school of thought.  However, because the current thinking in economics has been 
contaminated with the second school of thought, Ender’s discussion of difference equations is a blending of these two schools of thought.  
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we need another condition such as an initial condition that states the value of P0.    For example, 

if we assumed the initial condition that P0 = 100, then we would conclude that Pt+1 = 100bt for 

t=0,1,2,…, ∞. 

 However, another school of thought believes that with only equation (1), they can 

“determine” or solve for {Pt}; that no other condition such as an initial condition is needed.  

They believe that the solution to the difference equation in (1) is that Pt=0 for t=0,1,2,…, ∞. 

 As part of this second school of thought, Woodford presents an infinite form of the 

implicit function theorem that he uses to show that this unique solution exists.2  To see how this 

theorem applies, assume the following: 

13211 ˆˆˆˆ
+− ++= tttt pfpfpff . (A.8) 

where tf̂  is an n-dimensional vector.  Woodford (2003, p. 632) describes the requirements of his 

infinite form of the implicit function theorem by saying: 

“In the infinite-dimensional case, the requirement of continuity of the linear operator … 
requires that the operator be bounded …. That is, the sequence { }tf̂  must be bounded in 
the case of any bounded sequence { }tp̂ .  Assuming the l∞ (or sup norm) topology on the 

linear space of sequences, one then requires that tf̂  satisfy some uniform bound for all t 
in the case that each of the tp̂  satisfy some uniform bound. … In the case considered 
here, the condition obtains (generically) if and only if the characteristic equation 

Det[f3λ2+f2λ+f1]=0 (A.9) 
has exactly n roots inside the unit circle (i.e., such that |λ|<1) and n roots outside (|λ|>1).   

 
Please note the bounded requirements of Woodford’s infinite form of the implicit 

function theorem.  In particular, the theorem requires that the solution sequence { }tp̂  be 

                                                                                                                                                             
There is a claim that if you have an initial condition or some other condition, then use it, but if you don’t then assume the solution is 
bounded. 
2 In a footnote, Woodford refers to Lang (1983, Chapter 6) for some implicit function theorems connected with infinite spaces.  
However, we were unable to find the theorem Woodford presents.  We have asked Woodford directly to clarify where he got his infinite 
implicit function theorem, but he has not responded.  It is as though Woodford is presenting a theorem, without proof, that is not 
developed elsewhere.  In this paper, we are not, however, claiming his theorem is wrong; rather we are saying it is misapplied. 
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bounded.  It is generally not good mathematical practice to make an assumption about your 

solution. 

The bounded requirement separates this second school of thought from the “normal” 

school of thought.  Note that the use of the l∞ topology is not justification of the bounded 

requirement.  Instead, the use of the l∞ topology is only justified in circumstances where the 

bounded requirement is appropriate.  

 To apply Woodford’s infinite form of the implicit function theorem to (1), define 

1
ˆ

+−= ttt PbPf .  Here f1=0, f2=b, and f3= -1.  Next, determine the roots to 02 =+− λλ b .  Since in 

our case tf̂  is one dimensional, we need one root inside the unit circle and one root outside.  

Those roots are λ=0 and λ=b.  The λ=0 root is inside the unit circle.  Since we assumed b>1, 

then the λ=b is outside the unit circle.  Therefore, Woodford’s infinite form of the implicit 

function theorem implies that there exists a unique bounded solution to (1). 

 Solving (1) forward results in  

tT
T

t b
P

P −=  (2) 

Since b>1, the assumption that {Pt} is bounded implies that 0lim =−∞→ tT
T

T b
P

, leading to the 

conclusion that Pt=0 for t=0,1,2,…, ∞.  This contradicts the “normal” approach to difference 

equations.  Figure 2 shows what the “normal” school of thought considers to be solutions to (1).  

While it is true there is only one bounded solution, the “normal” school of thought considers the 

unbounded solutions to be legitimate solutions as well.3 

                                                 
3 There is some indication that the second school of thought thinks that if one has an initial condition then one can then use the initial 
condition to determine the solution even if that solution is unbounded, but if one does not have an initial condition then one would be 
free to assume a bounded solution in order to apply Woodford’s infinite implicit function theorem.  This approach would not be rigorous 
since if someone forgot they had the initial condition, then they would be led to a zero solution as being the unique solution whereas if 
they did remember the initial condition, they would be lead to a nonzero solution (assuming P0 is not zero).  Furthermore, no where in 
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 Woodford’s use of the  l∞  topology means 

that he believes that it is appropriate to assume 

that the solution must be bounded.  He provides no 

justification or reference to any other works to 

support his bounded-solution assumption.4  At this 

time, we can only guess that Dr. Woodford is 

making the assumption because the rational expectations precedent for solving expectational 

difference equations is to assume the solution is bounded.  However, section IV shows that 

precedent to be defective. 

 

III. Woodford’s Argument That His Model Is Complete 
 
 In Chapter 2 of his book Interest and Prices, Woodford (2003) presents his model of a 

cashless economy.  This model forms the basis for the rest of his book as well as literature 

outside his book (e.g., Aoki, 2003).  If Woodford is clear about anything, it is that the basis for 

price determination in his model is the Fisher equation.  On page 73, Woodford states that, “I 

then have a system of two equations at each date, (1.15) and (1.21), to determine the two 

endogenous variables Pt and it …” Woodford’s (1.15) just states that the nominal interest rate is 

determined by the central bank.5   Therefore, with that nominal interest rate determined, 

Woodford’s (1.21) is his supposed basis for price determination in his model, but if and only if 

the central bank follows certain policies according to Woodford. 

                                                                                                                                                             
the literature has anyone explained why assuming a solution is bounded is appropriate if one has no initial condition, but is not 
appropriate when one has an initial condition. 
4 In February and again at the beginning of April 2004, we asked Dr. Woodford directly why he thinks it is appropriate to assume a 
bounded solution.  However, as of the time this paper is written (May 7, 2004); Dr. Woodford has not responded. 
5 Eagle (2004a) argues that the central bank in Woodford’s model in fact cannot affect the nominal interest rate that will be paid on loans 
not issued by the central bank. 

Pt 

time  

Figure 2. Unbounded Solutions 
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respectively the nominal interest, the price level, and aggregate supply (income) at time t.  

Woodford assumes a representative consumer who has a time preference factor of β and a time-

separable utility function, whose derivative with respect to consumption is uc.  The stochastic 

component to utility, tξ , and aggregate supply are exogenous to Woodford’s model.  Woodford 

(2003, p. 71) states that his equation (1.21) “takes the form of a ‘Fisher equation for the nominal 

interest rate, where the intertemporal marginal rate of substitution of the representative 

household plays the role of the real interest factor.” 

 For the rest of this paper, we simplify the presentation of Woodford’s (1.21) by defining 
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Woodford’s (1.21) can then be written as: 
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t P
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β  (3) 

Equation (3) is a nonlinear difference equation.  Woodford used a first-order Taylor’s 

approximation to log linearize (3) into the following linear difference equation: 

][ˆ]ˆ[ˆˆ *
11 ++ +−+= ttttttt EPPEri π   (4)  

where ][ *
1+ttE π  is related to the targeted inflation rate.6  For now, just think of ttt Pri ˆ and ,ˆ ,ˆ  as the 

log-linearized values for the nominal interest rate, the real interest rate, and the price level.  In 

particular, 


�

�
��
�

�
≡ *lnˆ

t

t
t P

P
P  where *

tP  is the targeted price level at time t.  Note that tP̂  is therefore a 
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distance measure of the actual price level from the targeted price level, just as in the rocket 

example in the beginning of this paper, *ˆ ttt xxx −≡ . 

 Woodford then assumes an interest-rate targeting policy with feedback from prices: 

ttPt vPi += ˆˆ ϕ  (5) 

Substituting this into (4), he gets: 

tttttttP vEPErP −++=+ ++ ][]ˆ[ˆˆ)1( *
11 πϕ  (6) 

He then solves this forward to get: 

�
−−

=
+

++++
− 
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�

�
�

�

�
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−+

+
+

=
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0
1
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1
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tT

j
j

P

jtjtjtt

tT
P

Tt
t

vrEPE
P

ϕ
π

ϕ
 (7) 

Next, he assumes his solution is bounded, which implies that 0
)1(
]ˆ[

lim =
+ −∞→ tT

P

Tt

t

PE
ϕ

.  He concludes 

that his unique bounded solution for prices is: 

�
∞

=
+

++++
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�

�
�

�

�

+
−+

=
0

1

*
1

)1(

]ˆ[ˆ
j

j
P

jtjtjtt
t

vrE
P

ϕ
π

 (8) 

Because he derived a unique bounded solution, Woodford concludes that prices are therefore 

determined in his model and his model is complete.  This is analogous to the rocket example of 

concluding that the direction of the rocket is determined because there is a unique bounded 

solution for the distance tx̂  even though no mechanism exists to steer the rocket. 

 For finite models, a necessary condition for a model to be complete is that the model 

must have at least as many equations as unknowns.  However, for infinite models counting the 

number of equations and unknowns often will not work.  If you have an infinite number of 

                                                                                                                                                             
6 We are merely presenting Woodford’s log linearization; we are not stating it is correct.  We have some suspicions that the term 

][ *
1+ttE π  should not be included, but that would be a digression from the theme of this paper. 
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equations and an infinite number of unknowns, then the number of equations equals the number 

of unknowns.  However, the infinite number of unknowns also is n times the infinite number of 

equations for any finite number n.  This is true even though there is a one-to-one mapping of the 

number of unknowns to the number of equations, since any countable infinity is a one-to-one 

mapping of any other countable infinity.  The veil of infinity and the assumption of a bounded 

solution are hiding the incompleteness of Woodford’s model.  The next section argues against 

the rational expectations precedent of assuming a bounded solution.  Section V then removes the 

veil of infinity to demonstrate the incompleteness of Woodford’s model. 

 

IV. Solving Expectational Difference Equations Correctly 

 Consider the following simple expectational difference equation: 

tttttt xcyaEyE +=+− ][][ 11  

where yt is some endogenous variable and xt is an exogenous variable.  The rational expectations 

literature has established the following precedent for solving this difference equation:7  

Assume that the sequence ]}[{ 1 st yE −  for s=t,t+1,… is bounded.  Then (i) if |a|>1, we 

solve forward and assume the solution is bounded, (ii) if |a|<1, we solve backward, (iii) if 

|a|=1, we cannot solve the expectational difference equation. 

This section shows that the foundations for this precedent are less than rigorous and the 

precedent will often lead to erroneous conclusions. 

 Much of the foundations for this precedent are in Sargent (1979).  On page 177, Sargent 

claims that we can assume the solution is bounded “as we are free to do if no other side condition 

has been imposed …”    On page 195, Sargent states, “Thus far, our advice to solve stable roots 

                                                 
7 See Sargent (1979, p. 177) 



 

- 10 - 
 

backward and unstable roots forward has been to a certain extent arbitrary, being partly based on 

the desire to have solutions that are bounded…”  On pages 195-200, Sargent provides an 

example where the assumption of a bounded solution is justified. 

 Other rational expectations literature supporting this precedent include Sargent and 

Wallace (1975) where they assume the solution is bounded to rule out “speculative bubbles.”  

Later in this paper, we show that Sargent and Wallace’s conclusion is correct because of their 

assumption about other exogenous stochastic processes not being too explosive. “Speculative 

bubbles,” however, have no relevance. 

 Sargent (1986) did use a particular norm l∞ , which does require solutions be bounded.  

However, to use such a norm, it must be appropriate to assume that the solutions are bounded.  

One should not try to apply the logic in the opposite direction.  While one can and should use the 

appropriateness of assuming bounded solutions in order to use this norm, one should not use the 

norm to justify the assumption of bounded solutions. 

 In summary, our literature review into the foundations for the assumption that the 

solution be bounded included (i) a couple of examples where the assumption of a bounded 

solution was appropriate, (ii) a claim that “we are free” to assume the solution is bounded, and 

(iii) a possible misuse of the l∞ norm to justify the assumption.  We found no mathematical proof 

to support making this assumption. These foundations are less than rigorous.  Many users of this 

precedent have treated it as accepted fact and do make no references to any literature supporting 

this precedent. 

 Having weak foundations for the precedent does not, however, mean that the precedent is 

wrong.  However, we now show that the precedent is wrong by presenting several examples 

where this precedent leads to incorrect solutions. 
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 Our first example is an example from finance, which consists of two securities consistent 

with the following difference equation: 

CPEP ttt ⋅+⋅= + ββ ][ 1  (9) 

where Pt is the price of the security, β is the discount factor, and C is the annual constant 

payment on the security.  The first security is an ordinary perpetuity, a security that pays C 

dollars at the end of each year forever. 

The second security is a perpetuity combined with a put option to cash the security in at 

St, which we call the striking price of this security.  At time 0, the striking price of the security is 

S0.  At the end of each year during which the security is held, the holder receives C dollars.  

Immediately after the C dollar payment, a coin is flipped.  If tails, the striking price remains 

unchanged.  However, if the flipped coin lands on heads, the new striking price at time t equals 

CS t 2
2

1 −−
−β

β
.  In order that we need not worry about the strike price falling below zero, we 

assume that 
β

β
−

≥
10

C
S , which insures that the strike price is nondecreasing.  The one-period-

ahead expected striking price equals 111 2
1

2
2

2
1

][ −−− +


�

�
��
�

�
−−= tttt SCSSE

β
β

 which implies: 

C
S

SE t
tt −= −

− β
1

1 ][  (10) 

The price of the second security must be at least the striking price because one can always cash 

the security in at the striking price. 

The expectational difference equation (9) applies to both the first security and the second 

security.  Equation (9) says that the price of the security today equals the present value of the 

price next year plus the present value of the constant annual payment. 
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If we solve forward (9), we conclude that �
∞

=

+
+∞→

⋅+=
0

1][lim
j

j
ntt

n

nt CPEP ββ .  Since 1<β , 

the rational expectations precedent’s assumption that the solution is bounded implies that the  

0][lim =+∞→ ntt
n

n
PEβ .  However, doing so results with the following price: 

β
β
−

=
1

C
Pt  (11) 

While equation (11) is the price of the ordinary perpetuity, it is not the price of the second 

security, since the price of the second security cannot be less than its striking price.  Therefore, 

the rational expectations precedent produces an erroneous price for the second security. 

Since the rational expectations precedent for assuming a solution is bounded is not 

universally justified, we need more rigorous procedures for solving expectational difference 

equations.  We propose always following the approach used by Sargent (1979, pp. 195-2000) 

where he assumes a finite horizon to determine the terminal condition and then takes the limit of 

that terminal condition as the horizon goes to infinity.  

To see what is appropriate for the terminal conditions of the two securities in this 

example, assume finite versions of both of these securities to determine the appropriate terminal 

conditions, and then take the limit as the horizon of the securities goes to infinity.  A finite 

version of the ordinary perpetuity would be an ordinary annuity, a security that pays C dollars at 

the end of each year until time T.  Equation (9) applies for t=0,1,2, …,T-1 only.  Therefore, we 

can only solve (9) forward until time T to get: 

�
−−

=

+− ⋅+=
1

0

1][
tT

j

j
Tt

tT
t CPEP ββ  (12) 

At time T, the price of this first security would be zero, because there will be no further 

payments of C beyond time T.  Hence, 
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−−
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−
+




�

�
��
�

�

−
−=⋅=

1

0

1

1
1tT

j

tT
t

t CCP
β

βββ  (13) 

The above is the value of an ordinary annuity with T-t payments remaining.  Taking the limit of 

(13) as T goes to infinity does give (11) as the price or present value of an ordinary perpetuity. 

 Now, look at a finite version of the second security.  Again, equation (9) applies for 

t=0,1,2, …,T-1 only.  Solving forward again gives us (12).  At time T, the holder of the second 

security will exercise the option at the strike price at that time.  Therefore, TT SP =  and hence, 

][][ TtTt SEPE = .  We can derive ][ Tt SE  from equation (10), which is another expectational 

difference equation, the backward solution of which is: 

�
−−

=
− −=

1

0

1
][

tT

j
jtT

t
Tt C

S
SE

ββ
 (14) 

Since, ][][ TtTt SEPE = , substitute (14) into (12) to get 

��
−−

=

+
−−

=
−

− ⋅+


�

�
�
�
�

�
−=

1

0

1
1

0

1 tT

j

j
tT

j
jtT

ttT
t CC

S
P β

ββ
β .  This implies that tt SP =  regardless of the time 

horizon.  Therefore, in the limit as T approaches infinity, tt SP = . 

 This example illustrates that applying the rational expectation precedent can lead to 

erroneous results.  We cannot generalize from Sargent’s one example that all solutions must be 

bounded for all examples and for all models.  Instead, for any difference equation we try to solve 

forward, we need to study the difference equation in a model with a finite horizon in order to 

determine the appropriate terminal condition, and then take the limit of that terminal condition as 

horizon goes to infinity. 

 The example of these two securities demonstrates that the other part of the rational 

expectations precedent about solving expectational difference equations is also incorrect.  The 
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direction we solve an expectational difference equation depends not on whether that difference 

equation converges or diverges, but on the context of that difference equation.  In financial 

models we solve forward as current prices derive their values from expected future prices.  In 

other contexts, we need to solve backwards.  For example, we solved equation (10) for the 

striking price backwards not forward because the striking price depends on current and past coin 

flips. 

 Now consider a different infinitely repeated game where the player starts out with W0 

amount of money at time 0.  In each period, a coin is flipped.  If heads, the player’s money will 

change to 1)1( −+ tWba , and if tails, the player’s money will change to 1)1( −− tWba  where a is a 

positive constant and b is between 0 and 1.  The player’s expected money after the coin flip will 

be 11 ][ −− = ttt aWWE .  This is an expectational difference equation.  Regardless whether a is 

greater than, less than, or equal to one; we still need to solve the difference equation back to W0.  

Doing so gives us the solution that 00 ][ WaWE t
t = . 

If a>1, then the limit as t goes to infinity of expected money the player would have from 

this game is infinity.  Imposing a restriction that the winnings are bounded would the winnings to 

always equal zero and that the person started the game with no money, contradicting our 

assumption that she did start with a positive amount of money.  If a=1, then the player’s expected 

money would equal her initial money holdings.  If a<1, then the player’s expected money 

holdings will go to zero as the game’s horizon goes to infinity.  Regardless of the value of a, we 

still need to solve the expectational difference equation backwards because the expected 

winnings is determined by current and past coin flips. 

 On the other hand, with financial models, usually we should solve the expectational 

difference equation forward rather than backward because the current price is determined by the 
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future expected price.  In particular, consider a stock that pays no dividend and will never pay 

any dividend.  Its current price should equal: 

][ 1+= ttt PEP β  (15) 

where β  is a discount factor.  While we normally think about the discount factor as being less 

than one, it could be greater than one in some circumstances, such as if this price was an 

inflation-adjusted price when the consumers’ time preference factor is positive.  Regardless, of 

the value of β ; we should still solve (15) forward. 

To solve the difference equation forward, assume a model with a finite horizon T. 

Equation (15) only applies for periods t=0,1,2,…,T-1; since the price level at time T cannot equal 

a function of ][ 1+tt PE  since there will be no time T+1.  As a result, something else is needed to 

determine the price of the security at time T.  When a firm’s life ends, it is liquidated.  Therefore, 

the price of the firm at time T should equal its liquidation value at time T.  Assuming that we 

expect the liquidation value to grow at the rate of g over time, we get that )1(][1 gLLE ttt +=− .  

This latter expectational difference equation is one that we should solve backwards to get that 

tT
tTt gLLE −+= )1(][ .  Therefore, tT

tTtTt gLLEPE −−== )1(][][ .  In order to solve for the 

current price of this stock, we need to solve the expectational difference equation (15) forward, 

which gives ][ Tt
tT

t PEP −= β . Substituting tT
t gL −− )1(  for ][ Tt PE  gives the following terminal 

condition: 

tTtT
t gLP −− += )1(0β  (16) 

 Next, take the limit of the terminal condition (16) as T goes to infinity.  We get three 

cases for this limit: 

Case 1. 1)1( −=+ βg .  In this case, tt LP = . 
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Case 2. 1)1( −<+ βg .  In this case, it would be better to liquidate the firm rather than 
keep the firm as an ongoing concern.  If the firm chooses to liquidate, then tP  still equals 

tL .  However, if the firm chooses not to liquidate the firm even though that decision 
makes the shareholders worse off, then tP  will be less than tL . 
 
Case 3. 1)1( −>+ βg .  In this case, the price will be infinite.  However, the assumption 
that this expected growth rate is constant forever above the discount rate is highly 
unlikely.  Nevertheless, if we do so assume, then the price should be infinite. 
 

Assuming the solution is bounded would be inappropriate in this example.  Making this 

assumption would have imply the price of stock always equals zero, a conclusion inconsistent 

with current financial theory. 

Sargent and Wallace (1975, p. 248) solved a difference equation forward, to give them 

their equation (12).   We reproduce their equation (12) below with some inconsequential 

formatting changes and with T-t-1 instead of n: 

( ) ][
1

][][
1

][)1( 1
0

1
1

0
121

0

1
10 Tt

tT
tT

j
jttjtt

j

tt pE
J

J
mEJXE

J
J

pEJ −

−−−

=
+−+−− 



�

�
��
�

�

−
++



�

�
��
�

�

−
=− �  

Sargent and Wallace assume that 0][
1

lim 1
0

1 =


�

�
��
�

�

− −

−

∞→ Tt

tT

T
pE

J
J

 to supposedly rule out “speculative 

bubbles.” 

Instead, apply the principles of this section and assume a finite model to determine the 

terminal condition.  The price level at time T is determined by their equation (17), which some 

would call a money demand function, but which we call the structural velocity equation (See 

Eagle, 2004b). However, because the economy ends at time T, there is no interest rate from time 

T to the nonexistent time T+1.  Therefore, let’s assume Sargent and Wallace’s (17) applies at 

time T but without the interest rate term.  Then TTTT muycp +−−= 31 .  Taking expectations 

based on the information set at time t-1 gives ][][][][ 131111 TtTtTtTt mEuEyEcpE −−−− +−−= .  
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Based on Sargent and Wallace’s definition of the exogenous variable TX ,  we conclude that 

][][][ 31111 TtTtTt uEyEcXE −−− −−=  and therefore, ][][][ 111 TtTtTt MEXEpE −−− += .  Substituting 

this into Sargent and Wallace’s equation (12) gives:  

( )�
−

=
+−+−− +



�

�
��
�

�

−
=−

tT

j
jttjtt

j

tt mEJXE
J

J
pEJ

0
121

0

1
10 ][][

1
][)1(  

Taking the limit of this as T goes to infinity and making Sargent and Wallace’s 

assumption that the processes of ][1 jtt XE +−  and ][1 jtt mE +−  “not be too explosive,” we get the 

following finite value for ][1 tt pE − : 

( )
�

∞

=

+−+−
− −

+



�

�
��
�

�

−
=

0 0

121

0

1
1 )1(

][][

1
][

j

jttjtt
j

tt J

mEJXE

J
J

pE  

Sargent and Wallace were justified in reaching the above conclusion, not by anything to do with 

“speculative bubbles,” but by their assumption of “not too explosive” processes for ][1 jtt XE +−  

and ][1 jtt mE +− ,  

In this section, we found that the rational expectations precedent for solving expectational 

difference equations is neither correct nor rigorous.  In its place, this section provides the 

following two principles: 

1. Whether we solve an expectational difference equation forward or backward depends not 

on whether the difference equation diverges or converges but rather on the context of the 

difference equation. 

2. When we do need to solve an expectational difference equation forward, then we need to 

assume a version of the model with a finite horizon to determine the appropriate terminal 

condition, and then take the limit of that terminal condition as we let the horizon 

approach infinity. 
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 These principles are not meant to be all encompassing.  Future research is likely to reveal 

additional principles and possible qualifications to the ones listed here. 

 

V. Applying Revised Procedures to Woodford’s Model 

The best information we have indicates that Woodford assumed his solution is bounded 

because of the flawed precedent of doing so when solving expectational difference equations.  

Based on our analysis in the last section, we reject this precedent and replace it with determining 

the terminal condition in a finite model and then taking its limit as the horizon goes to infinity.  

This section applies this requirement to Woodford’s model. 

 We reproduce (7) below: 

�
−−

=
+

++++
− 





�

�

�
�

�

�

+
−+

+
+

=
1

0
1

*
1

)1(

]ˆ[

)1(
]ˆ[ˆ

tT

j
j

P

jtjtjtt

tT
P

Tt
t

vrEPE
P

ϕ
π

ϕ
 (7) 

This is the result of Woodford’s solving his expectational difference equation (6) forward.  

Instead of assuming that the sequence {Pt} is bounded, assume a version of Woodford’s model 

with a finite horizon T, and then determine the terminal condition for TP̂ . 

 If we assume today is time 0, then Woodford’s Fisher equation (3) and hence log-

linearized Fisher equation (4) only apply to times t=0,1,…T-1.  Since there is no time T+1, there 

can be no loans from time T to T+1, and hence there is no interest rate iT.  Hence, Woodford’s 

equation (4) cannot be used to determine TP̂ .  All that exists in Woodford’s model of a cashless 

economy to supposedly determine prices is Woodford’s Fisher equation or a log linearization of 

it.  Thus, nothing exists to determine TP̂  in any finite version of Woodford’s model.   Without 

the flawed rational expectations literature’s precedent for assuming that the solution of an 

expectational difference equation is bounded, Woodford’s model is revealed to be incomplete. 
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Determining whether finite models are complete or not is relatively straight forward.  A 

necessary condition for model completeness is that there must be at least as many equations as 

unknowns.  If we count the number of equations and unknowns and find that the number of 

unknowns exceeds the number of equations, the incompleteness of the model is clear.  However, 

counting tells us very for models where both the number of equations and unknowns are 

countably infinite.  While one could state the number of equations and unknowns are in some 

sense equal, one can also state that the number of unknowns equals n times the number of 

equations for any finite and positive integer n. 

The logical remedy is to look at a finite version of the model, count the number of 

equations and unknowns and then take the limit as the horizon goes to infinity.  To count the 

number of unknowns and equations, we need to take into account the states of nature.  Assume 

there are n states of nature per node in a decision tree as would be the case with an n-side die 

thrown at each point in time to determine the various outcomes. 

First, count the unknown prices.  There would be one at time 0, n at time 1, n2 at time 2, 

…, nt at time t, etc.  Therefore, with a finite horizon T, the number of unknowns would be 

Tt nnnn ++++++ ......1 2 , which equals �
=

T

t

tn
0

. 

Other than transversality conditions, the sole basis for determining prices in Woodford’s 

model is Woodford’s Fisher equation.  There would be one Fisher equation at time 0, n at time 1, 

n2 at time 2, …, nt at time t, etc.  However, there would be no equations at time T with no time 

T+1 to settle loans, no interest rate and hence no Fisher equation exists at time T. Therefore, the 

number of equations equals �
−

=

1

0

T

t

tn . 
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The ratio of unknowns to the number of equations will be 

��

�
−

=

−

=

= += 1

0

1

0

0 1
T

t

t
T

t

t

T

t

t

n
n

n

n
.  In other 

words, no matter how many periods that consumers live, there will be more than n times as many 

unknowns as there are equations.   In the limit, as the number of time periods go to infinity, the 

ratio of unknowns to equations will be n.  Thus, Woodford’s Fisher equation (3) falls drastically 

short of being able to determine prices for any finite time horizon, and is unable to determine 

prices when the horizon goes to infinity.  Once we see through the veil of infinity, we see 

Woodford’s model is incomplete. 

 

VI. Seeing Through the Smoke and Mirrors of Woodford’s Logic 

In the previous section, we showed that Woodford’s model does not determine prices 

because his model is incomplete.  In this section we show that if one still believes that his model 

does determine prices, then the reason why Woodford’s policy rule (5) with 0>Pϕ  leads to a 

unique bounded solution is that this policy rule is exploding or self destructive.  As did 

Woodford, define *
tP  to be the central bank’s targeted price level.  Also, define *

*
1*

1
t

t
t P

P +
+ ≡Π , 

which equals one plus the targeted inflation rate from time t-1 to time t.  Now define *

~

t

t
t P

P
P ≡ , 

which is the ratio of the price level to its target.  We can then rewrite (3) as: 

�
�

	


�

�
Γ

Π
⋅=�

�

	


�

�
Γ⋅=�

�

	


�

�
Γ⋅=

+ +
+

++
+

+++
+

1
1*

11
1*

1

*

1
*

1

*

1 ~

~
1

~

~

~

~

1
1

t

t
tt

tt

t
tt

t

t

tt

tt
tt

t P

P
E

P

P
E

P
P

PP

PP
E

i
βββ  
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(We assume the public knows the targeted prices levels.).  Next define 1
*

1 −
Π

≡ +

β
t

ti .  Note that 

this is defined more generally than Woodford’s (2003, p. 78) definition to allow different 

targeted inflation rates for different periods.  We then get: 

�
�

	


�

�
Γ

+
=

+ +
+

1
1 ~

~

1
1

1
1

t

t
tt

tt P

P
E

ii
 (17) 

 For now, let’s assume perfect foresight to the above, so that we can rewrite it as: 
 

tt
t

t
t P

i
i

P
~

1
1~

11 ++ Γ
+
+

=  (18) 

Taking the natural logarithm of both sides gives ( ) ( ) ( )tt
t

t
t P

i
i

P
~

lnln
1
1

ln
~

ln 11 +Γ+


�

�
��
�

�

+
+

= ++ , which we 

can rewrite as: 

tttt PiP ˆˆˆ
11 ++= ++ γ  (19) 

where )
~

ln(ˆ
tt PP ≡ , 



�

�
��
�

�

+
+

≡
t

t
t i

i
i

1
1

lnˆ ,8  and ( )11 ln ++ Γ≡ ttγ .  Once again, tP̂  is a measure of the 

distance of the actual price level from the targeted price level and is analogous to the 

*ˆ ttt xxx −≡  distance measure in the rocket example at the beginning of this paper. 

 Now consider the solutions to (19) by case.9  Case 1 is where 1
ˆ

++ tti γ  is a positive 

constant for all t.  Then tP̂  increases over time with the constant slope of 1
ˆ

++ tti γ  and only 

                                                 

8 Woodford defines 

�

�
�
�

�

+
+

≡
i
i

i t
t 1

1
lnˆ  where 1−=

β
π

i  where π  is an assumed constant inflation rate plus one.  He later assumes 

that π =0. Our formulation of tî  is really a generalization of Woodford’s formulation. 
9 The solutions to (11) should correspond to Woodford’s Proposition 2.5, however, Woodford’s language of that proposition is 
confusing.  It appears to us that the “tight-enough bounds … on the interest-rate target process” in essence restricts those interest rates to 

Woodford’s i , not just close but exactly. 
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unbounded solutions exist.  Case 2 is where 

1
ˆ

++ tti γ  is a negative constant for all t.  Then tP̂  

decreases over time with the constant slope of 

1
ˆ

++ tti γ  and again only unbounded solutions exist.  

Case 3 is where 1
ˆ

++ tti γ =0 for all t.  Then tt PP ˆˆ
1 =+ .  

In this case, there will be an uncountably infinite 

number of solutions as can be seen in figure 3.10 

While he acknowledges that prices are not uniquely determined for exogenous interest 

rates, Woodford (2003, p. 87) argues that a policy rule that sets this variable with a feedback 

from the system can uniquely determine prices at least in a bounded sense.  Consider the policy 

rule that the central bank sets the interest rate variable tî so that ( )tt Pi ˆˆ ϕ=   where ( ) 00 =ϕ .   To 

simplify, let’s also assume that 0=tγ  for all t.  Then equation (4) becomes: 

( )ttt PPP ˆˆˆ
1 ϕ+=+  (20) 

Consider such a policy where ( ) 0ˆ' <tPϕ as shown in 

Figure 4.  Under this policy, if  the price level is below its 

target (i.e. 0ˆ <tP ), then ( ) 0ˆ >tPϕ  and (20) implies that 

tt PP ˆˆ
1 >+  so that the price level will increase towards its 

targeted level.  On the other hand, if the price level is above 

its target (i.e., 0ˆ >tP ), then ( ) 0ˆ <tPϕ  and (20) implies that 

                                                 
10 There are other cases in addition to these three depending on how tti ϕ+  change over time. 

time 

tP̂  

Figure 3: Solutions in case 3 when 

0ˆ
1 =+ +tti ϕ  for all t. 

0 

( )tP̂ϕ  

tP̂  

Figure 4: Graph of ( )tP̂ϕ  when 

( ) 00 =ϕ  and ( )tP̂ϕ′ <0. 
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tt PP ˆˆ
1 <+  so that the price level will 

decrease towards its targeted level.  This 

policy rule would be a self-correcting 

policy rule as can be seen in Figure 5. 

Normally, a self-correcting policy is 

considered to be a good policy.  However, 

because a self-correcting policy has many 

bounded solutions, Woodford could not 

claim this policy would determine prices 

even according to his infinite implicit function theorem. 

Now consider the policy Woodford actually did 

recommend where ( ) 0ˆ' >tPϕ  as shown in Figure 6.  Under 

this policy, if the price level is below its target (i.e. 0ˆ <tP ), 

then ( ) 0ˆ <tPϕ and (20) implies that tt PP ˆˆ
1 <+  so that the price 

level will decrease away from its targeted level.  On the other 

hand, if the price level is above its target (i.e., 0ˆ >tP ), then 

( ) 0ˆ >tPϕ  and (20) implies that tt PP ˆˆ
1 >+  so that the price level will increase away from its 

targeted level.  Rather than self-correcting, this policy rule is self-destructive as seen in Figure 7.  

However, because all non-zero solutions are self-destructive in this case, there is a unique 

bounded solution where 0ˆ =tP for all t. 

By having the central bank follow a self-destructive policy, Woodford made all the other 

solutions “not count” so that he could claim his model “determines prices.”  This line of logic, if 

Figure 5: Self-correcting 
solutions when 

( ) 0ˆ <′ tPϕ . 

time 

tP̂  

0 

( )tP̂ϕ  

tP̂  

Figure 6: Graph of ( )tP̂ϕ  when 

( ) 00 =ϕ  and ( )tP̂ϕ′ >0. 
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it is viewed as being sound, would 

encourage economists to recommend 

self-destructive policies in order to 

claim their models to be complete and 

all the unknowns in their model are 

determined. 

Remember the rocket example at 

the beginning of the paper.  If the rocket 

had a course correction mechanism to 

get it on target, then there would be an 

infinite number of bounded solutions in that example similar to Figure 5.  However, if it had a 

mechanism to push it even more off course whenever it was off course, then that would help 

guarantee a unique bounded solution in that example.   

For current real world economies with monetary frictions, Woodford’s policy is useful 

and is not self destructive.  The previous discussion about his policy being self destructive is 

only relevant to Woodford’s model of a cashless economy.  In that model, his policy is self 

destructive if his policy does affect prices.  However, for the reasons we presented in section V, 

we do not think Woodford’s policy is able to affect prices in his model. 

 

VII. Other Problems with Woodford’s Argument 

This section discusses the following additional problems with Woodford’s argument: 

(i) Discontinuities exist between the finite implicit function theorem and 

Woodford’s infinite implicit function theorem. 

0 

tP̂  

Figure 7. Self-destructive solutions when ( ) 0ˆ >′ tPϕ  
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(ii) Inferring causality from Woodford’s unique bounded solution would lead one 

to conclude that central banks have a “magical power” of thought. 

(iii) Woodford’s logic would lead one to conclude that economists should direct 

policymakers to ignore feedback that may indicate their policy is off track 

(iv) Inferring causality from the exact bounded solution to Woodford’s model 

would lead one to conclude that the current price level is determined by the 

realized values of future events. 

Woodford presents his infinite implicit function theorem in his Appendix A.3 as The 

Infinite Implicit Function Theorem rather than a theorem.  While we do not deny the validity of 

this theorem, we do consider Woodford’s use of it to be unsound. 

Discontinuities exist between the finite implicit function theorem and Woodford’s infinite 

implicit function theorem as can be exemplified with the difference equation (1).  Suppose that 

equation (1) is all the information we have.  Now consider time going from 1,2,…,T where T 

represents the finite time horizon of our system.  With T periods, there are T unknowns, the Pt’s 

for t=0,1,2,…,T.  Equation (1) does not apply to time t=T because time t=T+1 does not exist.  

Therefore, there are only T-1 equations, one less equation than the T unknowns.  By the finite 

version of the implicit function theorem, our model is incomplete.  In the limit as T goes to 

infinity, the difference between the number of unknowns and the equations is one.  This means 

that no matter how large but finite T gets, we will always be short one equation. 

The reason we cannot get a unique solution in the finite case is because all the examples 

in Figure 2 would be considered as legitimate solutions when T is finite.  However, when T 

becomes infinite and we apply Woodford’s infinite version of the implicit function theorem, all 

the {Pt} sequences which were allowed under the finite implicit function theorem become 
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unacceptable because they are unbounded except for the one where Pt=0 for all t.  This is a 

discontinuity between the finite implicit function theorem and Woodford’s infinite version, as in 

any neighborhood of infinity, we can find a finite T such that an uncountably infinite number of 

acceptable solutions exist, yet when T equals infinity only one exists.  

A second discontinuity exists when we do have an initial condition 00 >P .  From this 

initial condition and (1) we can compute {Pt} for any finite time horizon T.  However, if T 

becomes infinity, then Woodford’s infinite implicit function theorem says that no acceptable 

solution exists because the resulting “solution” is unbounded (unless P0 happens to be zero).  

This is a discontinuity, because in any neighborhood of infinity, we can find a finite T to which 

an acceptable solution does exist by the finite version of the implicit function theory.  However, 

since no bounded solution consistent with 00 >P  exists, Woodford’s infinite version concludes 

no acceptable solution exists. 

Woodford uses his infinite implicit function theorem to infer that prices are “determined” 

in his model.  That there is only one bounded solution does not mean any mechanism exists to 

cause this unique bounded solution to occur rather than some unbounded solution.   This is 

analogous to the rocket example at the beginning of this paper, where there was nothing to cause 

the direction of the rocket to be the targeted direction.  

Consider the special case where [ ] 0ˆ *
1 =−+ ++++ jtjtjtt vrE π  for all t and for all j=0,1,2,… .  

Then, (8) implies that 0ˆ =tP  for all t.  Since 


�

�
��
�

�
≡ *lnˆ

t

t
t P

P
P , this means that the price level always 

equals its targeted level.  If we infer causality from (8), then if the central bank thinks that its 

targeted prices should forever be 100, then the solution 0ˆ =tP  for all t says that in fact the price 

will forever be 100; if the central bank thought the targeted prices should forever be 200 instead 
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of 100, then 0ˆ =tP  for all t says that in fact the price will forever be 200 instead of 100.  In both 

cases, if 0ˆ =tP  and vt=0 for all t, tî =0 for all t by Woodford’s policy rule in (5). In other words, 

the interest rate is the same regardless whether the price is 100 or 200.  If the central bank could 

change prices just by thinking about different targets, it would be like the control center in the 

rocket example, changing the rocket’s direction by thinking about a different targeted direction. 

For another example, define the following alternative policy rule in place of (5): 

Policy rule #2: 
�
�
�

−
==

otherwise )ˆˆ(
0P̂ if  )ˆ(ˆ

0

0

PP

P
i

tP

tP
t ϕ

ϕ
 

In policy rule #2, the central bank checks to see if 00̂ =P as (8) says it should in this example.  If 

00̂ =P , then the central bank will continue with Woodford’s policy rule (5).  Only if 00̂ ≠P , 

will the central bank follow )ˆˆ(ˆ
0PPi tPt −= φ .  This second rule differs from Woodford’s rule by 

including a correction in case 00̂ ≠P , which is something that should never happen according to 

(8)..  In essence the second rule corrects the price targets for when 00̂ ≠P . 

There are an uncountably infinite number of bounded solutions with this second policy 

rule.  One solution is 0ˆ =tP  for all t, which was the unique bounded solution for policy rule (5).  

In addition, 0̂
ˆ PPt =  for all t would also be bounded solutions for policy rule #2 for any ∈0̂P R.  

Note that the central bank only thinks differently when following policy #2 instead of policy 

rule (5).  When 0̂
ˆ PPt =  for all t, the log-linearized interest rates set by policy rule #2 are zero for 

all t, just as they were under policy rule (5). 

In order to get a unique bounded solution, Woodford would have to direct the central 

bank not to use policies like policy rule #2 that have feedback. Giving too much credence to 
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Woodford’s infinite implicit function theorem would not only result in economists designing 

self-destructive policies rather than self-corrective ones, but it would also encourage economists 

to direct policy makers to put their heads in the sand rather than looking at feedback after 

implementing a policy to make sure it is on track. 

While Woodford relied on a Taylor’s approximation in order to obtain price 

determination, we have derived the exact unique bounded solution to Woodford’s model.  Before 

we show that solution, consider a special case where nominal aggregate demand is known one 

period in advance.  This special case could be justified by nominal income targeting by the 

authority that affects nominal aggregate demand.11  Let Nt represent the nominal aggregate 

demand at time t. Therefore, Nt+1, which equals Pt+1Yt+1, is known with certainty at time t.  

However, because Yt+1 is not known, both Pt+1 and Yt+1 are stochastic.  Assume also that 

consumers’ utility is the natural logarithm.  In other words, u(Yt;ξt)=ln(Yt).  Then uc(Yt;ξt)=1/Yt. 

By our definition of 1+Γt , we conclude that 
( )
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β .  At time t, we know Pt and Yt.  Also, by our 

nominal income targeting assumption, the public knows the product of Pt+1Yt+1.  Therefore, 
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tt
t

t
t P

i
i

P
~

1
1~

11 ++ Γ
+
+
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11 See Eagle and Domian (2003, and 2004) for a model of a cashless economy with temporary money.  The temporary money authority 
then is the authority that determines nominal aggregate demand. 
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Earlier in this paper, we derived (18) when we assumed perfect foresight.  Here, however, 

both 1
~

+tP  and 
1

1
+

+ =Γ
t

t
t Y

Y
 are stochastic.  Taking natural logarithms of both sides of (18) and 

defining 
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t
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Yγ , we get: 

tttt PiP ˆˆˆ
11 ++= ++ γ  (19) 

Once again, please realize that 1
ˆ

+tP  and 1+tγ  are stochastic and hence unknown at time t.  Solving 

(19) forward gives �
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Now if we assume the solution is bounded, then we get 

that: 

�
∞

=
+
+++

+
+

−=
0

1

1

)1(
ˆ

j
j

P

jtjt
t

v
P

ϕ
γ

 (21) 

However, (21) expresses tP̂  as a function of future 

values of tγ and v=t.  To interpret Woodford’s infinite 

implicit function theorem in a causal sense would be a 

mistake.  Equation (21) shows a condition that must 

hold in order for the sequence of tP̂  to be bounded; we 

should not interpret it to represent causation. 

In the original rocket example at the beginning of this paper, we assumed that there were 

no future forces on the rocket.  Instead, assume the rocket is subject to the three future forces in 

Figure 8 regardless of the direction it is initially headed.  Then in order for the distance between 

 

Figure 8. Target and actual 
rocket paths with future forces  

actual path 
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the actual and targeted rocket locations to be bounded, the initial rocket’s direction would have 

to be such that after the rocket encounters the forces, the path from then on would be parallel to 

the targeted path.  As can be seen in Figure 8, rotating the actual path at all clockwise or 

counterclockwise would result with the distance between the actual and targeted rocket locations 

going to infinity as time goes to infinity.  Hence, in order for the distance between the rocket’s 

actual and desired locations to be bounded, the rocket’s trajectory at time t must be off from the 

desired trajectory exactly by the amount required to offset all the future disturbances.  Clearly, 

this does not mean those future disturbances caused the initial direction of the rocket.  Similarly, 

we should make no causal inference from (21) being a function of future realized values. 

 That we should not interpret the unique bounded solution in a causal sense is even clearer 

with the precise solution to Woodford’s model.  Define 

�
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+
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1
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t
tt
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P
EP

r .  Note that 1
~

+tP  is a 

random variable, its value may change for different states of nature.  On the other hand, 

�
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+

+

1

1
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t

t
t

P
E  is a constant at time t.  Since 1

~
+tP  is a random variable at time t, not a constant, we 

should not make the mistake of trying to bring the random variable 1
~

+tP  inside the expectations 

operator.  Also, note that rt is a random variable at time t.  Some may argue that this should be 

labeled as rt+1.  However, in financial economics, rt is closely related to the real return from time 

t to time t+1, which using Woodford’s symbolization should be rt not rt+1. 

From this definition of rt, we easily conclude that 
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E .  Below we 

reproduce (17), where we define 1
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≡ +

β
π t

ti : 
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where )ln(ˆ tt rr ≡ .  Please note that both tr̂  and 1
ˆ

+tP  are random variables, unknown at time t. 
 
 Rearranging (22) with elementary algebra and substituting Woodford’s policy (5) that 

ttPt vPi += ˆˆ ϕ , we get: 
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Solving this forward gives ( ) ( )�
−

=
+

+++

+

−
+

+
=

1

0
11

ˆ

1

ˆ
ˆ

k

j
j

P

jtjt

k
P

kt
t

vrP
P

ϕϕ
.  Taking the limit as k goes to infinity 

on both sides gives ( ) ( )�
−

=
+

++

∞→

+

∞→ +

−
+

+
=

1

0
11

ˆ
lim

1

ˆ
limˆ

k

j
j

P

jtjt

kk
P

kt

kt

vrP
P

ϕϕ
.  Since 0>Pϕ , if we apply the 

bounded-assumption requirement of Woodford’s infinite implicit function theorem to{ }tP̂ , it 

must be the case that ( )k
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This says that the current price level is a function of future values of rt and vt, their realized 

values not their expected values.12  Once again, we should not interpret (24) in a causal sense, 

but rather as a condition that must hold in order for the sequence of tP̂  to be bounded.  However, 

if we don’t interpret (24) as a causal relationship, we cannot use it to argue that prices are 

determined in Woodford’s model. 

 Two examples that validate (24) are as follows: 

Example 1: Define ( )ttc YutG ξ;)( ≡ .  Then 
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50 9.0
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tG .  Also, let 01.1=Pϕ , and β =0.95.  

In this example, it turns out that if 05.0ˆ −<tP  then 
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Basically, this is an example of one-period-ahead perfect foresight.  If tP̂  is consistent with (24) 

and we know that ahead of time, we can deduce exactly the value of 1+Γt  from the realization of 

tP̂ , which enables us to perfectly predict 1
ˆ

+tP .  This example is built on the assumption that we 

know ahead of time that tP̂  is consistent with (24). 

                                                 
12 While rt+j is an expected value, it is a conditional expected value given the information at time t+j.  Therefore, 
(24) is saying that tP̂  is a function of expected values that are based on future information sets. 
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Example 2: This example assumes that (24) is just an equation of consistency, not one of 

causality.  Under this assumption, Woodford’s model is not complete.  We complete it with 

temporary money as in Eagle and Domian (2003, 2004), assume logarithmic utility functions, 

and assume that the authority in charge of temporary money follows nominal income targeting.  

We have discussed this example at the beginning of this section. We now show that this example 

is consistent with the general case. In this example, 
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VIII. Conclusion 

The Fisher equation combined with various policies is the sole basis for price 

determination in Woodford’s model of a cashless economy.  His argument that his model is 

complete and determines prices relies on the precedent of assuming a solution is bounded when 

solving expectational difference equations.  We traced the foundations of this precedent to a 

couple of examples and incorrect claims about “speculative bubbles,” and being free to do so. 
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We demonstrated that the assumption of a bounded solution leads to incorrect solutions 

in several examples.  We proposed replacing this precedent with the more rigorous approach of 

assuming a finite model to determine the appropriate terminal condition and then taking the limit 

of that terminal condition as the horizon goes to infinity.  When we applied this to Woodford’s 

model, we found that any finite version of the model is incomplete.  In addition to replacing the 

assumption that the solution is bounded, we also argue that the direction in which we solve an 

expectational difference equation depends not on the divergence or convergence of the equation 

but by the context of the equation. 

While it is true that there is a unique bounded solution to Woodford’s model, we cannot 

infer causality from that unique bounded solution.  Trying to do so will lead to all types of 

nonsensical results including (i) economists recommending self-destructive policies and policies 

without feedback, (ii) central banks changing price levels merely by thinking about different 

price targets, and (iii) today’s price level being determined by future realized values. 
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