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1 Introduction

This note presents a simple proof of a theorem by Harris [4] on the existence

of subgame perfect equilibria in games of perfect information. More generally,

it illustrates a method for establishing existence of equilibria in such games,

and allows for a new characterization of equilibrium outcomes that provides

an algorithm for their computation.

The method we present consists of approximating the payoff function of

each player by a sequence of simple functions, in a way that is standard in

measure and integration theory (see, for example, Wheeden and Zygmund

[5]). The sequence of approximating payoff functions for each player, in

addition of being a sequence of simple functions, satisfies two other important

properties: first, it converges uniformly to the payoff function of that player in

the original game; and second, the approximation is such that outcomes that

are dominated according to the some payoff function in the approximating

sequence are also dominated (by the same outcome) according to the original

payoff function, and to all the subsequent payoff functions in the sequence.

The above approximation of each player’s payoff function induces a se-

quence of games that differ from the original game only on the payoff function.

For this sequence of games, it is easy to establish that each of them has a

2



nonempty, compact set of equilibrium outcomes, and that the sequence of

those sets shrinks to the set of equilibrium outcomes of the original game

— thus, the original game has a nonempty, compact set of equilibrium out-

come. Furthermore, the set of equilibrium outcomes of the original game can

be computed by intersecting the corresponding sets of the approximating

games.

2 Games of Perfect Information

In order to present our argument in the simplest possible way, we will consider

only the case of games of perfect information with two players. It should be

noted that nothing in our argument depends on this assumption, and our

proof could be easily extended to the case of an arbitrary finite number of

players. Finally, using a “truncation argument” similar to the one used by

Harris [4, section 4.4, page 624] (see also Börgers [1]), one could extent our

result to the case of a denumerable number of players.

A game of perfect information (with two players) is

G = 〈Si, A2, Pi〉i=1,2 ,

where (1) Si is a nonempty set, for i = 1, 2, (2) A2 is a nonempty valued
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correspondence from S1 into S2, and (3), Pi : H → R, for i = 1, 2, where

H = graph(A2).

When player 2 moves at stage 2, it is with perfect information on s1.

Hence the set of strategies of player i, i = 1, 2, is F1 = S1 and

F2 = {f2 : S1 → S2| ft(s1) ∈ A2(s1)}.

A strategy vector (f1, f2) is a subgame perfect equilibrium of G if for all

s1 ∈ S1,

f2(s1) maximizes P2(s1, ·) in A2(s1),

and

P1(f1, f2(f1)) ≥ P1(s1, f2(s1)).

Given a game of perfect information G the vector (f1, f2(f1)) in H de-

termined uniquely by (f1, f2) is called an equilibrium path of G.1 In what

follows we show that the existence of an equilibrium is equivalent to the

existence of an equilibrium path. Therefore, we can show that a subgame

perfect equilibrium exists by showing that an equilibrium path exists, which

is a simpler task. The reason is that, under the assumption we shall use, the

1 More precisely, the set of equilibrium paths of a game of perfect information is P =

{(x, y) ∈ H : there exists an subgame perfect equilibrium (f1, f2) such that f1 = x and

f2(f1) = y}.
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set of equilibrium paths is compact, while the set of equilibrium strategies

typically is not (see Harris [3, proposition 4]).

Define a correspondence E2 from S1 into S2 as follows:

E2(s1) = {y ∈ A2(s1) : P2(s1, y) ≥ U2(s1, s2), for all s2 ∈ A2(s1)};

this correspondence gives the equilibrium paths of the one-player game 〈A2(s1), P2〉.

The set

E1 = {(x, y) ∈ H : y ∈ E2(x) and for all s1 ∈ S1 there exists s2 ∈ E2(s1)

such that P1(x, y) ≥ P1(s1, s2)}

is then easily seen to be the set of equilibrium paths of the game G =

〈Si, A2, Pi〉i=1,2 (i.e., in the notation of footnote 1, E1 = P .)

Lemma 1 A game of perfect information has a subgame perfect equilibrium

if and only if E1 6= ∅ and E2(s1) 6= ∅, for all s1 ∈ S1.

Proof. Necessity follows from the fact that if (f1, f2) is a subgame perfect

equilibrium then (f1, f2(f1)) ∈ E1 and f2(s1) ∈ E2(s1), for all s1 ∈ S1.

For sufficiency, let (x, y) ∈ E1. Define player 1 strategy by f1 = x. For

player 2, we define f2(f1) = y. For s1 6= f1, because (x, y) = (f1, f2(f1)) ∈ E1,

it follows that there exists s2 ∈ E2(s1) such that

P1(f1, f2(f1)) ≥ P1(s1, s2);
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hence we define f2(s1) = s2.

3 Approximation by Simple Functions and

Harris’ Theorem

Let G = 〈Si, A2, Pi〉i=1,2 be a game of perfect information, and assume that

for all i = 1, 2, Pi(H) ⊂ [0, 1). For i = 1, 2 and k ∈ N, let P k
i : H → R be

defined by

P k
i (h) =

j − 1

2k
if

j − 1

2k
≤ Pi(h) <

j

2k
, (1)

for j = 1, . . . , 2k. Define Gk =
〈
Si, A2, P

k
i

〉
i=1,2

, for all k ∈ N. We have that

∣∣∣∣P k
i − Pi

∣∣∣∣
∞ ≤ 1

2k , and also that P k
i is a simple function; this last fact allows

us to solve the game Gk by backwards induction, and thus show that it has

a subgame perfect equilibrium. The following lemma summarizes this fact.

Lemma 2 For all k ∈ N, Gk has a subgame perfect equilibrium.

Proof. It follows immediately by backward induction:

Let s1 ∈ S1. Since P2 is simple, then {P2(s1, s2) : s2 ∈ A2(s1)} is finite,

and so there exists s∗2 that maximizes s2 7→ P2(s1, s2) in A(s1). Thus, define

f2(s1) = s∗2. This defines an optimal strategy f2 : S1 → S2 for player 2.
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Similarly, since P1 is simple, then {P1(s1, f2(s1)) : s1 ∈ S1} is finite, and

so there exists s∗1 that maximizes s1 7→ P1(s1, f2(s1)) in S1. Thus, define

f1 = s∗1. This defines an optimal strategy f1 ∈ S1 for player 1. Clearly,

f = (f1, f2) is a subgame perfect equilibrium.

We will prove Harris’ theorem by approximating a given game G by a se-

quence of games {Gk}∞k=1 as defined above. In fact, this will be a consequence

of Theorem 1 below, which shows that the set of equilibrium outcomes of Gk

converges to the set of equilibrium outcomes of G.

Theorem 1 Let G = 〈Si, A2, Pi〉i=1,2 , be a game of perfect information.

Suppose that

1. for all i = 1, 2, Si is a compact topological space;

2. H is a closed subset of S1 × S2;

3. for all i = 1, 2, Pi is continuous;

4. A2 : S1 →→ S2 is lower hemicontinuous.

Then, E1 = ∩∞k=1E
k
1 = ∩∞k=1E

k
1 and E2(s1) = ∩∞k=1E

k
2 (s1) = ∩∞k=1E

k
2 (s1),

for all s1 ∈ S1.
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Proof. We show first that E1 ⊆ ∩∞k=1E
k
1 and E2(s1) ⊆ ∩∞k=1E

k
2 (s1), for

all s1 ∈ S1. This follows from the fact that for all i = 1, 2 and h, l ∈ H,

Pi(h) ≥ Pi(l) implies P k
i (h) ≥ P k

i (l).

We show next that ∩∞k=1E
k
1 ⊆ E1. Let (x, y) ∈ ∩∞k=1E

k
1 . Then, for each

k ∈ N, there a net {(xk
j , y

k
j )}j∈Jk

⊆ Ek
1 converging to (x, y).

First, we will show that y ∈ E2(x). Let s2 ∈ A2(x), k ∈ N, and {sj}j∈Jk

be such that sj ∈ A(xk
j ) for all j, and sj → s2 (such net exist since A is lower

hemi-continuous). Since for all j ∈ Jk we have that yk
j ∈ Ek

2 (xk
j ), then

P k
2 (xk

j , y
k
j ) ≥ P k

2 (xk
j , sj),

for all j ∈ Jk. Since
∣∣∣∣P k

2 − P2

∣∣∣∣
∞ ≤ 1

2k , we obtain

P2(x
k
j , y

k
j ) ≥ P2(x

k
j , sj)− 2

2k
,

and so,

P2(x, y) ≥ P2(x, s2)− 2

2k
,

since P2 is continuous. Finally, letting k →∞, it follows that

P2(x, y) ≥ P2(x, s2).

Hence, it follows that y ∈ E2(x).
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We are left to show that for all s1 ∈ S1 there exists s2 ∈ E2(s1) such

that P1(x, y) ≥ P1(s1, s2). Let s1 ∈ S1 and k ∈ N. For each j ∈ Jk, let

wk
j ∈ Ek

2 (s1) be such that

P1(x
k
j , y

k
j ) ≥ P1(s1, w

k
j ).

Since {wk
j }j∈Jk

⊆ A2(s1), and A2(s1) is compact, we may assume that

{wk
j }j∈Jk

converges; let wk be such that wk
j → wk. The sequence {wk}k∈N

lies also on A2(s1) and so we may again assume that it converges; let w be

such that wk → w. An argument parallel to the one used above establishes

that

P1(x, y) ≥ P1(s1, w).

Hence, it is enough to show that w ∈ E2(s1), which can again be done with

an argument similar to the one used to show that y ∈ E2(x).

Similarly, one can show that ∩∞k=1E
k
2 (s1) ⊆ E2(s1), for all s1 ∈ S1. This

completes the proof.

Theorem 1 gives a characterization of subgame perfect equilibrium paths

of G in terms of the equilibrium paths of the approximating games, and

provides an algorithm for their computation. Also, it follows immediately

from Theorem 1 that E1 and E2(s1), for all s1 ∈ S1, are compact. Also,

Harris’ Theorem follows easily from Lemma 2, and Theorem 1.
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Theorem 2 (Harris) Let G be a game of perfect information. Under the

same assumptions of Theorem 1, G has a subgame perfect equilibrium.

Proof. First note that because H is compact and Pi is continuous for

i = 1, 2, there is no loss in generality by assuming that Pi(H) ⊂ [0, 1), for all

i = 1, 2.

For k ∈ N, let Gk be as defined above. By Lemma 2 it follows that Ek
2 (s1)

is nonempty, for all s1 ∈ S1, and that Ek
1 is nonempty. Since, for all k ∈ N,

i = 1, 2 and h, l ∈ H, P k+1
i (h) ≥ P k+1

i (l) implies P k
i (h) ≥ P k

i (l), it follows

that Ek+1
2 (s1) ⊆ Ek

2 (s1), for all s1 ∈ S1 and that Ek+1
1 ⊆ Ek

1 .

Claim 1 For all s1 ∈ S1, A2(s1) is closed.

Proof. Let {yj}j∈J be a convergent net in A2(s1) and let y ∈ S2 be such

that yj → y. Since (s1, yj) ∈ H for all j ∈ J, and H is closed, it follow that

(s1, y) ∈ H. Hence, y ∈ A2(s1).

Since for all s1 ∈ S1, A2(s1) is closed it follows that Ek
2 (s1) ⊆ C2(s1), for

all k ∈ N; furthermore, for all s1 ∈ S1 and k ∈ N, Ek
2 (s1) is a nonempty,

closed subset of a compact space and Ek+1
2 (s1) ⊆ Ek

2 (s1). Hence, for all

s1 ∈ S1, ∩∞k=1E
k
2 (s1) is a nonempty subset of A2(s1) (see Kelley [2, theorem

1, page 136]). Similarly, we can conclude that ∩∞k=1E
k
1 is a nonempty subset
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of H. Hence, it follows from Theorem 1 that E2(s1) is nonempty, for all

s1 ∈ S1, and that E1 is nonempty, which completes the proof.

Remark 1 Note that the above Theorem dispenses with the assumption used

by Harris [4] that Si, i = 1, 2, is Hausdorff.
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