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Abstract

We consider solutions to general linear dynamic systems, possibly
singular and non square with general stability conditions. Besides con-
structing a general algorytm for finding solutions we provide necessary
and sufficient conditions for existence of a solution.
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1 Introduction
In this paper we present a method of solving linear rational ex-

pectations models. The method is based on computing deflating sub-
space associated with an appropriate matrix pair. Such a procedure
is common for most of the methods of solving linear rational expec-
tations models, i.e. Uhlig, (1995), Sims, (2001), Hansen, McGrattan
and Sargent (1994), Blanchard and Kahn (1980). Existing methods
can however be applied only to small subset of linear systems. One
of the exception is the method proposed by Sims (2000) which can
be applied to any regular system. These methods are based on gen-
eralized Schur decomposition or QZ decomposition, which are known
to be numerically stable for any regular matrix pair, but numerically
unstable for singular matrix pairs. In this way these methods cannot
be extended directly to singular problems.
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In this paper we propose generalization of the method proposed
by Sims which allow us considering nonsingular systems, in particu-
lar rectangular linear systems. This method is based on the GUPTRI
decomposition proposed by Demmeland and Kågström, (1993), a gen-
eralization of generalized Schur decomposition for any matrix pair.
Besides a standard solution, proposed method allows also for consid-
ering systems with many equilibria. Such a systems allow for sunspot
equilibria in which non-fundamental stochastic disturbances influence
model dynamics. The proposed method can deliver set of all sunspot
equilibria.

Presented method is a generalization of the Sims algorithm also
in another important dimension, i.e. we analize stability conditions
(boundary conditions at infinity) more carefully. In case of general
stability conditions there may exists solution to the model which can-
not be constructed by appropriate selection of eigenvalues in the gen-
eralized Schur decomposition or the GUPTRI decomposition. This
possibility is not considered in Sims, (2001).

The rest of the paper is organized as follows. Section 2 states the
problem. Section 3 presents definitions and basic results from compu-
tational linear algebra. Section 5 presents properties of eigenvectors of
a matrix pair. In section 6 we consider a matrix equation associated
with the problem. Sections 4 and 7 present the method for solving the
problem. Section 7 provides also necessary and sufficient conditions
for existence of solution to the problem. Section 8 concludes.

2 The Problem
Let us consider the following linear system

0 = A1xt + A2yt + B1xt+1 + B2yt+1 + Et

{
C1xt+1 + C2yt+1

}
+εt+1

(1)

where x ∈ Rn is a vector of state variables, y ∈ Rm is a vector of control
variables and {εt+1 ∈ Rs} is a vector of i.i.d. random variables, such
that Et{εt+1} = 0. Operator Et is a conditional expectation under
information set It = {xs, ys, ws; s ≤ t}, which consists of all state and
control variables up to period t as well as additional variables, wt,
discussed later.

Definition 2.1. Solution to the problem (1) is defined as a set of,
possibly time dependent, maps {Yt, Pt}∞t=0

Yt : Rn 3 x 7→ y = Yt(x) ∈ Rm
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and transition matrices

Pt+1 : Rn 3 xt 7→ xt+1 = Pt+1(xt) ∈ Rn

such that

xt+1 = Pt+1(xt)
0 = A1x(t) + A2Yt(xt) + B1xt+1 + B2Yt+1(xt+1)

+ Et{C1xt+1 + C2Yt+1(xt+1)}+ εt+1

for each xt ∈ Rn, εt+1 ∈ Rs, and for each t.

Definition 2.2. The solution {Yt, Pt}∞t=0 is called linear if

Yt(xt) = Y1xt + Y2wt

Pt(xt) = P1xt + P2wt + P3εt+1 + P4υt+1
(2)

where wt ∈ Rp and

wt+1 = S1xt + S2wt + υt+1

and υt+1 is an i.i.d. random variable, possibly dependent on εt+1.

Assumption 2.3. We are looking for linear solutions to the system (1)
such that for given matrices H and Ξ the following growth restriction
holds

lim
t→∞E0

{
ΞtH

[
xt

yt

]}
= 0 (3)

for any x0 and w0, where, Ξ = diag(ξ1, . . . , ξk) ∈ Rk×k is a diagonal
matrix, H ∈ Rk,n+m.

The problem (1) can be represented in the following form

0 = A
[

xt

yt

]
+ B

[
xt+1

yt+1

]
+ ωt+1

ωt+1 =
[

C1 C2

] [
Et{xt+1} − xt+1

Et{yt+1} − yt+1

]
+ εt+1

where

A =
[

A1 A2

] B =
[

B1 + C1 B2 + C2

]
(4)

If {Yt, Pt}∞t=0 is a linear solution in the form (2) such that (3) holds
then xt+1−Et{xt+1} = P3εt+1+P4υt+1, yt+1−Et{yt+1} = Y1(P3εt+1+
P4υt+1) + Y2υt+1 and

0 =

(
A

[
I 0
Y1 Y2

]
− B

[
I 0
Y1 Y2

] [
P1 P2

S1 S2

])[
xt

wt

]
+ ω̃t+1

ω̃t+1 = (I − (C1 + C2Y1)P3)εt+1 − ((C1 + C2Y1)P4 + C2Y2)υt+1

(5)
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Conditions (5) must be fulfilled for each xt, wt, εt+1, υt+1. In this way
we have the following theorem:

Definition 2.4. Let U = col(Ux, Uy) is a partition of the matrix U ,
such that the matrix Ux consists of the first n rows of the matrix U ,
where n is a dimension of the vector of state variables, xt.

Theorem 2.5. If there exists a linear solution {Yt, Pt}∞t=0, such that
(3) holds then there exist matrices U , Q satisfying

AU = BUQ

matrices Ux, [C1, C2]U , have full row rank and the matrix Q satisfies

lim
t→∞ΞtHUQt = 0 (6)

Proof. Let

U =
[

I 0
Y1 Y2

]
, Q =

[
P1 P2

S1 S2

]

Then, from (5), AU = BUQ, Ux has full row rank and Q satisfies (6).
Observe that

I = (C1 + C2Y1)P3 =
[

C1 C2

]
U

[
I
0

]
P3

because the identity matrix I has full rank, thus also the matrix
[C1, C2]U has full row rank.

3 Preliminaries
In this section we present definitions and some basic results from

computational linear algebra.

Definition 3.1. Let us denote by nullA, where A is any matrix, an
orthonormal basis of the null space of A.

Definition 3.2. Let A ∈ Rm×n is any matrix. Let us denote

dim1 A = m dim2 A = n

Theorem 3.3. The Moore-Penrose pseudoinverse. For each ma-
trix A ∈ Rm×n, there exists an unique matrix X ∈ Rn×m such that

AXA = A XAX = X (AX)′ = AX (XA)′ = XA

this matrix X is denoted as A†.

4



Proof. See [5].

Proposition 3.4. If a matrix A ∈ Rm×n has ful row rank, then AA† =
I.

Proof. We have AA†A = A, thus A′(AA† − I)′ = 0. Since kerA = 0,
thus AA† = I.

Theorem 3.5. The singular value decomposition (svd). For
each matrix A ∈ Rm×n, there exist matrices U , V , D, such that

A = UDV ′

where D ∈ Rm×n is a diagonal matrix with only nonnegative diagonal
elements sorted in decreasing order, and U , V are orthogonal matrices.

Proof. See [5].

Definition 3.6. A matrix pair (A,B) is called regular if A and B are
square, and det(αA − βB) 6= 0 for some (α, β) ∈ C2. Otherwise, the
matrix par (A,B) is called singular. A pair (α, β) ∈ C2\{(0, 0)} is said
to be an eigenvalue of (A,B) if det(αA− βB) = 0. If α 6= 0, then, the
pair (α, β) represents a finite eigenvalue λ = β/α of the par (A,B).
The pair (0, β) represents an infinite eigenvalue of (A,B).

Definition 3.7. Let A ∈ Rm×n, B ∈ Rm×n. For any λ ∈ C a vector
x0 = 0 is called an eigenvector of order k = 0 of the matrix pair (A,B)
associated with the eigenvalue λ.

A vector xk is called an eigenvector of order k, k ≥ 1, of the matrix
pair (A,B) associated with the eigenvalue λ if there exists an eigen-
vector of order k − 1 of the matrix pair (A,B) associated with the
eigenvalue λ, xk−1, such that Axk = λBxk + Bxk−1.

Proposition 3.8. Consider a matrix pair (A,B) and invertible ma-
trices P , Q. Let A = PAQ, B = PBQ. If xk is an eigenvector of
order k of the matrix pair (A,B) associated with an eigenvalue λ, then
Q−1xk is an eigenvector of order k of the matrix pair (A,B) associated
with an eigenvalue λ.

Proof. Let m = 1 and let xm is an eigenvector of order m of (A,B) as-
sociated with the eigenvalue λ. Then P−1AQ−1xm = λP−1BQ−1xm.
Thus Q−1xm is an eigenvector of order k = 1 of (A,B) associated
with the eigenvalue λ. Let for m = 1, . . . , k − 1 if xm is an eigen-
vector of (A,B) of order m associated with the eigenvalue λ, then
Q−1xm is an eigenvector of order m of (A, B) associated with the
eigenvalue λ. Then there exists an eigenvector of order yk−1 such
that P−1AQ−1xk = λP−1BQ−1xk +P−1BQ−1yk−1. Thus AQ−1xk =
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λBQ−1xk +BQ−1yk−1. By the assumption Q−1yk−1 is an eigenvector
of order k − 1 of (A,B), thus also Q−1xk is an eigenvector of order k
of (A,B) associated with λ.

Theorem 3.9. The generalized Schur decomposition. For each
matrices A,B ∈ Rn×n there exist orthogonal matrices U , V , and real
matrices RA, RB, such that RB is upper-triangular, RA is quasi-upper
triangular and

AU = V RA BU = V RB

Additionally, eigenvalues of RA, RB can be sorted in any order.

Proof. See [5].

Theorem 3.10. The Kronecker decomposition. For each matrix
pair (A,B), where A,B ∈ Rm×n, there exists a canonical representa-
tion

PAQ = diag{Gε, I, Jf ,HT
η }

PBQ = diag{Hε, J∞, I, GT
η }

(7)

where:

1. Gε, Hε ∈ Rε1×ε, J∞ ∈ Rkj×kj , Jf ∈ Cf×f , HT
η , GT

η ∈ Rη1×η.

2. matrices P , Q are invertible.

3. Gε = diag{Gε1, . . . , Gεp}, Hε = diag{Hε1, . . . , Hεp}, GT
η = diag{GT

η1,
. . . ,GT

ηq}, HT
η = diag{HT

η1, . . . , HT
ηq}, where Gi and Hi are

i× (i + 1), i ≥ 0, matrices

Gi =




0 1
. . . . . .

0 1


 Hi =




1 0
. . . . . .

1 0




4. J∞ = diag{Jυ1(0), . . . , Jυs(0)} and Ji(0) is the Jordan block of
order i corresponding to the null eigenvalue. Notice, that the
matrix J∞ is nilpotent.

5. Jf is a matrix in the Jordan canonical form.

The matrix par is regular iff PAQ = diag{I, Jf}, PBQ = diag{J∞, I}.
Proof. See [4].
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Theorem 3.11. The GUPTRI decomposition. For any matrix
pair (A,B), where A,B ∈ Rm×n, there exist orthogonal matrices P ∈
Rm×m, Q ∈ Rn×n, such that

P ′AQ =




Ar ∗ ∗
0 Areg ∗
0 0 Al


 P ′BQ =




Br ∗ ∗
0 Breg ∗
0 0 Bl




where the asterisk denotes arbitrary conforming submatrices. The ma-
trix pair (Areg, Breq) is regular and has the same regular structure (i.e.
contains all finite and infinite eigenvalues of (A,B)) as (A,B). The
rectangular blocks (Ar, Br) and (Al, Bl) contain the singular structure,
right and left minimal indices, of the pair (A,B) and are block quasi-
upper triangular.

Proof. See [2], [3].

4 The matrix equation AU = BUΣ

Proposition 4.1. The only eigenvector of the matrix pair (I, J∞) is
x = 0. The only eigenvector of the matrix pair (HT

η , GT
η ) is x = 0.

Proof. By simple calculations.

Proposition 4.2. Let Lk ∈ Rε×1 is a matrix, that contains zero on all
positions except the k-th position, and one on the k-th position. Then
Lk is an eigenvector of order k the matrix pair (Gε,Hε) associated with
eigenvalue λ = 0.

Proof. By simple calculations.

Theorem 4.3. Consider a matrix pair (A,B). There exists a ma-
trix Ψ, such that for all matrices U , Σ, satisfying AU = BUΣ and
limt−>∞ ΞtHUΣt = 0, there exist a matrix Λ, such that U = ΨΛ.

Proof. Consider the Kronecker decomposition of the matrix pair (A,B),
PAQ = A, PBQ = B, where A, B are in canonical form (7). Let ma-
trices U and Σ satisfy assumptions. Consider the Jordan decomposi-
tion of the matrix Σ, Σ = V Σ̃V −1, where Σ̃ is in the Jordan canonical
form. By assumption

lim
t−>∞ΞtHUV Σ̃t = 0

Let Σ̃ = diag(Σ̃1, Σ̃2, . . . , Σ̃q), where Σ̃i is a Jordan block and let
V = [V1, V2, . . . , Vq] is corresponding partition of the matrix V . Then
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for i = 1, 2, . . . , q we have limt−>∞ ΞtHUViΣ̃t
i = 0. Let λi is an

eigenvalue of Σ̃i. We have

Σ̃t
i = λt

i




1
(

t
1

)
λ−1

i · · · · · · (
t

mi−1

)
λ−mi+1

i

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

(
t
1

)
λ−1

i

0 · · · · · · 0 1



≡ λt

iΣ̄it

where mi is size of the Jordan block Σ̃i. If for j ∈ {1, 2, . . . , k} we
have limt−>∞ ξt

jλ
t
i = 0, then also limt−>∞ λt

iξ
t
jHjUViΣ̄it = 0, be-

cause Σ̄t
i is a polynomial with respect to t. If limt−>∞ ξt

jλ
t
i 6= 0 then

limt−>∞HjUViΣ̄it = 0. Partitioning HjUVi on columns and multi-
plying HjUVi and Σ̄it we can see that HjUVi = 0. Let V p

i is the p-th
column of Vi. Observe that UV p

i is an eigenvector of (A,B) of order p
associated with the eigenvalue λi.

Thus, UVi consists of eigenvectors associated with eigenvalue λi,
such that for each j ∈ {1, 2, . . . , k}, limt−>∞ ξt

jλ
t
i = 0 or HjUVi = 0.

We have



Gε 0 0 0
0 I 0 0
0 0 Jf 0
0 0 0 HT

η







Ũ1
i

Ũ2
i

Ũ3
i

Ũ4
i


 =




Hε 0 0 0
0 J∞ 0 0
0 0 I 0
0 0 0 GT

η







Ũ1
i

Ũ2
i

Ũ3
i

Ũ4
i


 Σ̃i

where Ũi = Q−1UVi. Thus

GεŨ
1
i = HεŨ

1
i Σ̃i Ũ1

i = J∞Ũ2
i Σ̃i

Jf Ũ3
i = Ũ3

i Σ̃i HT
η Ũ4

i = GT
η Ũ4

i Σ̃i

From (4.1) we have Ũ2
i = 0, Ũ4

i = 0.
Let µi, i ∈ {1, 2, . . . , r} are distinct eigenvalues of Jf . Let i ∈

{1, 2, . . . , r}. Let Ji = {j ∈ {1, 2, . . . , q} : |ξjµi| ≥ 1} and HJi is a
matrix that consists of rows of the matrix H with index belonging to
the set Ji. Let columns of a matrix Φ̃1

i span the space of eigenvectors
of order 1 of (A,B) associated with the eigenvalue µi belonging to
kerHJi . For k > 1 let columns of a matrix Φ̃k

i span the space of
eigenvectors, x, of order k of (A,B) associated with the eigenvalue
µi belonging to kerHJi , such that there exist a matrix Πi satisfying
Ax = λiBx + BΦ̃k−1

i Πi. Let Φ̃i = [Φ̃1
i , . . . , Φ̃

m
i ], where m is such a

number that each eigenvector of (A,B) associated with the eigenvalue
λi has order lower or equal to m. Let Φ̃0 = Q col(Iε, 0, 0, 0), where
Iε ∈ Rε×ε is an identity matrix. Finally let Φ = [Φ̃0, Φ̃1, Φ̃2, . . . , Φ̃k].
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Let i ∈ {1, 2, . . . , k}. Then for each j ∈ {1, 2, . . . , k}, limt−>∞ ξt
jλ

t
i =

0 or HjUVi = 0. All columns of UVi are eigenvectors of (A,B) associ-
ated with λi and UVi ∈ kerHJi . If λi is not an eigenvalue of Jf , then
Ũ3

i = 0, and there exists a matrix Λi, such that UVi = Φ̃0Λi.
Let λi = µl for some l ∈ {1, 2, . . . , r}. Consider the first column

of Vi. The vector UV i
i is an eigenvector of (A,B) of order 1. From

the definition of Φ̃1
l we obtain that there exists a matrix Λ̃1

i such that
UV 1

i = Φ1
l Λ̃

1
i . Assume that for k − 1 > 1 there exists a matrix Λ̃k−1

i

such that UV k−1
i = Φk−1

l Λ̃k−1
i . Then we have AUV k

i = µlBUV k
i +

BUV k−1
i = µlBUV k

i +BΦk−1
l Λ̃k−1

i . Then, from the definition of Φ̃k
i we

obtain that there exists a matrix Λ̃k
i such that UV k

i = Φk
l Λ̃

k
i . In this

way we have proved that there exist a matrix Λ̃i such that UVi = ΦΛ̃i.
Thus U = ΦΛ̃, where Λ̃ = [Λ̃1, Λ̃2, . . . , Λ̃k]V −1.

5 Maximal solution

5.1 Singular pencil
If a pencil (A,B) is singular then generalized Schur decomposition

is not reliable. Small perturbation of matrices A, B may drastically
change eigenvalues of (A,B). In this case we use GUPTRI decompo-
sition.

Let consider GUPTRI decomposition of a matrix pair (A,B)

AU = V RA BU = V RB

where RA and RB are in GUPTRI canonical form. Let λA
i , λB

i are
i-th eigenvalues of regular blocks Areg and Breg respectively. Let λi =
λA

i /λB
i and let λ is a set of all distinct finite eigenvalues λi. Let q is a

size of the set λ.
Consider the i-th eigenvalue belonging to the set λ, µi. Let us sort

eigenvalues of Areg and Breg in such a way, that all eigenvalues µi

appears in left upper block of Areg and Breg. Then

[
V1 V i

2 V i
3

]



Ar Ai
12 ∗

0 Ãi
reg ∗

0 0 ∗


 = A [

U1 U i
2 U i

3

]

[
V1 V i

2 V i
3

]



Br Bi
12 ∗

0 B̃i
reg ∗

0 0 ∗


 = B [

U1 U i
2 U i

3

]

Proposition 5.1.

ArA
†
r = I BrB

†
r = I
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Proof. There exist unitary matrices P , Q such that Ar = PGQ. Since
kerG′ = 0, thus also kerA′r = 0, and Ar has full row rank. Now, we
can use the proposition (3.4). Similarly for Br.

From the GUPTRI decomposition we have

V1Ar = AU1 V1Br = BU1 (8)

and

V1A
i
12 + V i

2 Ãi
reg = AU i

2 V1B
i
12 + V2B̃

i
reg = BU i

2 (9)

5.1.1 Singular part

We are looking for an invertible matrix W and a matrix J with
only zero eigenvalues, such that ArW = BrWJ . Let Ũ1 = nullAr.
Let Ũi = A†rBrŨi−1 for i = 2, . . . , m. Then ArŨi = BrŨi−1. For each
i let Ũi = [Ũ1

i , . . . , Ũυ
i ], where υ = dim2 Ũ1. Let V m

j = [Ũ j
1 ,. . . , Ũ j

m].
for for j = 1, . . . , υ.

Let km
1 ≤ m is the biggest number, such that all the first km

1

columns or V m
1 are linearly independent and let Wm

1 consists of the first
km

1 columns of V m
1 . For j = 2, . . . , υ, let km

j ≤ m is the biggest number
such that all first km

j columns of V m
j and all colums of Wm

j−1 are linearly
independent and let Wm

j consists of the first km
j columns of V m

j . Let
Wm = [Wm

1 , . . . , Wm
υ ] and Jm = diag{Jm

1 , . . . , Jm
υ }, where Jm

i is a
Jordan block of zero eigenvalue and dim1 Jm

i = km
i for i = 1, . . . , υ.

Then for any m, ArW
m = BrW

mJm, all eigenvalues of Jm are zero,
and all columns of Wm are linearly independent.

Proposition 5.2. For any eigenvector, x, of (Ar, Br) of order m as-
sociated with zero eigenvalue there exists a matrix Λ, such that x =
WmΛ.

Proof. Let x1 is an eigenvector of (Ar, Br) of order 1 associated with
the zero eigenvalue, then Arx1 = 0, and there exists a matrix X1, such
that x1 = W 1X1. Let xk−1 is an eigenvector of (Ar, Br) of order k−1,
k > 1, associated with the zero eigenvalue, and let x = W k−1Xk−1, for
some matrix Xk−1. Let xk is an eigenvector of order k. There exists
an eigenvector, yt−1, of order k − 1 such that Arxk = Bryk−1. Let
x̃k = A†rBryk−1, then Ar(xk− x̃k) = 0, hence xk = x̃k + Ũ1Yk for some
matrix Yk. There exists a matrix Yk−1 such that yk−1 = W k−1Yk−1.
Thus, xk = Ũ1Yk + A†rBrW

k−1Yk−1. Consider i-th column of W k−1,
wi. By construction wi = Ũp

q for some p, q, q ≤ k− 1. Then, using the
definition of Ũi, A†rBrwi = Ũp

q+1. But then Ũp
q+1 is one of the columns

of W k, or Ũp
q+1 = W kΛi for some matrix Λi. Thus, in both cases, there
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exists a matrix Λi, such that Ũp
q+1 = W kΛi. Hence, A†rBrwi = W kΛi

and A†rBrW
k−1 = W kΛ, where Λ = [Λ1, . . . ,Λq], q = dim1 W−1.

Additionally, there exists a matrix Ik
1 , such that Ũ1 = W kIk

1 . In this
way we have, xk = W k(Ik

1 Yk + ΛYk−1). This ends the proof.

Proposition 5.3. Let Ar = PGQ, Br = PHQ is the Kronecker de-
composition of the pair (Ar, Br). Let G = diag{G1, . . . , Gk}, dim2 Gi =
mi, for i = 1, . . . , k, and m = max{m1, . . . ,mk}. Then Wm is a
square, invertible matrix and rankWm = n, where n = dim2 Ar.

Proof. Let x is an eigenvector of order k ≤ m of (Ar, Br) associated
with zero eigenvalue. Then the exists a matrix Λ, such that x = WmΛ.
By propositions (4.2) and (3.8) each column of the matrix Q−1 is
an eigenvector of (Ar, Br) of order k ≤ m associated with the zero
eigenvalue. Lex qi, i = 1, . . . , n is the i-th column of Q−1. There exists
Λi such that qi = WmΛi. Thus, Q−1 = WmΛ, where Λ = [Λ1, . . . ,Λn].

By construction, rankWm = dim2 Wm. Since rankQ−1 = n, thus
rankWm ≥ n. On the other hand dim1 Wm = n, thus, rankWm ≤ n.
Hence, n = rankWm = dim1 Wm = dim2 Wm, and Wm is a square,
invertible matrix.

Let W = Wm, where m is given by the proposition (5.3). From (8)
we have

AU1 = BU1WJW−1

By construction, the matrix WJW−1 contains only zero eigenvalues.

5.1.2 Regular part

Because B̃i
reg is invertible, from (9) we have

V i
2 = BU i

2(B̃
i
reg)

−1 − V1B12(B̃i
reg)

−1

hence

AU i
2 = B(U1Ξi

1 + U i
2Ξ

i
2)

where Ξi
1 = B†

r(Ai
12 −Bi

12Ξ
i
2), Ξi

2 = (B̃i
reg)

−1Ãi
reg, and

A [
U1 U i

2

]
= B [

U1 U i
2

] [
WJW−1 Ξi

1

0 Ξi
2

]

≡ B [
U1 U i

2

]
Ξi

We must modify yet matrices U1 and U i
2 to fulfill stability condi-

tions. Let Ji = {j ∈ {1, 2, . . . , q} : |ξjµi| ≥ 1}. Let HJi consists of
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rows of the matrix H with indices belonging to Ji. Let Ũ i = [U1, U
i
2].

We are looking for a matrix Πi, such that HJiŨ iΠi = 0 and there exist
a matrix Σi, such that AŨ iΠi = BŨ iΠiΣi. Condition HJiŨ iΠi = 0
implies that there exists a matrix Λi

1, such that Πi = N iΛi, where
N i = null(HJiŨ i).

Observe that in case of general stability conditions there may exist
solutions to (1) which cannot be obtained by appropriate selection of
eigenvalues of the matrix pair (A,B). Let us consider the following
problem

[
1 0
0 1

] [
U1

U2

]
=

[
1 0
0 1

] [
U1

U2

]
Σ

with the stability condition

lim
t−>∞ 2t[1,−1]

[
U1

U2

]
Σt = 0

Then col(U1, U2) = col(1, 1) and Σ = 1 solves this problem. From the
Schur decomposition we can select on of the eigenvalue equal 1. Then
selected eigenvectors are col(1, 0) and col(0, 1), which do not satisfy
stability condition.

Let us consider first eigenvectors of order 1 associated with the
eigenvalue µi. We are looking for a matrix Λi

1 such that AŨ iN iΛi
1 =

µiBŨ iN iΛi
1. On the other hand AŨ iN iΛi

1 = BŨ iΞiN iΛi
1, hence

BŨ i(µiI − Ξi)N iΛi
1 = 0. Hence, Λi

1 = nullBŨ i(µiI − Ξi)N i.
Let us assume that for k > 2 we have a matrix Λi

k−1, such that
Ũ iΛi

k−1 is an eigenvector of order k − 1 associated with an eigenvalue
µi, and AŨ iN iΛi

k−1 = µiBŨ iN iΛi
k−1 + BŨ iN iΛi

k−2Ψ
i
k−1 for an ap-

propriate matrix Ψi
k−1. We are looking for matrices Λi

k, Ψi
k, such that

AŨ iN iΛi
k = µiBŨ iN iΛi

k + BŨ iN iΛi
k−1Ψ

i
k. We have AŨ iN iΛi

k =
BŨ iΞiN iΛi

k. Hence 0 = BŨ i[(µiI − Ξi)N i, N iΛi
k−1] col(Λi

k, Ψ
i
k) and

col(Λi
k,Ψ

i
k) = nullBŨ i[(µiI − Ξi)N i, N iΛi

k−1].
Let m is the smallest number satisfying dim2 Λi

m = 0. Let us take
U i = [Ũ iN iΛi

1, Ũ
iN iΛi

2, . . . , Ũ
iN iΛi

m] and

Σi =




µiI Ψi
1 0 · · · 0

0 µiI Ψi
2

. . .
...

...
. . . µiI

. . . 0
...

. . . . . . Ψi
m−1

0 · · · · · · 0 µiI




ThenAU i = BU iΣi. Let U = [U1, U
1, U2, . . . , U q] and Σ = diag(WJW−1,

Σ1, Σ2, . . . , Σq).

12



Proposition 5.4. Matrices U and Σ satisfy AU = BUΣ, limt−>∞
ΞtHUΣt = 0 and rankU = rank Ψ.

Proof. From the construction we have AU = BUΣ.
For i = 1, 2, . . . , q, HJiU i = 0. Let j 6∈ Ji. The only eigenvalue of

Σi is µi, thus limt−>∞ ξt
j(Σ

i)t = 0. Additionally, for each j limt−>∞
ξt
jW (J)tW−1 = 0.

From (4.3) we have rankU ≤ rankΨ.
There exists a matrix Ψ̃0, such that Φ̃0 = U1Ψ̃0.
Let v is any eigenvector of (A,B) associated with an eigenvalue µi

for i = 1, 2, . . . , q such that HJiv = 0. There exists a matrix Π̃i such
that v = Ũ iΠ̃i. Condition HJiv = 0 implies that there exist a matrix
Λ̃i such that v = Ũ iN iΛ̃i, where N i

1 = null(HJiŨ i).
Let v is an eigenvector of order 1. Then Av = µiBv, hence

AŨ iN iΛ̃i = µiBŨ iN iΛ̃i. On the other hand AŨ iN iΛ̃i = BŨ iΞiN iΛ̃i.
Thus, 0 = BŨ i(µiN

iΛ̃i − ΞiN iΛ̃i) = BŨ i(µiI − Ξi)N iΛ̃i. Hence,
Λ̃i ∈ kerBŨ i(µiI − Ξi)N i, and Λ̃i = Λi

1Γ
i for some matrix Γi. In

this way, v = Ũ iN iΛi
1Γ

i and there exists a matrix Ψ̃1
i such that

Φ̃1
i = Ũ iN iΛi

1Ψ̃
1
i .

Let for k − 1 > 1 there exists a matrix Ψ̃k−1
i such that Φ̃k−1

i =
Ũ iN iΛi

k−1Ψ̃
k−1
i . Let v is an eigenvector of order k, such that there

exists an eigenvector of order k − 1, vk−1, associated with the eigen-
value µi, belonging to the space spanned by Φ̃k−1

i . Then there ex-
ists a matrix Πk−1

i , such that, AŨ iN iΛ̃i = µiBŨ iN iΛ̃i + BΦ̃k−1
i Πk−1

i .
Thus, 0 = BŨ i[(µiI − Ξi)N i, N iΛi

k−1] col(Λ̃i, Ψ̃k−1
i Πk−1

i ). Hence, we
have col(Λ̃i, Ψ̃k−1

i Πk−1
i ) ∈ kerBŨ i[(µiI − Ξi)N i, N iΛi

k−1]. In this way
there exists a matrix Γi, such that col(Λ̃i, Ψ̃k−1

i Πk−1
i ) = col(Λi

k, Ψ
i
k)Γ

i.
Thus, Λ̃i = Λi

kΓ
i, v = Ũ iN iΛi

kΓ
i, and there exists a matrix Ψ̃k

i such
that Φ̃k

i = Ũ iN iΛi
kΨ̃

k
i . Using definition of U we have, that there exists

a matrix Ψ such that Φ̃ = UΨ, and thus rankU ≥ rankΨ.

5.2 Regular pencil
In this section we assume that a matrix pair (A,B) is regular. Let

us consider generalized Schur decomposition of the matrix pair (A,B)

V ′AU = TA V ′BU = TB

where matrices U and V are orthogonal, the matrix TA is quasi-upper
triangular, and the matrix TB is upper triangular. Such a decompo-
sition always exists. Let λA

i , λB
i are i-th eigenvalues of TA and TB

respectively. Let λi = λA
i /λB

i and let λ is a set of all distinct finite
eigenvalues λi. Let q is a size of the set λ.

13



Consider the i-th eigenvalue belonging to the set λ, µi. Let us sort
eigenvalues of TA and TB is such a way that all eigenvalues µi appears
in left upper block of TA and TB. Then

[
V i

1 V i
2

] [
Ri

A TAi
12

0 TAi
22

]
= A [

U i
1 U i

2

]

[
V i

1 V i
2

] [
Ri

B TBi
12

0 TBi
22

]
= B [

U i
1 U i

2

]

where Ri
A is quasi-upper triangular, Ri

B is upper-triangular, both ma-
trices have the same size, and all eigenvalues of (Ri

B)−1Ri
A are equal

µi. This implies

AU i
1 = V i

1Ri
A BU i

1 = V i
1Ri

B (10)

By assumption, the matrix RB is invertible. Thus,

AU i
1 = BU i

1(R
i
B)−1Ri

A

Let Ji = {j ∈ {1, 2, . . . , q} : |ξjµi| ≥ 1}. Let HJi consists of rows
of the matrix H with indices belonging to Ji. We are looking for a
matrix Πi that HJiU i

1Π
i = 0 and there exists a matrix Σi such that

AU i
1Π

i = BU i
1Π

iΣi. We can construct matrices Πi and Σi in the same
way as in case of singular pencil. Regularity of the pencil (A,B) does
not simplify the problem much.

If ξj = ξ for each j and kerH = 0, then we can obtain matrices
U and Σ much easier. Consider ordering of eigenvalues in the Schur
decomposition, such that all eigenvalues µi satisfying |µiξ| < 1 appears
in the left upper block of TA and TB. Then we can take Σ = (Ri

B)−1Ri
A

and U = U i
1.

6 Construction of the solution
Assume that matrices U , Q solve AU = BUQ, the matrix Q sat-

isfies (6), Ux has full row rank, and [C1, C2]U has full row rank.
Consider the svd decomposition of Ux, Ux = MSN ′. Because Ux has
full row rank, thus S = [S̃, 0], where S̃ is an invertible matrix. Let

Λ = N

[
S̃−1M ′ 0

0 I

]

Then Λ is invertible and the matrix UΛ takes the form

UΛ =
[

I 0
Ū21 Ū22

]

14



Moreover AUΛ = BUΛQ̃, where Q̃ = Λ−1QΛ and Q̃ satisfies (6). Let
Y1 = Ū21 and Y2 = Ū22. Let

Q̃ =
[

Q11 Q12

Q21 Q22

]

and let P1 = Q11, P2 = Q12, S1 = Q21, and S2 = Q22. In this way,
assuming ωt+1 = 0, matrices Y1, Y2, P1, P2, S1, S2 satisfy (5).

Now let us concentrate on the term ωt+1 in (5)

0 =
(
(C1 + C2Y1)P3 − I

)
εt+1 +

(
(C1 + C2Y1)P4 + C2Y2

)
υt+1

This equation must be fulfilled for all εt+1 and υt+1. Thus

I = (C1 + C2Y1)P3, 0 = C2Y2 + (C1 + C2Y1)P4 (11)

Because C1 + C2Y1 = [C1, C2]UΛ, the matrix [C1, C2]U has full row
rank, and Λ is an invertible matrix, hence C1 +C2Y1 has full row rank.
Then we can take

P3 = (C1 + C2Y1)†, P4 = −(C1 + C2Y1)†C2Y2

However if C1 + C2Y1 is not square then there exist many solutions to
(11). In this way we have

Theorem 6.1. If there exist matrices U , Q, such that AU = BUQ,
condition (6) is fulfilled, Ux has full row rank, and [C1, C2]U has full
row rank, then there exists a linear solution to (1) satisfying (3).

Theorem 6.2. For any, possibly rectangular, matrix pair (A,B) con-
sider matrices Q and U constructed in the previous section. There
exists a solution to (1) if and only if matrices Ux and [C1, C2]U have
full row rank.

Proof. From (5.4) we have AU = BUQ, and condition (6) is fulfilled.
Let matrices Ux and [C1, C2]U have full row rank. Then, by theorem
(6.1) there exists a solution to (1) satisfying (3).

Let {Yt, Pt}∞t=0 is a linear solution to (1) satisfying (3). Then,
by theorem (2.5) there exist matrices V , S, such that AV = BV S,
condition (6) is satisfied, Vx and [C1, C2]V has full rank. By the
theorem (4.3) there exist matrices Λ, Ξ, such that V = ΨΛ, U = ΨΞ,
where Ψ is the matrix from the theorem (4.3). Since rankU = rank Ψ,
(proposition (5.4)), thus Ξ has full row rank. Hence ΞΞ† = I, and Ψ =
UΞ†. In this way V = UΞ†Λ. Since Vx = UxΞ†Λ and Vx has full row
rank, thus also Ux has full row rank. Next [C1, C2]V = [C1, C2]UΞ†Λ.
Since [C1, C2]V has full row rank, thus also [C1, C2]U has full row
rank.
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From the proof of this theorem we have also

Proposition 6.3. Let {Yt, Pt}∞t=0 is any linear solution to (1), such
that (3) holds. Then there exist a matrix Λ such that

[
Y1 Y2

]
= UyΛ

Proposition (6.3) shows, that any solution to (1) can be constructed
from the maximal solution by selecting appropriate eigenvectors from
the matrix U .

7 Conclusions
We have developed an algorithm to compute a linear solution to

general linear rational expectation problem with general stability con-
ditions. Since the algorithm is based on numerically stable generalized
Schur decomposition in case of regular systems and GUPTRI decom-
position in case of singular system, also the algorithm is numerically
stable. Besides standard solution, the algorithm delivers also all set of
sunspot solution. We have also obtained both sufficient and necessary
condition for existence of the solution to the problem.
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