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Abstract

We consider solutions to general linear dynamic systems, possibly
singular and non square with general stability conditions. Besides con-
structing a general algorytm for finding solutions we provide necessary
and sufficient conditions for existence of a solution.
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1 Introduction

In this paper we present a method of solving linear rational ex-
pectations models. The method is based on computing deflating sub-
space associated with an appropriate matrix pair. Such a procedure
is common for most of the methods of solving linear rational expec-
tations models, i.e. Uhlig, (1995), Sims, (2001), Hansen, McGrattan
and Sargent (1994), Blanchard and Kahn (1980). Existing methods
can however be applied only to small subset of linear systems. One
of the exception is the method proposed by Sims (2000) which can
be applied to any regular system. These methods are based on gen-
eralized Schur decomposition or QZ decomposition, which are known
to be numerically stable for any regular matrix pair, but numerically
unstable for singular matrix pairs. In this way these methods cannot
be extended directly to singular problems.
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In this paper we propose generalization of the method proposed
by Sims which allow us considering nonsingular systems, in particu-
lar rectangular linear systems. This method is based on the GUPTRI
decomposition proposed by Demmeland and Kagstrom, (1993), a gen-
eralization of generalized Schur decomposition for any matrix pair.
Besides a standard solution, proposed method allows also for consid-
ering systems with many equilibria. Such a systems allow for sunspot
equilibria in which non-fundamental stochastic disturbances influence
model dynamics. The proposed method can deliver set of all sunspot
equilibria.

Presented method is a generalization of the Sims algorithm also
in another important dimension, i.e. we analize stability conditions
(boundary conditions at infinity) more carefully. In case of general
stability conditions there may exists solution to the model which can-
not be constructed by appropriate selection of eigenvalues in the gen-
eralized Schur decomposition or the GUPTRI decomposition. This
possibility is not considered in Sims, (2001).

The rest of the paper is organized as follows. Section 2 states the
problem. Section 3 presents definitions and basic results from compu-
tational linear algebra. Section 5 presents properties of eigenvectors of
a matrix pair. In section 6 we consider a matrix equation associated
with the problem. Sections 4 and 7 present the method for solving the
problem. Section 7 provides also necessary and sufficient conditions
for existence of solution to the problem. Section 8 concludes.

2 The Problem

Let us consider the following linear system

0= A1z, + Agys + Bixis1 + Boyer1 + Et{0190t+1 + C2yt+l}+€t+l
(1)

where z € R" is a vector of state variables, y € R™ is a vector of control
variables and {e;+; € R} is a vector of i.i.d. random variables, such
that Ei{e;r1} = 0. Operator E; is a conditional expectation under
information set I; = {xs,ys, ws; s < t}, which consists of all state and
control variables up to period t as well as additional variables, wy,
discussed later.

Definition 2.1. Solution to the problem (1) is defined as a set of,
possibly time dependent, maps {Y;, P:}52,

Vi ' R"s>2x—y=Y(z) e R"



and transition matrices

Piy1:R" > 2 = w01 = Prya(a) € R
such that

Tir1 = Pryi(ay)
0= Ayz(t) + A2Yi(z¢) + Biwgyr + BaYiy1(we41)

+ E{Crz441 + CoYip1(211) } + €141
for each xy € R", ¢,11 € R®, and for each t.
Definition 2.2. The solution {Y:, P;}7° is called linear if

Yi(zt) = Yize + Yowy

Py(z¢) = Py + Powy + Pyer1 + Pyvggn
where w; € RP and

Wi1 = S12¢ + Sowy + Vg1

and veyq 1S an i.4.d. random variable, possibly dependent on €y 1.

Assumption 2.3. We are looking for linear solutions to the system (1)
such that for given matrices H and = the following growth restriction
holds

; =t Lt _
tlingoEo{_ H [ Yt ] }_ 0 3)
for any xo and wo, where, E = diag(&1, ..., &) € R¥F is a diagonal

matriz, H € RF™,

The problem (1) can be represented in the following form

O:A[ o ] —I—B[xt+l } + Wil
Ye Yt+1

E{xi} — x4 ]
w1 =1 C1 C + €
=[0G ] [ Elyts1} — yen1 Hl

where
A=[ A A ] B=|Bi+C1 By+Cy | (4)

If {Y;, P,}?°, is a linear solution in the form (2) such that (3) holds

then z11 —Ei{xi11} = Paerp1+Pavesr, yer1 —Er{yer1 ) = Yi(Pserp1+
Pyviiq) + Youq and

. I 0 . I 0 P1 PQ Tt ~
o= (4l s w ][5 8]0 ]
1 = (I — (C1 + CoY1) P3)ery1 — ((C1 + CaY1) Py + CoYa)ur
(5)



Conditions (5) must be fulfilled for each x¢, wy, €441, v¢41. In this way
we have the following theorem:

Definition 2.4. Let U = col(U,,U,) is a partition of the matriz U,
such that the matrix U, consists of the first n rows of the matriz U,
where n is a dimension of the vector of state variables, xy.

Theorem 2.5. If there exists a linear solution {Y;, P}, such that
(8) holds then there exist matrices U, Q satisfying

AU = BUQ
matrices Uy, [Cy, Co)U, have full row rank and the matriz Q) satisfies
Jim ETHUQ' =0 (6)

Proof. Let

[0 B
A D
Then, from (5), AU = BUQ, U, has full row rank and @ satisfies (6).
Observe that

I
I:(C1+CQY1)P3:[C1 CQ}U[O]Pg

because the identity matrix I has full rank, thus also the matrix
[C1, C2)U has full row rank. O

3 Preliminaries

In this section we present definitions and some basic results from
computational linear algebra.

Definition 3.1. Let us denote by null A, where A is any matriz, an
orthonormal basis of the null space of A.

Definition 3.2. Let A € R™*" is any matriz. Let us denote
dimi A=m dime A =n

Theorem 3.3. The Moore-Penrose pseudoinverse. For each ma-
trix A € R™*™ there exists an unique matriz X € R™*™ such that

AXA=A XAX=X (AX)=A4X (XA =XA

this matriz X is denoted as AT.



Proof. See [5]. O

Proposition 3.4. If a matriz A € R™*" has ful row rank, then AAt =
1.

Proof. We have AATA = A, thus A’(AAT — I)’ = 0. Since ker A = 0,
thus AAT = 1. O

Theorem 3.5. The singular value decomposition (svd). For
each matriz A € R™*" there exist matrices U, V', D, such that

A=UDV’

where D € R™*" s a diagonal matriz with only nonnegative diagonal
elements sorted in decreasing order, and U, V are orthogonal matrices.

Proof. See [5]. O

Definition 3.6. A matriz pair (A, B) is called regular if A and B are
square, and det(aA — BB) # 0 for some (o, ) € C2. Otherwise, the
matriz par (A, B) is called singular. A pair (o, 8) € C*\{(0,0)} is said
to be an eigenvalue of (A, B) if det(aA — BB) = 0. If a« # 0, then, the
pair (a, 3) represents a finite eigenvalue X\ = 3/« of the par (A, B).
The pair (0, 3) represents an infinite eigenvalue of (A, B).

Definition 3.7. Let A € R™*™ B € R™*". For any A € C a vector
xo = 0 is called an eigenvector of order k = 0 of the matriz pair (A, B)
associated with the eigenvalue .

A wvector xy, is called an eigenvector of order k, k > 1, of the matrix
pair (A, B) associated with the eigenvalue X\ if there exists an eigen-
vector of order k — 1 of the matriz pair (A,B) associated with the
eigenvalue \, xi_1, such that Axy = ABxy + Bxp_1.

Proposition 3.8. Consider a matriz pair (A, B) and invertible ma-
trices P, Q. Let A = PAQ, B = PBQ. If x; is an eigenvector of
order k of the matrix pair (A, B) associated with an eigenvalue A, then
Q™ 1xy, is an eigenvector of order k of the matriz pair (A, B) associated
with an eigenvalue A.

Proof. Let m =1 and let x,, is an eigenvector of order m of (A, B) as-
sociated with the eigenvalue A. Then P~'AQ 'z, = AP"'BQ 'z,,.
Thus Q~ 'z, is an eigenvector of order k = 1 of (A, B) associated
with the eigenvalue A. Let for m = 1,...,k — 1 if x,, is an eigen-
vector of (A, B) of order m associated with the eigenvalue A, then
Q 'z, is an eigenvector of order m of (A, B) associated with the
eigenvalue A. Then there exists an eigenvector of order yi_; such
that P71 AQ 'z, = A\P7'BQ 'z, + P"'BQ 'y;_1. Thus AQ 'z), =



ABQ 'z +BQ 'yi_1. By the assumption Q'y,_; is an eigenvector
of order k — 1 of (A, B), thus also @'z} is an eigenvector of order k
of (A, B) associated with A. O

Theorem 3.9. The generalized Schur decomposition. For each
matrices A, B € R"™™ there exist orthogonal matrices U, V, and real
matrices R4, Rp, such that Rp is upper-triangular, R4 is quasi-upper
triangular and

AU =V R4 BU =VRp
Additionally, eigenvalues of R4, Rp can be sorted in any order.
Proof. See [5]. O

Theorem 3.10. The Kronecker decomposition. For each matrix
pair (A, B), where A,B € R™*"  there exists a canonical representa-
tion

PAQ = diag{Ge, I, Js, H}'}

: T (7)
PBQ = dlag{H6> Jooy 1, Gn}

where:
1. Ge, He e R%, Jo e RF*ki g e CIF BT GT e R,
2. matrices P, @ are invertible.
3. Ge =diag{Ge1,...,Gep}, He = diag{He1,...,Hep}, G% = diag{Ggl,
.,Ggq}, Hg = diag{HnTl, e Hg;}, where G; and H; are
ix (i+1),i>0, matrices
0 1 1 0
G; = H; = .
0 1 1 0
4. Joo = diag{Jy1(0),..., Jus(0)} and J;(0) is the Jordan block of

order © corresponding to the null eigenvalue. Notice, that the
matriz J s nilpotent.

5. Jy is a matriz in the Jordan canonical form.
The matrix par is regular iff PAQ = diag{/, J¢}, PBQ = diag{Ju, I }.
Proof. See [4]. O



Theorem 3.11. The GUPTRI decomposition. For any matrix
pair (A, B), where A, B € R™*"  there exist orthogonal matrices P €
R™*™ Q) € R™"™ such that

A, * * B, * *
PAQ=1| 0 Apy = PBQ=| 0 By =
0 Ay 0 B

where the asterisk denotes arbitrary conforming submatrices. The ma-
triz pair (Apeg, Breq) 1s reqular and has the same regular structure (i.e.
contains all finite and infinite eigenvalues of (A,B)) as (A,B). The
rectangular blocks (Ay, By) and (Ay, By) contain the singular structure,
right and left minimal indices, of the pair (A,B) and are block quasi-
upper triangular.

Proof. See [2], [3]. O

4 The matrix equation AU = BUY

Proposition 4.1. The only eigenvector of the matriz pair (I, Js) is
x = 0. The only eigenvector of the matriz pair (H%F, Gg) isx=0.

Proof. By simple calculations. O

Proposition 4.2. Let L, € R*! is a matriz, that contains zero on all
positions except the k-th position, and one on the k-th position. Then
Ly, is an eigenvector of order k the matrix pair (G, H.) associated with
eigenvalue A = 0.

Proof. By simple calculations. O

Theorem 4.3. Consider a matriz pair (A,B). There exists a ma-
triz U, such that for all matrices U, %, satisfying AU = BUY and
lim;_~oo ZEHU S = 0, there exist a matriz A, such that U = UA.

Proof. Consider the Kronecker decomposition of the matrix pair (A, B),
PAQ = A, PBQ = B, where A, B are in canonical form (7). Let ma-
trices U and ¥ satisfy assumptions. Consider the Jordan decomposi-
tion of the matrix ¥, ¥ = VXV !, where ¥ is in the Jordan canonical
form. By assumption
lim Z'HUVY! =0
t—>00
Let & = diag(il,ib,...,iq), where %; is a Jordan block and let
V = [V, Va,...,V,] is corresponding partition of the matrix V. Then



for i = 1,2,...,q we have limy_ o Z'HUV;X! = 0. Let ); is an

eigenvalue of 3;. We have

[T ONT e GEINTT]
0 1
DY : = \Sy
: S O LV
0 .0 1 |

where m; is size of the Jordan block ;. If for je{1,2,...,k} we
have lim;_ <o {;Ag = 0, then also lim;_~ Agf;HjUViiit = 0, be-
cause X! is a polynomial with respect to t. If lims_ o EiAL # 0 then
lim; >0 HjUV;iit = 0. Partitioning H;UV; on columns and multi-
plying H;UV; and ¥;t we can see that H;UV; = 0. Let V" is the p-th
column of V. Observe that UV} is an eigenvector of (A, B) of order p
associated with the eigenvalue A;.

Thus, UV; consists of eigenvectors associated with eigenvalue \;,
such that for each j € {1,2,...,k}, lim;_> §§)\§ =0or H;UV; =0.

We have

Ge 00 0 U} Ho 0 0 0 U}
0 I 0 0 U2 | 0 Jo 0 O U? 5.
0 0 Jg 0 udl o o I o0 ug |
0 0 0 HI']|| U 0o 0 0G|l U?
where U; = Q *UV;. Thus
GEUil - Heﬁilii Uil == Joof];il
U = U} HIT! = GTULS,

From (4.1) we have U? = 0, U} = 0.

Let pi, @ € {1,2,...,7} are distinct eigenvalues of Jy. Let i €
{1,2,...,r}. Let J; = {j € {1,2,...,¢} : |&§ui| > 1} and H”i is a
matrix that consists of rows of the matrix H with index belonging to
the set J;. Let columns of a matrix <i>ll span the space of eigenvectors
of order 1 of (A, B) associated with the eigenvalue p; belonging to
ker H/i. For k > 1 let columns of a matrix <i>f” span the space of
eigenvectors, x, of order k of (A, B) associated with the eigenvalue
i belonging to ker H”¢, such that there exist a matrix II; satisfying
Ax = \\Bx + B@f‘lﬂi. Let &, = [(i)il, .. .,é;”], where m is such a
number that each eigenvector of (A, B) associated with the eigenvalue
A; has order lower or equal to m. Let Py = Q col(I,0,0,0), where
I. € R¥€ is an identity matrix. Finally let ® = [®¢, &1, Py, ..., Dy].

8



Letie€ {1,2,...,k}. Thenforeachj € {1,2,...,k}, lim;_soo f;)\g =
0 or H;UV; = 0. All columns of UV; are eigenvectors of (A, B) associ-
ated with \; and UV € ker H”. If ); is not an eigenvalue of J¢, then
Uf’ = 0, and there exists a matrix A;, such that UV; = ®gA,;.

Let A; = py; for some [ € {1,2,...,r}. Consider the first column
of V;. The vector UV} is an eigenvector of (A, B) of order 1. From
the definition of <i>ll we obtain that there exists a matrix /N\Zl such that
UVl = @ll]\ll Assume that for k — 1 > 1 there exists a matrix A~
such that UVZAk*1 = @fﬁlf\ffl. Then we have AUVF = 1,BUVF +
BUV}F™! = 1yBUVF +B®F~'AF~!. Then, from the definition of & we
obtain that there exists a matrix 1~\f such that U V;k = @f[\f In this
way we have proved that there exist a matrix A; such that UV; = ®A;.
Thus U = ®A, where A = [Ay, Ay, ..., AV L. O

5 Maximal solution

5.1 Singular pencil

If a pencil (A, B) is singular then generalized Schur decomposition
is not reliable. Small perturbation of matrices A, B may drastically
change eigenvalues of (A, B). In this case we use GUPTRI decompo-
sition.

Let consider GUPTRI decomposition of a matrix pair (A, B)

AU =V Ry BU =VRg

where Ry and Rp are in GUPTRI canonical form. Let )\;4, )\lB are
i-th eigenvalues of regular blocks A,., and B4 respectively. Let \; =
)\f‘ / )\Z-B and let A is a set of all distinct finite eigenvalues A;. Let ¢ is a
size of the set A.

Consider the i-th eigenvalue belonging to the set A, p;. Let us sort
eigenvalues of A,.q and B,., in such a way, that all eigenvalues p;

appears in left upper block of A,., and Byey. Then

A A .
(Vi Vi Vil 0 A, «|=A[Ur U} US]
0 0 i
[ B B+ .
(Vi Vi Vi]| 0 Bi, +|=B[U U U}]
L 0 0 -
Proposition 5.1.
A AT =1 BBl =1



Proof. There exist unitary matrices P, @) such that A, = PG(Q. Since
ker G’ = 0, thus also ker A} = 0, and A, has full row rank. Now, we
can use the proposition (3.4). Similarly for B,. O

From the GUPTRI decomposition we have
V1A, = AUy B, =BU; (8)
and

‘/1‘412 + Vé reg - AUZ VIB%Z + VYQB;;’eg - BU% (9)

5.1.1 Singular part

We are looking for an invertible matrix W and a matrix J with
only zero elgenvalues such that A, W = B,WJ. Let U1 = null 4,.
Let U; = ABUzlforz—Q .,m. Then A,U; = B,U;_;. For each
ilet Uy = [U},...,07], where v = dimy U;. Let v = [Uf,..., Uh).
for for j=1,...,v

Let k7" < m is the biggest number, such that all the first k"
columns or V™ are linearly independent and let W{™ consists of the first

7 columns of V]™. For j =2,...,v, let k‘jm < m is the biggest number
such that all first k7" columns of V™ and all colums of W™ are linearly
independent and let W™ consists of the first £7* columns of V™. Let
wm = W, ..., W' and J™ = diag{J{",..., ]}, where J™ is a
Jordan block of zero eigenvalue and dimy J;* = k" for i = 1,...,v.
Then for any m, A,W"™ = B, W™J™  all eigenvalues of J™ are zero,
and all columns of W™ are linearly independent.

Proposition 5.2. For any eigenvector, z, of (A,, By,) of order m as-
sociated with zero eigenvalue there exists a matrix A, such that x =

W™MA.

Proof. Let x1 is an eigenvector of (A,, B,) of order 1 associated with
the zero eigenvalue, then A,x1 = 0, and there exists a matrix X7, such
that 21 = W!X;. Let z;_; is an eigenvector of (A, B;) of order k—1,
k > 1, associated with the zero eigenvalue, and let x = W*~1X,_4, for
some matrix X 1. Let xx is an eigenvector of order k. There exists
an elgenvector yi—1, of order k — 1 such that A,z = Bryg—1. Let
T = Al rBryk—1, then A, (zr —Zr) = 0, hence zj, = F + U1Y), for some
matrix Yj,. There exists a matrix Y;_; such that y,_, = W 1Y,_;.
Thus, z = U1 + AIBTWk_lYk_l. Consider i-th column of W*~1,
w;. By construction w; = Up for some p,q, ¢ < k—1. Then, using the
definition of U;, Al B,w; = Uq+1
of Wk, or U P 1= = WA, for some matrix A;. Thus, in both cases, there

But then U? g+1 is one of the columns

10



exists a matrix A;, such that U;)H = W¥A;. Hence, AIBTwi = WFkA,;
and AlB,Wk-1 = WFA, where A = (A1, Ay, ¢ = dimy w-L
Additionally, there exists a matrix If, such that U; = Wklf. In this
way we have, x = W¥(IFY;, + AY;_1). This ends the proof. O

Proposition 5.3. Let A, = PGQ, B, = PHQ is the Kronecker de-
composition of the pair (A, By). Let G = diag{G?1,...,Gy}, dima G; =
m;, for i = 1,....k, and m = max{mq,...,mi}. Then Wy, is a
square, invertible matriz and rank W,,, = n, where n = dims A,..

Proof. Let x is an eigenvector of order k < m of (A,, B,) associated
with zero eigenvalue. Then the exists a matrix A, such that x = W, A.
By propositions (4.2) and (3.8) each column of the matrix Q! is
an eigenvector of (A, B,) of order k < m associated with the zero
eigenvalue. Lex ¢;, i = 1,...,n is the i-th column of Q~!. There exists
A; such that ¢; = Wy, A;. Thus, Q7! = W, A, where A = [Aq,..., A,].

By construction, rank W,, = dimy W,,. Since rank Q~! = n, thus
rank W,,, > n. On the other hand dim; W,,, = n, thus, rank W,,, < n.
Hence, n = rank W,,, = dim; W,,, = dimy W,,,, and W,, is a square,
invertible matrix. O

Let W = W,,, where m is given by the proposition (5.3). From (8)
we have

AU, = BUyW JW !

By construction, the matrix WJW ! contains only zero eigenvalues.

5.1.2 Regular part

Because Bf;eg is invertible, from (9) we have

VQZ = BU;(Bieg>_l - VlBlQ(Bieg)_l
hence
AU; = B(U\E| + U5E5)

where Zi = BJ(Al, — B{yE}), ) = (Bl,,) AL, and

reg reg’

; ; wJw-t =i
alw op)=slo o) | 2
=2
=B[U, Ui]|E
We must modify yet matrices U; and Us to fulfill stability condi-
tions. Let J; = {j € {1,2,...,q} : |&ui| > 1}. Let H”i consists of

11



rows of the matrix H with indices belonging to J;. Let U = [Uy, U]
We are looking for a matrix IT, such that H”:U'II* = 0 and there exist
a matrix ¥, such that AU = BUI'S. Condition H/iUII* = 0
implies that there exists a matrix A}, such that IT' = N’A?, where
N = null(H”U?).

Observe that in case of general stability conditions there may exist
solutions to (1) which cannot be obtained by appropriate selection of
eigenvalues of the matrix pair (A, B). Let us consider the following

problem
10 Ur| |10 Ur >
0 1 U2 o 0 1 U2

with the stability condition

ot Ui | st
t11§1w2 [1,—1] [ Uy ] =0
Then col(Uy,Usz) = col(1,1) and ¥ = 1 solves this problem. From the
Schur decomposition we can select on of the eigenvalue equal 1. Then
selected eigenvectors are col(1,0) and col(0,1), which do not satisfy
stability condition.

Let us consider first eigenvectors of order 1 associated with the
eigenvalue p;. We are looking for a matrix A% such that AUIN A =
w;BUIN?A}.  On the other hand AU'N'AL = BU'Z'N’A}, hence
BU (I — Z)N'A? = 0. Hence, A = null BU* (] — Z)N*.

Let us assume that for £ > 2 we have a matrix A};_l, such that
UiA}'Cfl is an eigenvector of order k — 1 associated with an eigenvalue
Wi, and AUiNiA};_I = mBU"NiA};_l + BUiNiA};_Z\I/};_I for an ap-
propriate matrix \1’2—1- We are looking for matrices A?, \Il};, such that
AUNIAL = 1, BU'NAL + BU'N'AL W%, We have AU'N'A} =
BU'E'N'A},. Hence 0 = BU'[(sil — E')N', N'Aj_,] col(A}, ¥}) and
col(A}, V) = null BU'[(uil — Z")N*, N*Aj_,].

Let m is the smallest number satisfying dimg A%, = 0. Let us take
U = [U'N'AL UINAL, ..., U'N'A? ] and

[l ®E0 -0
0l T :
: RN L
I 0O --- .- 0 wil

Then AU® = BU'SE. Let U = [Uy, U, U?,...,U% and ¥ = diag(WJW 1,
DILD YNNI 35 )

12



Proposition 5.4. Matrices U and ¥ satisfy AU = BUX, lim;_~
ETHUY! = 0 and rank U = rank V.

Proof. From the construction we have AU = BUX..

Fori=1,2,...,q, H"U* = 0. Let j ¢ J;. The only eigenvalue of
Y is pi, thus limg < e §§(E’)t = 0. Additionally, for each j lim;_~
§§W(J)tW_1 =0.

From (4.3) we have rank U < rank W.

There exists a matrix \Ilo, such that <I>0 = U1\I/0

Let v is any eigenvector of (A, B) associated with an eigenvalue p;
for i =1,2,..., ¢ such that HYiv = 0. There exists a matrix II* such
that v = UII*. Condition H”v = 0 implies that there exist a matrix
A? such that v = U*N*A?, where Nj = null(H”:U?).

Let v is an eigenvector of order 1. Then Av = p;Bv, hence
AUINA? = 1;BUINPAY. On the other hand AU'N'A? = BU'ZINIAL
Thus, 0 = BU(u;N°A* — ZEN'AY) = BU (] — Z)N'A*. Hence,
AN € ker BU'(j;] — Z)N?, and A* = AT for some matrix I¥. In
this way, v = U'N'AT" and there exists a matrix ¥} such that
B! — NN,

Let for kK — 1 > 1 there exists a matrix \i/f_l such that éf_l =
UiN"A}‘%l‘ifffl. Let v is an eigenvector of order k, such that there
exists an eigenvector of order k — 1, vi_1, associated with the eigen-
value p;, belonging to the space spanned by @ffl. Then there ex-
ists a matrix Hf_l, such that, AU'NA? = ,ui[)’[]"']\fi]\i + Bi)f_lﬂf_l.
Thus, 0 = BU[(u;] — E)N?, N'AL ] col(A?, U¥TIF~1). Hence, we
have col(A?, UFIF1) € ker BU[(p;1 — Z))N?, N*AL_]. In this way
there exists a matrix T, such that col(A?, BF~1TIF1) = col(A}C, Wi,
Thus, A’ = A};FZ v = U “NAIT", and there exists a matrix W¥ such
that <I>k UZNZAZ \Ilk Using deﬁnltlon of U we have, that there exists
a matrix ¥ such that d=U ¥, and thus rank U > rank V. ]

5.2 Regular pencil

In this section we assume that a matrix pair (A, B) is regular. Let
us consider generalized Schur decomposition of the matrix pair (A, B)

VAU =Ty V'BU =Tg

where matrices U and V' are orthogonal, the matrix T4 is quasi-upper
triangular, and the matrix Tg is upper triangular. Such a decompo-
sition always exists. Let )\;4, )\f are i-th eigenvalues of T4 and Tp
respectively. Let \; = A/AP and let \ is a set of all distinct finite
eigenvalues \;. Let ¢ is a size of the set A.

13



Consider the i-th eigenvalue belonging to the set A, u;. Let us sort
eigenvalues of T4 and Tz is such a way that all eigenvalues u; appears
in left upper block of T4 and Tp. Then

. , R:,  TAi , .
(v i | T T | Al v

. . R Tlgi . .
v vi )| T Th | =slun v

where Rf4 is quasi-upper triangular, ng is upper-triangular, both ma-
trices have the same size, and all eigenvalues of (R};)™1RY, are equal
;. This implies

AUY = ViRl BU{ = V] Rl (10)
By assumption, the matrix Rp is invertible. Thus,
AU} = BU{(Rp) 'R}y

Let J; = {j € {1,2,...,q} : |§u| > 1}. Let H'i consists of rows
of the matrix H with indices belonging to J;. We are looking for a
matrix II' that H/iUIT = 0 and there exists a matrix X! such that
AUTTY = BUSTI'S. We can construct matrices I1' and ¥¢ in the same
way as in case of singular pencil. Regularity of the pencil (A, B) does
not simplify the problem much.

If § = £ for each j and ker H = 0, then we can obtain matrices
U and ¥ much easier. Consider ordering of eigenvalues in the Schur
decomposition, such that all eigenvalues p; satisfying |u;&| < 1 appears
in the left upper block of T4 and 7. Then we can take ¥ = (R%) "1 R,
and U = Uj.

6 Construction of the solution

Assume that matrices U, @ solve AU = BUQ, the matrix @) sat-
isfies (6), U, has full row rank, and [Cy, C2]U has full row rank.
Consider the svd decomposition of U,, U, = MSN’. Because U, has
full row rank, thus S = [S* , 0], where S is an invertible matrix. Let

o—1q07
A:N{S M 0]

0 1

Then A is invertible and the matrix UA takes the form

I 0
va=| 1
[ Us1 U ]
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Moreover AUA = BUAQ, where Q = A~ QA and Q satisfies (6). Let
Y = UQl and Yy = UQQ. Let

A | Qu Q2
Q_[Qzl Q22]

and let P; = Qq1, Po = Q12, 51 = Qo1, and Sy = Q99. In this way,
assuming w1 = 0, matrices Y7, Ya, Py, P, S1, So satisfy (5).
Now let us concentrate on the term w1 in (5)

0= ((C1+ oY1) Py — 1) ey + ((C1 + CoY1) Py + oY Jui
This equation must be fulfilled for all ;11 and vs;1. Thus
I = (Cl + CQH)P:}, 0=CyY9 + (Cl + CQYi)P4 (11)

Because C + C2Y; = [C, Co]UA, the matrix [C, Co|U has full row
rank, and A is an invertible matrix, hence C7 + C2Y7 has full row rank.
Then we can take

P = (C1 + CQYl)T, Py = —(Cl + CQYl)TCQYQ

However if Cy + C2Y7 is not square then there exist many solutions to
(11). In this way we have

Theorem 6.1. If there exist matrices U, Q, such that AU = BUQ,
condition (6) is fulfilled, Uy has full row rank, and [Cy, Co)U has full
row rank, then there exists a linear solution to (1) satisfying (3).

Theorem 6.2. For any, possibly rectangular, matriz pair (A, B) con-
sider matrices Q@ and U constructed in the previous section. There
exists a solution to (1) if and only if matrices U, and [Cy, Co)U have
Sfull row rank.

Proof. From (5.4) we have AU = BUQ), and condition (6) is fulfilled.
Let matrices U, and [C7, C3]U have full row rank. Then, by theorem
(6.1) there exists a solution to (1) satisfying (3).

Let {Y;, P}i2, is a linear solution to (1) satisfying (3). Then,
by theorem (2.5) there exist matrices V', S, such that AV = BV'S,
condition (6) is satisfied, V, and [Cy, C2]V has full rank. By the
theorem (4.3) there exist matrices A, E, such that V = WA, U = ¥E,
where ¥ is the matrix from the theorem (4.3). Since rank U = rank ¥,
(proposition (5.4)), thus = has full row rank. Hence 2= = I, and ¥ =
U=F. In this way V = UZTA. Since V, = U,ZA and V,, has full row
rank, thus also U, has full row rank. Next [Cy, Co]V = [Cy, Co]UETA.
Since [C7, Co]V has full row rank, thus also [C1, C3]U has full row
rank. O
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From the proof of this theorem we have also

Proposition 6.3. Let {Y;, P}, is any linear solution to (1), such
that (3) holds. Then there exist a matriz A such that

[Yl YZ]:UyA

Proposition (6.3) shows, that any solution to (1) can be constructed
from the maximal solution by selecting appropriate eigenvectors from
the matrix U.

7 Conclusions

We have developed an algorithm to compute a linear solution to
general linear rational expectation problem with general stability con-
ditions. Since the algorithm is based on numerically stable generalized
Schur decomposition in case of regular systems and GUPTRI decom-
position in case of singular system, also the algorithm is numerically
stable. Besides standard solution, the algorithm delivers also all set of
sunspot solution. We have also obtained both sufficient and necessary
condition for existence of the solution to the problem.
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