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Abstract

We suggest a model of (a thin) market at which the number of participants
is random with Poisson distribution. We provide a formula for joint distri-
bution of the market price and the traded volume. We derive an asymptotic
distribution of the quantities. We find that, according to our model, with in-
creasing intensity of the participants’ number, the fluctuations of the market
price vanish while the variance of the traded volume increases.
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AMS classification: 91B26
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1 Introduction

The standard economic theory teaches us that changes of the market price are
caused by movements of the aggregate demand and of the aggregate supply
curves (the movements itself are caused by changes of agents’ preferences) or
by a delay of producers’ reaction to the demand (various cobweb models are
trying to describe the situation, see [1]).

We point at another possible cause of the price (and of the traded volume)
fluctuation - the varying number of market participants.

We suggest a model in which the individual demand function of each buyer
and the individual supply function of each seller remains constant but the
number of buyers coming to trade and the number of sellers coming to trade
are random. We assume Poisson distribution of both quantities.

We suppose our model to be quite realistic (especially on the side of the
demand). For instance, a consumer may have constant demand for milk but
he/she may not come to the same milkman every day. Another exemplary
situation is the following: The consumers have constant (weekly) demand for
carrot but they buy it only once a week. Similarly, the farmers may provide
constant supply of carrot but they come to sell it only once a week. In this
situation, both the number of buyers and the number of sellers may be modelled
using random variables so that our model may be suitable.

2 Definitions

Consider a market with perfectly divisible commodity being peopled by two
types of agents - the buyers and the sellers. Suppose all buyers to have the
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same (linear) demand function

d(p) = max(d1(d2 − p), 0)

where d1 > 0, d2 > 0 are some constants. Further, suppose that all sellers have
the same (linear) supply function

s(p) = max(s1(p− s2), 0),

where s1 > 0, s2 > 0 and s2 < d2.

Denote by X the number of buyers coming to trade and by Y the number
of sellers coming to trade and assume that X and Y are random both having
Poisson distribution with parameters δ, σ respectively. We recall that the
Poisson distribution of agents’ arrival is usually used in mathematical models
of situations with a large number of agents, each coming with the same small
probability.

Under our assumptions, the (random) aggregate demand function and the
(random) aggregate supply function are

D(p) = Xd(p), S(p) = Y s(p)

with expected values ED(p) = δd(p), ES(p) = σs(p). Assume further, that
the market price is determined by the intersection of the aggregate demand
function with the aggregate supply function, provided that at least one buyer
and at least one seller came to trade. If no seller came or no buyer came then
the price remains undefined. Then, the price equals to

P =





d1d2X+s1s2Y
d1X+s1Y

= d2

(
1− 1−s2d−1

2

1+d1s−1
1 XY −1

)

= s2

(
1 +

d2s−1
2 −1

s1d−1
1 Y X−1+1

) if X > 0 ∧ Y > 0

undefined otherwise

(1)

(symbol ∧ denotes logical and) while the traded volume is

Q =

{
D(P ) = S(P ) = d2−s2

s−1
1 Y −1+d−1

1 X−1 if X > 0 ∧ Y > 0

0 otherwise
.

Since X > 0 ∧ Y > 0 ⇒ Q > 0, we have

[P = undefined] ⇔ [Q = 0] ⇔ [Y = 0 ∨X = 0] (2)

(symbol ∨ means logical or).
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3 Distribution of the market price and the

traded volume

If p > s2 then

[P 6= undefined] ∧ [P ≤ p]

⇔ [X > 0 ∧ Y > 0] ∧ [S(p) ≥ D(p)]

⇔ [X > 0 ∧ Y > 0] ∧
[
s−1
1 Y −1d2 − p

p− s2

≤ d−1
1 X−1

]
. (3)

Further, if q > 0 then

[P 6= undefined] ∧ [Q ≤ q]

⇔ [X > 0 ∧ Y > 0] ∧
[
d2 − s2

q
≤ s−1

1 Y −1 + d−1
1 X−1

]
. (4)

Using the equivalences above and the fact that P 6= undefined ⇒ P ≥ s2 we
may describe the distribution of the random vector1 (P, Q) as follows:

Lemma 1 If p > s2 and q > 0 then

P {0 < Q ≤ q, P ≤ p}

= P{[X > 0, Y > 0]

∧[max

(
d2 − s2

q
− s−1

1 Y −1, s−1
1 Y −1

(
d2 − s2

p− s2

− 1

))
≤ d−1

1 X−1]},

if p ≤ s2 then
P {0 < Q ≤ q, P < p} = 0 (5)

and it holds that

P {Q = 0} = P {P = undefined} = P {[Q = 0] ∧ [P = undefined]}
= P {X = 0 ∨ Y = 0} .

1Since P may take not only real values but also the value undefined, it is not a real
random variable but the random element defined on space R∪{undefined} with σ-algebra
σ(B(R), {undefined}) where the symbol B denotes Borel σ-algebra (see [3] for information
how to handle random elements on general spaces).
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Lemma 2 If X and Y are independent, then

P {0 < Q ≤ q, P ≤ p}

= e−σ−δ

∞∑
i=1

∑
{

j∈N:1≤j≤
(
d1 max

{
d2−s2

q
−s−1

1 i−1,s−1
1 i−1

(
d2−s2
p−s2

−1
)})−1

} δi

i!

σj

j!
(6)

for each p > s2 and q > 0 and it holds that

P {Q = 0} = e−δ + e−σ − e−δ−σ. (7)

Proof. We may get (6) by summing the probabilities of all combinations of X
and Y values fulfilling conditions (3) and (4). The relation (7) is straightfor-
ward. 2

4 Asymptotic distribution of market price and

traded volume

Fix d1, d2, s1, s2 and denote Pn and Qn the market price and the traded volume
reached at the market defined by d1, d2, s1, s2, X = Xn ∼ Po (nκ) and Y =
Yn ∼ Po (nλ) where n ∈ N, κ ∈ R+, λ ∈ R+ are some constants (the symbol
Po (z) denotes Poisson distribution with parameter z). Assume that X and
Y are independent. The subject of our interest is the limit behavior of vector
(Pn, Qn) as n →∞.

Lemma 3 Denote

p∗ =
κd1d2 + λs1s2

κd1 + λs1

, q∗ =
d2 − s2

d−1
1 κ−1 + s−1

1 λ−1
.

It holds that (√
n(Pn − p∗),

1√
n

(Qn − nq∗)
)

n→∞−→ Z

(we mean the convergence in distribution) where Z = (Z1, Z2) is a random
vector defined by

P {Z1 < c1, Z
2 < c2}

= P {
ξ1 < min{κ1/2Ac1 + κ1/2λ−1/2ξ2, s

−1
1 κ1/2λ−1Ac2 − s−1

1 d1κ
3/2λ−3/2ξ2}

}

=

∫ C

−∞
φ

(
κ1/2Ac1 + κ1/2λ−1/2x

)
dφ(x)

+

∫ ∞

C

φ
(
s−1
1 κ1/2λ−1Ac2 − s−1

1 d1κ
3/2λ−3/2x

)
dφ(x)
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A =
(κd1 + λs1)

2

κλd1s1(d2 − s2)
, C = A

s−1
1 λ−1c2 − c1

λ−1/2 + s−1
1 d1κλ−3/2

for each c1 ∈ R and c2 ∈ R, where ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1) are independent
random variables and φ is standard normal distribution function.

Corollary
√

n
A√

κ−1 + λ−1
(Pn − p∗)

n→∞−→ N (0, 1) (8)

1√
n

A√
κ2λ−1d2

1 + κ−1λ2s2
1

(Qn − nq∗)
n→∞−→ N (0, 1) (9)

Proof. See Appendix A. 2

5 Interpretation

Not surprisingly, randomness of market participants’ number causes fluctua-
tions both of the price and of the traded volume. Another not surprising fact is
that if the demand or the supply function shifts to the right (i.e. the parameter
d2 or s2 increases) then the price also increases (for all possible positive values
of X and Y ) and vice versa (those facts follow from (1)).

It may be seen from (1) that the distribution of P does not depend directly
on d1 and s1 but on their ratio s1/d1. Hence, the distribution of the price
(not of the volume) remains unchanged if the slope of the individual demand
function and the slope of the individual supply function are multiplied by the
came constant.

As the market tends to be more liquid (i.e. the intensity of buyers arrival
and the intensity of sellers arrival increase at the same rate) then it follows
from Corollary of Lemma 1 that the market price converges to the intersection
of expected demand and supply curves (which is not changing if the intensities
grow accordingly). Hence, at liquid markets, the fluctuations of the price
caused by random arrival of the agents are small, hence may be neglected.

The situation is different in case of the traded volume: even if the expecta-
tion of traded volume is roughly equal to the intersection of expected demand
and supply curves, the variability of the traded volume is increasing with in-
creasing intensity. Hance the fluctuations of the traded volume may not be
neglected at the liquid market if the number of agents is random.
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6 Concluding remarks

We have assumed Poisson distribution of sellers and buyers. However, Lemma
1 holds for each positive discrete distribution of X and for each positive discrete
distribution of Y including deterministic X and/or Y .

Moreover, the model may be easily generalized to the situation that the
slopes of the individual demand and supply functions are random: If we denote
by Di the (possibly zero) slope of the i-th demand function and by Sj the
(possibly zero) slope of the j-th supply function then the aggregate demand
function is D(p) = R(d2 − p), R =

∑
i Di whilde the aggregate supply one is

S(p) = T (p− s2), T =
∑

j Sj and it cam be easily shown that Lemma 1 holds
with R instead of d1X and with T instead of s1Y .

A Appendix - proof of Lemma 3 and its

Corollary

Ad. the Lemma. Fix c1 and c2 and denote pn
4
= p∗+c1/

√
n and qn

4
= nq∗+

√
nc2.

It holds that

ηn
4
= P

{[√
n(Pn − p∗) ∈ (−∞, c1)

] ∧
[

1√
n

(Qn − nq∗) ∈ (−∞, c2)

]}

= P {[Pn ∈ (−∞, pn)] ∧ [Qn ∈ (−∞, qn)]}
= P {[Pn 6= undefined] ∧ [Yns1(pn − s2) > Xnd1(d2 − pn)]

∧([Qn = 0] ∨ [(Qn 6= 0) ∧ (d2 − s2)d1Xns1Yn < qn (s1Yn + d1Xn)])}
(2)
= P {[Pn 6= undefined] ∧ [Yns1(pn − s2) > Xnd1(d2 − pn)]

∧[(d2 − s2)d1Xns1Yn < qn (s1Yn + d1Xn)]}

for each c1 ∈ R and c2 > −√nq∗. The subject of our interest is limn→∞ ηn.
Since

P {Pn = undefined} = P {Xn = 0 ∨ Yn = 0} ≤ P {Xn = 0}+ P {Yn = 0}
= e−nκ + e−nλ n→∞−→ 0,

we have

lim
n→∞

ηn = lim
n→∞

P{[Yns1(pn − s2) > Xnd1(d2 − pn)]

∧[(d2 − s2)d1Xns1Yn < qn (s1Yn + d1Xn)]} (10)

(indeed, if limnP {An} = 0, then it holds that limnP {¬An ∧Bn}= limn[P {Bn}
− P {An ∧Bn}] = limnP {Bn}). Further we have
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Yns1(pn − s2) > Xnd1(d2 − pn)

⇔ Xnd1(d2 − pn)− Yns1(pn − s2) < 0

⇔ (Xn − nκ)d1(d2 − pn)− (Yn − nλ)s1(pn − s2)

< nλs1(pn − s2)− nκd1(d2 − pn)

⇔ (Xn − nκ)d1(d2 − pn)− (Yn − nλ)s1(pn − s2)

< n [pn(λs1 + κd1)− (λs1s2 + κd1d2)]

⇔ (Xn − nκ)d1(d2 − pn)− (Yn − nλ)s1(pn − s2)

<
√

nc1(λs1 + κd1)

⇔ Xn − nκ√
n

d1(d2 − pn)

λs1 + κd1

− Yn − nλ√
n

s1(pn − s2)

λs1 + κd1

< c1

⇔ Unκ
1/2d1(d2 − pn)

λs1 + κd1

− Vnλ
1/2 s1(pn − s2)

λs1 + κd1

< c1 (11)

where

Un =
Xn − nκ√

κn
, Vn =

Yn − nλ√
λn

.

and, since

κ
d1(d2 − p∗)
κd1 + λs1

= λ
s1(p

∗ − s2)

κd1 + λs1

=
κλd1s1(d2 − s2)

(κd1 + λs1)2
=

1

A
(12)

we have

Yns1(pn − s2) > Xnd1(d2 − pn)
(11),(12)⇔ Unκ−1/2 − Vnλ

−1/2 < Ac1. (13)

Further, since

n−3/2d1Xns1Yn = n−3/2(Xn − κn + κn)(Yn − λn + λn)

= n−1/2
√

κUn + κ
√

n)(
√

λVn + λ
√

n)

= n−1/2
√

κλUnVn + κ
√

λVn + λ
√

κUn + κλ
√

n

= n−1/2
√

κλUnVn + κ
√

λVn + λ
√

κUn + κλ
√

n

= O(n−1/2) + κ
√

λVn + λ
√

κUn + κλ
√

n (14)

and

n−3/2qn (d1Xn + s1Yn)

= n−3/2qn [d1(Xn − κn + κn) + s1(Yn − λn + λn)]

= n−1qn(d1

√
κUn + s1

√
λVn) + n−1/2qn(d1κ + s1λ)

= (q∗ + O(n−1/2))(d1

√
κUn + s1

√
λVn) + n−1/2qn(d1κ + s1λ)

= (q∗ + O(n−1/2))(d1

√
κUn + s1

√
λVn) + n1/2q∗(d1κ + s1λ) + c2(d1κ + s1λ)

= (q∗ + O(n−1/2))(d1

√
κUn + s1

√
λVn) + d1s1(d2 − s2)κλ

√
n

+c2(d1κ + s1λ) (15)
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we may write, for a = d1s1(d2 − s2),

aXns1Yn < qn (s1Yn + d1Xn)

(14),(15)⇔ a(λ
√

κUn + κ
√

λVn) + aκλ
√

n

< q∗(d1

√
κUn + s1

√
λVn) + c2(d1κ + s1λ) + aκλ

√
n + O(n−1/2)

⇔ √
κ(aλ− q∗d1)Un +

√
λ(aκ− q∗s1)Vn < c2(d1κ + s1λ) + O(n−1/2)

⇔ √
κ

aλ− q∗d1

d1κ + s1λ
Un +

√
λ

aκ− q∗s1

d1κ + s1λ
Vn < c2 + O(n−1/2)

⇔ √
κa

λ− κλd1

d1κ+s1λ

d1κ + s1λ
Un +

√
λa

κ− κλs1

d1κ+s1λ

d1κ + s1λ
Vn < c2 + O(n−1/2)

⇔
√

κas1λ
2

(d1κ + s1λ)2
Un +

√
λad1κ

2

(d1κ + s1λ)2
Vn < c2 + O(n−1/2)

⇔ (s1κ
−1/2λUn + d1κλ−1/2Vn) < Ac2 + O(n−1/2) (16)

From the computations above it follows

ηn
(10),(13),(16)

= P{[Unκ
−1/2 − Vnλ

−1/2 < Ac1]

∧[s1κ
−1/2λUn + d1κλ−1/2Vn < Ac2 + O(n−1/2)]}

and, since (Un, Vn)
n→∞−→ (ξ1, ξ2) by the Multivariate Central Limit Theorem, we

have, using the Continuous Mapping Theorem (see [2] for both the Theorems),

lim
n→∞

ηn = P {
[ξ1κ

−1/2 − ξ2λ
−1/2 < Ac1] ∧ [s1κ

−1/2λξ1 + d1κλ−1/2ξ2 < Ac2]
}

= P{ξ1 < min{κ1/2Ac1 + κ1/2λ−1/2ξ2,

s−1
1 κ1/2λ−1Ac2 − s−1

1 d1κ
3/2λ−3/2ξ2}}

=

∫
φ(min{κ1/2Ac1 + κ1/2λ−1/2x

, s−1
1 κ1/2λ−1Ac2 − s−1

1 d1κ
3/2λ−3/2x})dφ(x)

=

∫ C

−∞
φ

(
κ1/2Ac1 + κ1/2λ−1/2x

)
dφ(x)

+

∫ ∞

C

φ
(
s−1
1 κ1/2λ−1Ac2 − s−1

1 d1κ
3/2λ−3/2x

)
dφ(x). (17)

Ad. the Corollary. From the Lemma it follows that

P {√
n(Pn − p∗) < c1

} n→∞−→ P {
Z1 < c1

}
= lim

c2→∞
P {

Z1 < c1, Z
2 < c2

}

(17)
= P {

κ−1/2ξ1 − λ−1/2ξ2 < Ac1

}

= P {N (
0, κ−1 + λ−1

)
< Ac1

}

= P
{√

κ−1 + λ−1A−1N (0, 1) < c1

}
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which proves (8). Similarly,

P {
n−1/2(Qn − nq∗)

} n→∞−→ P {
[s1κ

−1/2λξ1 + d1κλ−1/2ξ2 < Ac2]
}

= P {N (
0, s2

1κ
−1λ2 + d2

1λ
−1κ2

)
< Ac2

}

= P
{

A−1
√

s2
1κ
−1λ2 + d2

1λ
−1κ2N (0, 1) < c2

}
.
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