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Abstract

We study non-linear Markov perfect equilibria in a two agent linear quadratic
differential game. In contrast to the literature owing to Tsutsui and Mino
(1990), we do not associate endogenous subsets of the state space with can-
didate solutions. Instead, we address the problem of unbounded-below value
functions over infinite horizons by use of the ‘catching up optimality’ cri-
terion. We present sufficiency conditions for existence based on results in
Dockner, Jørgenson, Long, and Sorger (2000). Applying these to our model
yields the familiar linear solution as well as a condition under which a contin-
uum of non-linear solutions exist. As this condition is relaxed when agents are
more patient, and allows more efficient steady states, it resembles a Folk The-
orem for differential games. The model presented here is one of atmospheric
pollution; the results apply to differential games more generally.
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1 Introduction

This paper analyses non-linear strategies in a linear quadratic differential
game played by two identical agents whose controls are bounded below by
zero. The techniques developed are then applied to two modified versions of
the game. This study is motivated by a greenhouse gas emissions problem.

A differential game is a game played in continuous time in which agents’
choices cause a state variable to evolve according to a differential equation.
The standard solution concept, the Markov Perfect Equilibrium (MPE), al-
lows application of optimal control techniques to the game. Thus, differential
games extend static games, repeated games and optimal control problems.

The workhorse of this literature has been the linear quadratic game
(LQG). Its name derives from the two equations defining a differential game,
the state variable’s equation of motion, and agents’ instantaneous utility
functions. In LQG the former is a linear function of agents’ controls and
the state variable; the latter are quadratic in the same.1 Not only do LQG
therefore seem to capture some of the spirit of many economic problems2, but
they are known to yield particularly tractable solutions: the singular solu-
tion to the differential equation generated by the Hamilton-Jacobi-Bellman’s
equation is linear and unique within the class of linear MPE under general
conditions (Başar and Olsder, 1999, Remark 6.16).

In the absence of further constraints, however, there is no reason to find
these singular solutions more appealing than other ones. This observation has
generated an interest in non-linear MPE in LQG dating back to Tsutsui and
Mino (1990). In their paper, duopolies choose output levels of a homogeneous
good, causing a sticky price variable to evolve over time. In addition to
the well known linear MPE, they found a continuum of non-linear ones.
Economically, these were of particular interest when the steady state of a
non-linear MPE was that of the first best - a version of the Folk Theorem
for differential games.

Their finding has become the standard reference in papers on non-linear
strategies in LQG and has been applied to a variety of settings, including
environmental economics (q.v. Dockner and Long, 1993; Wirl and Dockner,

1In an affine quadratic game, the equation of motion also includes a constant term.
Both specifications will be referred to here as ‘linear quadratic’ games. This is less precise,
but more concise.

2Fudenberg and Tirole (1991, 13.3.3) also note the hope that LQG represent “good
Taylor approximation[s] to more general games”.
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1995; Mäler, Xepapadeas, and de Zeeuw, 2003), industrial organisation (q.v.
Karp, 1996; Vencatachellum, 1998b) and the economics of the family (q.v.
Feichtinger and Wirl, 1993).

At the same time, the paper generated disquiet with its endogenisation
of the domain over which strategies were defined, and their performance
assessed. The differential equation derived from the HJB equation produced
an infinite number of solutions. For each solution, the associated play lay
above the control bound over a sub-domain of the state space. Tsutsui and
Mino (1990) then evaluated play, and deviations, over these sub-domains.

This endogenisation has serious implications: for a particular strategy to
support a Nash equilibrium an agent must regard that strategy as yielding a
superior payoff to any other admissible strategy. Such comparison of payoffs
can only occur if agents are allowed to consider all possible strategies of play,
including those strategies which would cause the state variable to leave the
endogenous sub-domain, while remaining in the original state space. By pre-
venting their consideration, this approach ruled out the sort of calculation
that underlies the Nash concept. Possibly reflecting these concerns, a lead-
ing text on differential games continues to regard the problem of non-linear
solutions as an open one (Başar and Olsder, 1999, Remark 6.16).

This paper seeks to remedy this problem. It does so in two steps. First,
it presents a sufficiency result for the existence of MPE based on results
in Dockner et al. (2000). The result is applicable well beyond LQG. More
specifically, it applies to infinite horizon differential games in which the value
function may be unbounded below and may not be continuously differen-
tiable.

Each of these latter two features introduces technical complications for
sufficiency conditions. Generalised gradients are required at the non-differentiable
points in the domain of a candidate value function. The larger problem, and
that responsible for concerns about the existing literature, is the unbounded
below value function. Over the infinite horizon, this allows integrals asso-
ciated with control paths to be non-convergent. This, in turn, may require
comparison of infinite payoffs. A standard solution to this has been to im-
pose parameter constraints, or Uzawa conditions, to ensure finite valuation.
The role of the endogenous sub-domains in Tsutsui and Mino (1990) and its
successors is similar: a bounded domain bounds instantaneous utility; with
impatience, this ensures finite valuation.

Rather than imposing parameter bounds, we follow a literature which
tries to handle infinite values directly. In contrast to our environment, this
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has been largely motivated by a preference avoid discounting future payoffs or
costs rather than by unbounded instantaneous utility. The earliest example
may be found in Ramsey (1928), which rejected discounting as an “ethically
indefensible . . . weakness of the imagination”. The ‘Ramsey device’ (Wan,
Jr, 1971) assumed satiation at finite levels of consumption. When actual
consumption approached this level, the undiscounted series defined by the
extent to which instantaneous utility fell short of ‘bliss’ was convergent.

To address situations without satiation, von Weizsäcker (1965) and At-
sumi (1965) introduced what has become known as the ‘overtaking’ criterion
for comparing programmes with infinite value: a feasible programme is op-
timal under this criterion if its payoff stream (weakly) exceeds that of any
other for all finite horizons beyond some T̄ .3

As optimal programmes may not exist under this criterion, weaker criteria
have also been introduced. Best known among these is the ‘catching up’
criterion of Gale (1967). This stands in the same relation to the overtaking
criterion as an ε-equilibrium does to a strict equilibrium.4

As such criteria have not been widely applied to games, no consensus
exists on their applicability. The sufficiency conditions presented by Dockner
et al. (2000) use catching up optimality as their baseline criterion. As the
sufficiency result presented here assembles a number of theirs, we also adopt
this criterion.

The paper’s second step is to apply the sufficiency conditions to the solu-
tions of the HJB equation generated by a standard LQG. The specific model
analysed here is closer to that in Dockner and Long (1993) in both form and
motivation than it is to Tsutsui and Mino (1990). This has no analytical
consequence: the techniques and results presented here are applicable not
only to other LQG, but to more general differential games as well. Outside
of the LQG framework, singular solutions need not be linear.

Unsurprisingly, we again find the standard linear MPE. We also derive a
necessary and sufficient condition for the continuum of non-linear candidates
first reported by Tsutsui and Mino (1990) to be MPE. Rowat (2002b) (an ear-
lier version of this paper) and Rubio and Casino (2002) have both identified
identified this condition. Rowat (2002b) did not satisfactorily recognise and

3Although introduced in the same journal issue, later writers have often unambiguously
ascribed the criterion to one author or the other. I am grateful to Jim Mirrlees for
suggesting that the criteria were independently defined.

4Seierstad and Sydsæter (1977) and Dockner et al. (2000) review these criteria, and a
weaker one yet, ‘sporadically catching up’. Stern (1984) adds a further five criteria.
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address the problem of non-convergent integrals; the possibility of sustained
deviation was not recognised in Rubio and Casino (2002).

The condition loosens as agents become more patient; once patience ex-
ceeds a threshold, the continuum of non-linear MPE grows continuously. As
this threshold depends on other model parameters, even perfect patience may
not be sufficient to attain it. When the steady state of the singular solution
exceeds that of the first best, the non-linear MPE reach more efficient steady
states than the linear. If agents are sufficiently patient, it is even possible to
reach the first best steady state. This has the flavour of a Folk Theorem for
differential games.

Although multiple equilibria may arise, they are consistent with the
unique optima found in the optimal growth literature with unbounded re-
turns (q.v Le Van and Morhaim, 2002, in discrete time): given any fixed play
by the second agent, a single optimal control is derived for the first. Multiple
equilibria thus result not from multiple best responses to given play, but to
multiple (symmetric) fixed points.5

The linear quadratic model is presented in Section 2. Section 3 presents
and solves its associated Hamilton-Jacobi-Bellman equation. This produces
a family of candidate MPE, which are assessed in Section 4. Section 5 con-
cludes. Appendix A presents the sufficiency conditions for equilibrium based
on Dockner et al. (2000). These are weaker than required for our present
application but should facilitate analysis of more general differential games.
The definitions throughout also follow Dockner et al. (2000).

2 The linear quadratic model

Consider a symmetric, stationary differential game. There are two identical
agents, i ∈ {1, 2}; refer to the agent other than i by −i. At each instant
in time, t, each selects a control, ui (t), from its feasible set. With the play
of the other, φ−i, this influences the evolution of a state variable, x. Each
seeks to maximise the present value, discounted at rate r ∈ ℜ++, of its utility
stream.

5The ‘technology’ in the differential game cannot be classified ex ante as being of
constant, increasing or decreasing returns, as in the optimal growth, as the transition
process depends on both agents’ play.
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The game thus outlined, Γ (x0, 0), may be formalised as:

max J i
φ−i

(

ui (·)
)

=

∫ ∞

0

e−rtF
(

x (t) , ui (t) , φ−i (x (t))
)

dt (1)

s.t. ẋ = f
(

x (t) , ui (t) , φ−i (x (t))
)

; (2)

x (0) = x0 ∈ X; (3)

ui (t) ∈ U
(

x (t) , φ−i (x (t))
)

; (4)

The game is symmetric as: agents’ instantaneous payoff functions and feasible
sets take the same form; their ability to influence the state’s evolution is
identical.

It is stationary as the instantaneous payoffs, feasible sets and the equation
of motion are not explicitly dependent on time. The second argument of
Γ (x0, 0) refers to the time at which play begins. As stationary environments
may admit non-stationary solutions, we retain the index to recognise this
possibility.

The linear quadratic game, LQG, considered here restricts the above as
follows:

F
(

x (t) , ui (t)
)

≡ −
(

ui − ξ
)2

− ν (x− ζ)2 ; (5)

f
(

x (t) , ui (t) , φ−i (t)
)

≡ ui (t) + φ−i (t) − δx (t) ; (6)

X ≡ ℜ++;

U
(

x (t) , φ−i (x (t))
)

≡ ℜ+;

where δ, ν, ξ and ζ are positive real constants.6 The parameter restrictions
imposed ensure that instantaneous utility is concave in both control and
state.

An attractive property of LQG is that, when the state and actions spaces
are unbounded, there exist equilibria in which the strategies are linear func-
tions of the state variable alone, yielding value functions that are quadratic
in the state. These are typically derived from a system of Riccati equations
(Dockner et al. (2000, 7.1.3), Başar and Olsder (1999, Proposition 6.8)).
When the strategy spaces are restricted to affine functions of the state vari-
able, these solutions are unique (Başar and Olsder (1999, Remark 6.16),
Lockwood (1996)).

6The LQG presented here is a special case: more general quadratic functions may
include quadratic terms in u−i and cross terms in ui, φ−i and x. Consideration of this
simpler case merely facilitates expositional clarity.
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Under the commons problem interpretation, ui is may be thought of as
nation i’s greenhouse gas emissions, produced incidentally to national pro-
duction (in a fixed ratio), x the atmospheric stock of greenhouse gasses and
δ the decay or assimilation rate. Thus, agents have a production glut point
(ui = ξ) and a climate glut point (x = ζ). The former may be consistent
with an aggregated neo-classical labour supply trade off between work and
leisure or an optimal capacity utilisation ratio. The latter allows agents to
have some sense of optimal climate including, but not necessarily, the lunar
climate, ζ = 0.

2.1 Some reference payoffs

Two reference payoffs are presented to provide comparisons for payoffs arising
from play of the game.

The payoff to being at the glut point, (x, ui) = (ζ, ξ), forever is zero.
While this is not attainable as a steady state except when δζ = 2ξ, it does
impose a finite upper bound on payoffs. Thus, any solution to this problem
must have a payoff that is bounded above by zero.

The steady state of the first best when agents are identical and equally
weighted by the social planner may also be calculated. The first order nec-
essary conditions of the current value Hamiltonian are

m (t) = −Fu

(

x, ui
)

;

ṁ (t) − (δ + r)m (t) = 4ν (x− ζ) ;

where m is the current value Lagrangian multiplier and Fu is the partial
derivative of F () with respect to its second argument. These imply a system
of differential equations.7 Rather than solving the full trajectories note that,
in the steady state, ui (t) = δ

2
x (t) and m (t) = −4ν x−ζ

δ+r
. Combined with the

first order conditions these yield the steady state

(

x̄, ūi
)

=

(

2
(δ + r) ξ + 2νζ

δ (δ + r) + 4ν
, δ

(δ + r) ξ + 2νζ

δ (δ + r) + 4ν

)

. (7)

7The dynamic programming approach does not give any clearer an expression for the
dynamics. Its differential equation,

w′ (x) =
(δ + r)w (x) + 4ν (x − ζ)

2ξ − δx + w

(where w (x) is the derivative of the candidate value function, W (x), and subscripts index
agents) has an unwieldy implicit solution.
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When

ζ

ξ
≤

2

δ
(A1)

the first best stock level exceeds the climate glut level; first best output falls
below the product glut level. As this is the first best, though, it is optimal
by definition and cannot be considered a ‘tragedy’ result.

As condition A1 recurs throughout the paper we adopt it as an assump-
tion in what follows. For now, we motivate the assumption on strictly exposi-
tional grounds, but it will be seen to determine whether the singular solution
under or overprovides relative to the first best in steady state.

3 The Hamiltonian-Jacobi-Bellman equation

As the solution to equation of motion 6 depends on agents’ play, restrictions
on play are necessary to ensure a unique solution, x (t). We impose regularity
conditions to ensure this not out of concern that multiple solutions may
preclude a maximum solution (q.v. Burton and Whyburn, 1952) but in order
to allow agents to associate payoffs to their strategies.

Therefore:

Definition 1. A control path ui : [0, T 〉 7→ ℜ is feasible for Γ (x0, 0) if the
IV problem defined by equations 2 and 3 has a unique, absolutely continuous
solution x (·) such that the constraints x (t) ∈ X and ui (t) ∈ U (x (t) , φ−i)
hold for all t and the integral in equation 1 is well defined.

Feasibility may also be referred to as admissibility (Dockner and Sorger,
1996). As in a generalised game (Debreu, 1952), the feasible set for agent i
therefore depends on the actions taken by other agents. We shall see that fea-
sible controls are consistent with multiple equilibria; each, however, induces
a unique x (t).

As the solution to the initial value problem defined in equation 6 is

x (t) = e−δt

{

x0 +

∫ t

0

eδs
[

u1 (s) + u2 (s)
]

ds

}

; (8)

feasibility merely requires that the ui (t) be integrable. See Başar and Olsder
(1999, pp. 226-7) or Dockner et al. (2000, p. 40) for further discussion.
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As the game is stationary, we focus on equilibria supported by station-
ary strategies. There may also be equilibria supported by non-stationary
strategies.8

Definition 2. A stationary Markov strategy is a mapping, φi : X 7→ U i, so
that the time path of the control ui (t) = φi (x (t)).

Thus, while the payoff-relevant state space may be very large, Markov
strategies are functions of the current state alone.

Then:

Definition 3. A pair of functions φi : X 7→ ℜ, i ∈ {1, 2} is a stationary
Markov Nash equilibrium if, for each i ∈ {1, 2}, an optimal control of problem
1 with constraints 2 to 4 exists and is given by the stationary Markov strategy
ui (t) = φi (x (t)).

The following restricts the more general definition to stationary games:

Definition 4. Let (φ1, φ2) be a Markov Nash equilibrium of Γ (x0, 0). The
equilibrium is a Markov perfect equilibrium (MPE) if, for each (x, t) ∈ X ×
[0, T 〉, the subgame Γ (x, t) admits a Markov Nash equilibrium (ψ1, ψ2) such
that ψi (y, s) = φi (y, s) for all i ∈ {1, 2} and all (y, s) ∈ X × [t, T 〉.

When Γ (x, t) is stationary, Γ (x, 0) = Γ (x, t). Thus, all stationary Markov
Nash equilibria are MPE (Dockner et al., 2000, p.105).

Definition 5. Let the value of game Γ (x0, 0) to agent i be

V i (x) = max
ui≥0

J i
φ−i

(

ui (·)
)

.

The sufficiency conditions in Theorem 2 require that V i be locally Lip-
schitz. By Rademacher’s Theorem, Lipschitz continuous functions are almost
everywhere differentiable (Clarke, 1983, p. 63). In spite of this weak differen-
tiability assumption, we shall see that the equilibrium value functions derived
are members of C∞.

Tsutsui and Mino (1990) and Dockner and Long (1993) require the stronger
assumption that V i (·) ∈ C2; this will be seen, in our environment, to follow
automatically at most points for which our V i are differentiable. Dockner
and Sorger (1996) do not make continuity assumptions; instead, they derive

8See Dockner et al. (2000, Exercise 4.5) for an example.
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MPE strategies which are discontinuous but which generate a continuous V i.
Başar and Olsder’s example 5.2 (Başar and Olsder, 1999, ch 8) demonstrates
that value function continuity may fail even in single agent optimisation
problems; the optimal control in their example follows a bang-bang pattern.
When the value function is finite, Gota and Montruccio (1999) present suf-
ficient conditions for the value function to be C1 with Lipschitz continuous
derivative in spite of the optimal control only being interior for a short time
interval.

When agent i’s value function is differentiable it solves the HJB equation:

rV i (x) = max
ui≥0

[

−
(

ui − ξ
)2

− ν (x− ζ)2 + V i
x (x)

(

ui + φ−i − δx
)

]

; (9)

given fixed play φ−i by agent −i. By V i
x we mean the derivative of V i (x);

later it will refer to a partial derivative. As the equation of motion makes
it impossible that x (t) = 0 if x > 0 no constraints are imposed on the state
space in equation 9.

The non-negativity requirement on ui provides a first order necessary
condition for the optimal control:

ui∗ ≡ max

{

0, ξ +
V i

x (x)

2

}

. (10)

As equation 9 is concave in ui, ui∗ is unique and a maximiser. Solutions to the
HJB equation 9 are not, however, as they introduce a constant of integration.

Refer to situations in which ui∗ = 0 as corner solutions and those in which
ui∗ > 0 as interior solutions. Call the inequality determining the greater term
on the RHS of equation 10 the auxiliary condition.

3.1 The differential equation

Substitute the conditions of equation 10 into the HJB equation 9. As the
differential equation generated produces a family of solutions, denote the
family of candidate value functions so generated by W ; an individual member
of that family is referred to as W . Therefore V 1 ∈ W. Substitute u2∗ = u1∗

into the HJB equation to obtain

rW (x) =

{

−ν (x− ζ)2 +W ′ (x) (2ξ − δx) + 3W ′(x)2

4
,W ′ (x) ≥ −2ξ

−ξ2 − ν (x− ζ)2 − δxW ′ (x) ,W ′ (x) ≤ −2ξ

}

(11)
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Symmetric play has now been imposed. The remainder of the analysis may
be broken into two steps. The first, and standard, solves the two terms of
equation 11; this occupies the next subsections. The more difficult and inno-
vative step involves refining W to identify constants of integration consistent
with the requirements of optimal play’s value function.

3.1.1 Corner solutions

The solution to equation 11 when W ′ (x) ≤ −2ξ is

W (x) = −
ξ2 + νζ2

r
−

ν

2δ + r
x2 +

2νζ

δ + r
x+ cx−

r

δ ;

where c is a constant of integration. The condition on W ′ (x) only allows
this to hold for values of x satisfying

2δ

r

[

ξ +
νζ

δ + r

]

x
δ+r

δ −
2δν

(2δ + r) r
x

2δ+r

δ ≤ c. (12)

x

c

0

c1

c2

Figure 1: Transitions between the corner and interior solutions

As the exponent on equation 12’s first term is smaller than that on the
second, it dominates for small values of x. For larger x, though, the second
term overpowers it. Figure 1, a stylised plot of equation 12, illustrates the
implications of this for solutions. For large values of c (e.g. c2 in the figure)
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the condition for the corner solution is always satisfied and x (x) = 0 is a
solution to the HJB equation. For smaller values, e.g. c1, it is satisfied for
small x, is then violated, and finally is again satisfied for large values of x.
For all c ≤ 0 the condition is violated at small x but eventually comes to
hold. It is expected that, when the corner solutions violate condition 12, the
strategy will continue in the interior.

3.1.2 Interior solutions

The quadratic interior solution, equation 11 when W ′ (x) ≥ −2ξ, is solved
by differentiating it again.9 The next lemma demonstrates when this is le-
gitimate.

Lemma 1. When W (x) is defined by equation 11 and W ′ (x) ≥ −2ξ,W (x) ∈
C∞ if

3

2
W ′ (x) − δx+ 2ξ 6= 0. (13)

The proof first demonstrates that W (x) ∈ C2 when condition 13 holds;
it then extends this result to W (x) ∈ C∞.

Proof. Define a function, g, such that W = g (x,W ′) and note that g ∈ C1.
At points (x0,W

′
0) where g2 6= 0 there exists, by the inverse function theorem,

an h (x0,W0) ∈ C1 such that W ′ = h (x,W ) in the neighbourhood of those
points. As h and its arguments are members of C1 then so is W ′; hence
W ∈ C2 in these neighbourhoods.

Derive an expression for g2 ≡ dW (x)
dW ′(x)

by differentiating equation 11 when

W ′ (x) ≥ −2ξ with respect to W ′ (x). This yields

dW (x)

dW ′ (x)
=

1

r

[

3

2
W ′ (x) − δx+ 2ξ

]

;

so that g2 6= 0 ⇔ inequality 13.
The result follows by noting that g ∈ C∞.

Call the locus of points failing to satisfy inequality 13 the non-invertible
locus. The quadratic term in the interior component of equation 11 causes
this to pass through the feasible state-action space. On the other hand,

9This approach is also taken by Tsutsui and Mino (1990). Dockner and Sorger (1996)
present a case in which direct integration is possible.

11



when condition 13 is not violated, the relevant portion of equation 11 may be
differentiated. For notational convenience define w (x) ≡ W ′ (x). Therefore:

w′ (x) =
(δ + r)w (x) + 2ν (x− ζ)

3
2
w (x) − δx+ 2ξ

when x ≥ 0. (14)

Note that the denominator cannot equal zero as that would require g2 = 0
which, by Lemma 1, would have prevented the differentiation performed to
reach equation 14.

To solve equation 14 transform the equation into one that is homogeneous
of degree zero in its variables by defining Ω ≡ w−a and Ψ ≡ x− b to remove
its constant terms. This requires that

a ≡ 2ν
δζ − 2ξ

δ (δ + r) + 3ν
; and (15)

b ≡
2ξ (δ + r) + 3νζ

δ (δ + r) + 3ν
> 0. (16)

These definitions reduce the differential equation to

dΩ

dΨ
= G

(

Ω

Ψ

)

=
(δ + r) Ω + 2νΨ

3
2
Ω − δΨ

=
(δ + r) Ω

Ψ
+ 2ν

3
2

Ω
Ψ
− δ

. (17)

To exploit the homogeneity of equation 17 define S ≡ Ω
Ψ
. Therefore

[

S2 −
2

3
(2δ + r)S −

4

3
ν

]

dΨ =

(

2

3
δ − S

)

ΨdS;

which has two constant solutions,

S = {sa, sb} ≡
1

3

[

2δ + r ±

√

(2δ + r)2 + 12ν

]

; (18)

with sa > 0 > sb. These are akin to the algebraic Riccati equations used to
derive linear strategies.

Transforming these back into the original variables produces

ua ≡ ξ +
1

2
[a+ sa (x− b)] ; (19)

ub ≡ ξ +
1

2
[a+ sb (x− b)] . (20)
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Defining xb as the stock level at which the line ub (x) intersects the steady
state locus, ẋ (t) = 0, yields

xb =
2ξ + a− sbb

δ − sb

.

Therefore, by some tedious arithmetic:

Lemma 2. Condition A1 ⇔ a ≤ 0 and xb ≥ b ≥ x̄ ≥ ζ.

When S /∈ {sa, sb}, solve

dΨ

Ψ
=

(

2
3
δ − S

)

dS

(S − sa) (S − sb)
=

γadS

S − sa

+
γbdS

S − sb

; (21)

when γa and γb are determined by the method of partial fractions to be

γa ≡
r

3 (sb − sa)
−

1

2
< 0; and γb ≡

−r

3 (sb − sa)
−

1

2
< 0;

so that γa + γb = −1. Integrating equation 21 when S /∈ {sa, sb} then yields

ln |Ψ| = K̂ + γa ln |S − sa| + γb ln |S − sb| ; (22)

where K̂ is a real constant of integration. Exponentiation produces

|Ψ| =
1

K
|S − sa|

γa |S − sb|
γb ; (23)

where K ≡ e−K̂ ≥ 0. In terms of x and W ′ (x) this becomes

K = |W ′ (x) − a− sa (x− b)|
γa |W ′ (x) − a− sb (x− b)|

γb .

Equation 10 may be used to rewrite this in terms of u1 (x) instead of W ′ (x).
Doing so does not change the form of the equation. The ua and ub solutions
identified in equations 19 and 20 correspond to K = 0; thus, each of these
solutions sets one of the right hand side terms to zero.

To sum up, the solution to differential equation 11 is

K = |W ′ (x) − a− sa (x− b)|
γa |W ′ (x) − a− sb (x− b)|

γb when W ′ (x) ≥ −2ξ;

(24)

W (x) = −
ξ2 + νζ2

r
−

ν

2δ + r
x2 +

2νζ

δ + r
x+ cx−

r

δ when W ′ (x) ≤ −2ξ.

(25)
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Equation 24 is still undetermined: integration ofW ′ (x) will produce a second
constant of integration. We shall see that K, the first constant of integra-
tion, indexes solutions while the second constant adjusts payoffs along given
solution paths.

4 Candidate MPE

x

ui

SSL: uSSL = δ
2
x

uNI = 1
3
(ξ + δx)

uaub

b

ξ + 1
2
a

u6

u5

u4

u0

u1

u2u3

ζ

ξ

x̄ xb

Figure 2: Phase diagram when A1 holds

As K is arbitrary, equation 24 describes a family of infinitely many so-
lutions, U , with members ui. The upward and downward sloping solutions
corresponding to K = 0 have already been identified as ua and ub, respec-
tively. These intersect at (x, ui) =

(

b, ξ + 1
2
a
)

> 0, inside the feasible (x, ui)
space. Further, when A1 holds, their intersection is above the climate glut
point (b > ζ) and below the product glut point (ξ + 1

2
a < ξ). As there is a

non-unique solution to the differential equation at this intersection, call that
point a singularity and the strategies passing through it singular solutions.

Denote the ui (x) = 0 corner strategy of equation 25 by u0. The remaining
six types, denoted u1, . . . , u6, are not unique; Figure 2 displays representa-
tives of these families. It also displays the steady state locus (SSL), defined
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by dx
dt

= 0, and the non-invertibility locus (NI), along which dui

dx
= ±∞. In

the present case, these are

uSSL =
δ

2
x and uNI =

δ

3
x+

ξ

3
;

respectively.
Figure 2 can be seen to be equivalent to Figure 1 in Tsutsui and Mino

(1990).10 The diagrams are oriented differently as Tsutsui and Mino’s dia-
gram presents the transformed control variable along the vertical axis while
that here presents the control variable itself. Thus, their upper bound,
y = p−c

s
, is the present ui = 0.

By the HJB equation’s first order condition, equation 10, W ′ (x) < 0
when u1 < ξ, implying that increases in the initial stock, x, always reduce
the value of the game when agent 1 plays at less than the product glut level.
This may seem particularly surprising when x < ζ and above the SSL as x
increases in time towards the climate glut point. This benefit is apparently
balanced by a loss in the product term and, in some cases, a moving more
quickly in time beyond the climate glut point.

Candidate strategies must be able to map from any element of the state
space, X. The u6 family of strategies, u0 and ua (when it does not intersect
the horizontal axis) already do so. The interior solutions ub, u3 and ua (when
it does intersect the horizontal axis) are extended by u0 when they trigger
the auxiliary condition, W ′ (x) = −2ξ; denote these extensions by a caret so
that ûp ≡ max {0, up}, where p indexes solution families.

As these are all integrable, they all produce unique solutions to equation
of motion 6 and therefore represent feasible strategies given given similar
play by −i. Furthermore, although the candidate strategies will generally be
kinked at the corner extension, this is consistent with the requirement that
V i be locally Lipschitz.

4.1 Refining the candidate strategy set

A solution to differential equation 11, W (x), is still two steps removed from
describing payoffs under MPE play. First, it must be demonstrated that
W (x) = V 1 (x), that the candidate value function is a value function. We
refine the candidate set against this requirement with two tests: do they

10cf. also Figure 1 in Dockner and Long (1993) and in Vencatachellum (1998a).
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define functions; are those functions bounded above? Second, we test the
remaining candidates against the sufficiency conditions of Theorem 2 in Ap-
pendix A.

Lemma 3. Members of the u1, u2, u4 and u5 families of solutions to differ-
ential equation 11 cannot form candidate MPE strategies.

Proof. When members of the u1, u2, u4 and u5 solution families intersect the
non-invertibility locus they cease to be functions. If they are to remain under
consideration, some extension to them must be made so that they remain
functions over X. They cannot be extended by u0 as, when they cease to
be functions in X, they do not satisfy the auxiliary condition on W ′ (x). No
other extensions are possible.

It is tempting to consider jumps from one of these solutions to, say, u0.
However, no strategy constructed with jumps like this solves differential equa-
tion 11. Similarly, a candidate MPE strategy cannot switch from ua to ub (or
vice versa) at their intersection as the ensuing path is not one of the trivial
solutions presented in equation 18.

Lemma 4. W (x) 6= V 1 (x) along ûa and the u6 family of strategies.

Proof. Along ûa: x → ∞ ⇒ W ′ (x) → ∞ ⇒ W (x) → ∞, an impossible
integral of the bounded above instantaneous utility function 5. As u6 (x) >
ûa (x), the u6 family produces the same contradiction.

The argument that ûa and the û6 family do not provide candidate MPE
strategies may be illustrated by demonstrating a profitable deviation from
their play: as sa > δ, there is an x such that ẋ > 0 and ui (x) > ξ for
all greater values of x along these strategies. An agent can then improve
its payoff by capping play at ui = ξ; doing so sets the utility loss term in
production to zero and slows the climate loss term’s growth (as compared to
playing ui > ξ).

Discarding ûa and the u6 family leaves only u0, ûb and the û3 family of
strategies to consider as possible MPE strategies.

Lemma 5. W (x) 6= V 1 (x) in any candidate that satisfies ui (0) = 0 and
possesses constant of integration c 6= 0 in that cornered component.
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Proof. By equation 25

lim
x→0

W (x) = −
ξ + νζ2

r
+ c lim

x→0

1

x
r

δ

.

When c > 0, this unbounded limit again contradicts the bounded above
instantaneous utility function. As noted in equation 12, which provided the
condition for the solution to equation differential 11 to remain in the corner,
c < 0 and ui (0) = 0 are contradictory.

The candidate with c = 0 is not eliminated by Lemma 5; it leaves ui (0) =
0 immediately.

Again, express this rejection of ui (0) = 0 in terms of profitable deviations
by considering play at x < ζ, the glut climate. The cornered strategy requires
that agent 1 accept a climate loss as x continues to fall; defection to some
small u1 > 0 reduces the climate loss and provides a production gain.11

Therefore:

Lemma 6. When
a− sab ≤ −2ξ; (26)

the only remaining candidate strategy is ûb.

Proof. As the û3 strategies are bounded above by ûa, Lemma 5 rules out all
û3 when ua (0) ≤ 0; this is equivalent to condition 26.

This condition parallels that discussed in Rubio and Casino (2002, Section
4). Expanded, its complement is

ζ

ξ
<

2

3

3ν + (δ + r)

[

δ − r −
√

(2δ + r)2 + 12ν

]

ν

[

r +
√

(2δ + r)2 + 12ν

] . (27)

Thus, the complementary condition holds whenever the climate glut, ζ, is
sufficiently small relative to the product glut, ξ.

11Similar reasoning would also apply to an û3 member for which ui (0) > 0 but which
then declined to ui (x) = 0 at some 0 < x < ζ. Equation 12 reveals that this is an
impossibility: the û3 path that passes through (0, 0), and therefore attains ui (x) = 0
at the lowest x, is identified by c = 0 along its corner component. This constant sets

ui (x) = 0 at x ∈
{

0, 2δ+r
ν

(

ξ + νζ
δ+r

)}

. As this second value exceeds ζ for non-negative

parameters, the impossibility is established.
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Three particular thresholds bear mention. First, condition 26 holds for
all ν sufficiently small. In the extreme, when ν = 0, the remaining singular
candidate reduces to ûb (x) = ξ: without a stock effect, there is no interaction
between the agents; they optimise with respect to production.12

Second, as the derivative of the right hand side is negative with respect to
r, the complementary condition holds when agents are sufficiently patient.13

By Lemma 2, there are û3 candidates whose steady states lie closer to x̄ than
does that of ûb (q.v. Figure 2) when condition A1 holds.

This observation motivated the search for ‘Folk Theorem’ results whereby
the efficient solution could be obtained by sufficiently patient agents (Tsut-
sui and Mino (1990, p.154), Dockner and Long (1993)). When agents are
sufficiently impatient, this set of more efficient candidates is eliminated.

Finally, comparison reveals complementary condition 27 to be stricter
than assumption A1. Figure 2 illustrates: when the assumption is violated,
a > 0 (equation 15) so that ua and ub intersect at a higher stock and emissions
level than the glut levels. As they intersect below the SSL, and as ua is steeper
than the SSL, it must be that ua (0) < 0 .

Having discarded various families of solutions from further consideration,
we now establish the main result, proving that certain candidates do support
MPE.

Theorem 1. ûb and any {û3|û3 (0) ≥ 0} are MPE strategies.

The sections of the proof correspond to those of the sufficiency conditions
in Theorem 2 (Appendix A):

Proof. 1. as ûb and the candidate û3 are integrable, they satisfy equation
8. A pair of functions based on these is therefore feasible for Γ (x0, 0).

2. (a) Now consider non-stationary value functions and HJB equations.
When V i (x (t) , t;T ) is differentiable, it must solve:

rV i (x, t;T ) =























−ν (x− ζ)2 + V i
x (x, t;T ) (2ξ − δx) + 3V i

x(x,t;T )2

4

+V i
t (x, t;T ) ,

when V i
x (x, t;T ) ≥ −2ξ; and

−ξ2 − ν (x− ζ)2 − δxV i
x (x, t;T ) + V i

t (x, t;T ) ,
when V i

x (x, t;T ) ≤ −2ξ























12This result replicates that of Dockner and Long (1993).
13When δ2 > ν, perfect patience ensures that the condition holds.
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as

ui∗ = max

{

0, ξ +
V i

x (x, t;T )

2

}

.

When ui∗ = 0, this is solved by

V i (x (t) , t;T ) = −
ξ2 + νζ2

r
−

ν

2δ + r
x2+

2νζ

δ + r
x+g

(

t+
ln x

δ

)

z−
r

δ ;

(28)
where g (·) is an arbitrary function of integration with sufficient
differentiability properties. As ui∗ = 0 along this corner solution
implies that x (t) = x (0) e−δt, it follows that g (·) is constant.

When ui∗ = ξ + V i
x(x,t;T )

2
the differential equation may be solved

by separation of variables for

V i (x (t) , t;T ) = h1 (x) + h2 (t) ; (29)

where h1 (x) and h2 (t) are functions of integration. They satisfy

rh1 (x) =
(

k + νζ2
)

− ν (x− ζ)2 + h′1 (x) (2ξ − δx) +
3h′1 (x)2

4
; and

rh2 (t) =
(

rh2 (0) + k + νζ2
)

ert −
(

k + νζ2
)

;

where k is a constant of integration.

Thus

rV i (x (t) , t;T ) = −ν (x− ζ)2 + h′1 (x) (2ξ − δx) +
3h′1 (x)2

4
+

(

rh2 (0) + k + νζ2
)

ert. (30)

Setting
k = −rh2 (0) − νζ2;

simplifies equation 30 to

rV i (x (t) , t;T ) = −ν (x− ζ)2 +h′1 (x) (2ξ − δx)+
3h′1 (x)2

4
; (31)

for all t. When W (x) = h1 (x) = V i (x, t;T ), this is identical to
the interior component of equation 11. Thus, its solution is that
in equation 24.
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As there is no constant of integration in equation 28, there are
no free parameters with which to satisfy terminal condition 33.
Therefore select a T large enough to ensure that transition to
ui∗ > 0 occurs by time T . As, along ui∗ = 0, x (t) = x (0) e−δt, a
T can be found to do so.

Thus, terminal condition 33 must be satisfied by equation 31. As
solutions to this generate second constants of integration, κ, it is
possible to set these to satisfy the condition.

(b) as the û3 and ûb candidate strategies are derived from HJB equa-
tions, they are elements of Φ (x, t;T ). The û3 candidate strategies
never cross the non-invertible locus; ûb does once, but remains dif-
ferentiable through it. Thus, in both cases, the Lebesque measure
of times at which equations 34 and 35 are not satisfied is zero.

3. To establish the required limits, first consider the corner solutions.
For these, it suffices to demonstrate that, as T → ∞, the RHS of
equation 28 converges to that of equation 25. This, in turn, requires
that limT→∞ g (·) = c which, as g (·) is independent of T and constant,
can be ensured.

Now consider interior solutions. As already noted, the RHS of equation
31 converges to that of equation 11 when h1 (x) = V i (x, t;T ).

The limits are also finite: the candidate controls and their induced state
variables only take on finite values; discounting ensures finite valuation.
The limit value functions are not just locally Lipschitz but C1 so that,
by Lemma 1, they are C∞. Finally, the candidates were generated by
solving the limit HJB equation 9.

4. as instantaneous objective function 5 only takes on negative values the
transversality condition is automatically satisfied.

5 Discussion

The problem of endogenised state spaces has dogged the literature on non-
singular solutions to differential games since Tsutsui and Mino (1990). Asso-
ciating each candidate strategy with its own state space has prevented proper
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consideration of deviations from that candidate, isolating the subsequent lit-
erature from the larger body of game theoretical research.

This paper remedies that by applying existing sufficiency results to a
linear quadratic differential game. Coupled with other conditions, this allows
us to both eliminate solutions to the HJB from consideration as MPE and
also to confirm MPE from among them.

Thus, we confirm the existence of the singular solution. As agents’ con-
trols are bounded, it no longer generates a quadratic value function. Fur-
ther, we present a necessary and sufficient condition for the continuum of
non-linear solutions first identified by Tsutsui and Mino (1990) to be MPE.

This condition has been identified in previous works, but not properly
substantiated. Rowat (2002b) considered modified games in which utility
bounds were associated with each initial condition; Rubio and Casino (2002)
did not address the requirement that a strategy be defined over the whole of
the state space.

In addition to these technical results, some economic insights are ob-
tained. When agents are insensitive to the state (ν = 0), the game reduces
to a static optimisation problem. This eliminates the non-linear candidates;
the remaining singular MPE sets production loss to zero.

More interestingly, as sufficient patience allows the non-singular MPE, a
Folk Theorem for differential games seems to be at work. Here, however,
the equilibrium set grows continuously as r decreases. Thus, it may not
be possible to attain the first best even once the threshold in condition 27
is exceeded. Note also that assumption A1 is necessary for complementary
condition 27 to hold: increases in efficiency through non-singular MPE are
only possible when the steady state of the singular MPE exceeds that of the
first best.

Our condition is easily derived for other LQGs. In the case of Tsutsui
and Mino (1990), the condition, in their notation, is:

β − αza ≥ −
c

s
.

Thus, very sticky prices, s → 0, remove the non-linear candidates from the
MPE set. As the LHS of the inequality increases in r, patience again allows
the possibility of Folk Theorem efficiency.

We conclude by mentioning some avenues for future research. First, the
techniques presented here do not depend on the linear quadratic structure of
the game. The primary role of that structure is to reduce the singular MPE to
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a linear MPE. This greatly simplifies derivation of the singular solution, but
does not otherwise bear on the existence of non-singular solutions. Thus,
we hope that the results presented here ease analysis of a larger class of
differential games.

Second, additional or more complicated control bounds could be intro-
duced without new techniques. Tsutsui (1996) considers capacity constraints
on firms’ production decisions. Analysis of non-constant upper bounds (e.g.
a joint savings account game in which maximum aggregate withdrawal is the
account balance) may be an interesting generalisation.

Finally, most existing analyses have been symmetric: agents are assumed
to be identical; the search for MPE has been confined to ones in which they
play identically. Technically, this reflects the possibility that a system of
ODEs, one for each player, may not yield an analytical solution.

Rowat (2002a) uses numerical techniques to analyse the game presented
here, first allowing identical agents to play differently, then allowing non-
identical agents.

A Sufficiency conditions

The Appendix’ main Theorem presents a sufficiency result for the existence
of Markov Nash equilibria. It also applies to MPE in the in the stationary
game Γ (x, 0): the time index of any subgame can be re-set to zero. As
such, this Theorem allows the conclusions of Theorem 1. We present the
Theorem in greater generality than necessary for Theorem 1 to increase its
applicability to other environments.

The theorem combines Theorems 4.1, 3.4 and 3.5 of Dockner et al. (2000);
the latter two address value functions that are unbounded below and not
continuously differentiable, respectively.

Before proceeding, we present two further definitions.

Definition 6. Define J i
φ−i,T

by replacing the upper limit of integration in

objective functional 1 with T . A feasible strategy ui (·) is catching up optimal
if, for every other feasible strategy ũi (·):

lim inf
T→∞

[

J i
φ−i,T

(

ui (·)
)

− J i
φ−i,T

(

ũi (·)
)]

≥ 0.

As noted by Gale (1967), which introduced the criterion, this is equivalent
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to: for every ε > 0 there exists a T̄ such that, for all T > T̄ ,

[

J i
φ−i,T

(

ui (·)
)

− J i
φ−i,T

(

ũi (·)
)]

≥ −ε.

Thus, equilibria in catching up optimal strategies are ε-equilibria for all suf-
ficiently large T . The more stringent criterion of overtaking optimality sets
ε = 0.

Stern (1984) presents seven other definitions of optimality in the infinite
horizon framework.

To address the possibility of the non-differentiability of V , we also define
the generalised gradient, or Clarkian:

Definition 7 (Clarke, 2.5.1). Let V : ℜ2 7→ ℜ be Lipschitz continuous in an
open neighbourhood of x. The generalised gradient of V at x is the set

∂V (x) = co
{

lim
i→∞

∇V (xi) |xi → x, xi 6∈ ZV

}

;

where ZV is the set of non-differentiable points of V .

Theorem 2. Consider Γ (x0, 0), as defined above. Let (φ1, φ2) be a given
pair of functions φi : X 7→ ℜ and assume that:

1. the pair (φ1, φ2) is feasible for Γ (x0, 0).

2. for all sufficiently large T > 0, and i ∈ {1, 2}:

(a) there exist locally Lipschitz continuous functions, V i (·, ·;T ) : X×
[0, T ] 7→ ℜ which solve the HJB equations

rV i (x, t;T ) = max
{

F
(

x, ui, φ−i
)

+ αif
(

x, ui, φ−i
)

+ βi

| ui ∈ U
(

x, φ−i
)

,
(

αi, βi
)

∈ ∂V i (x, t;T )
}

∀ (x, t) ∈ X × [0, T ] ; (32)

and the terminal condition

V i (x, T ;T ) = 0. (33)

Denote by Φi (x, t;T ) the set of all (ui, αi, βi) ∈ U (x, φ−i)×∂V i (x, t;T )
which maximise the RHS of HJB equations 32.
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(b) for the feasible control ui
T against φ−i, which induces state trajec-

tory xT , there exist (αi (t) , βi (t)) ∈ ℜ2 for all t such that
(

ui
T (t) , αi (t) , βi (t)

)

∈ Φi (xT , t;T ) ; and (34)

d

dt
V i (xT (t) , t;T ) = αi (t) ẋT (t) + βi (t) ; (35)

for almost all t ∈ [0, T ].

3. for all x ∈ X and i ∈ {1, 2}, the limits

V i (x) ≡ lim
T→∞

V i (x, t;T ) (36)

exist, are finite, and are locally Lipschitz continuous functions V i :
X 7→ ℜ which solve the HJB equations

rV i (x) = max
{

F
(

x, ui, φ−i
)

+ αif
(

x, ui, φ−i
)

| ui ∈ U
(

x, φ−i
)

, αi ∈ ∂V i (x)
}

∀x ∈ X. (37)

Denote by Φi (x) the set of all (ui, αi) ∈ U (x, φ−i) × ∂V i (x) which
maximise the RHS of HJB equations 37.

4. lim supT→∞ e−rTV i (x (T )) ≤ 0∀i ∈ {1, 2}.

If φi (x) ∈ Φi (x) for each i ∈ {1, 2} and almost all t ∈ [0,∞), then
(φ1, φ2) is a MPE in the sense of catching up optimality.

Informally, assumption 1 ensures that each agent faces a well defined
problem: given play φ−i by the other, the objective functional of agent i is
well-defined - although it may take on infinite value. Assumption 2a estab-
lishes sufficiency conditions for MPE in the finite horizon problem. Assump-
tion 2b addresses the possibility of the failure of V i (·;T ) to be differentiable;
by Rademacher’s Theorem, locally Lipschitz continuous functions are dif-
ferentiable for almost all t ∈ [0, T ] (Clarke, 1983, p. 63). Assumption 4
is a transversality condition. It may be replaced with other conditions to
obtain other criteria of optimality mentioned in the introduction. Finally,
assumption 3 allows application of the transversality conditions to the other
sufficiency conditions. If the optimal controls derived have a Markov repre-
sentation, then a MPE exists.

Before proving the theorem, we present a lemma guaranteeing that the
assumptions in 2a and 2b define an optimal control, ui

T (·) over t ∈ [0, T ].
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Lemma 7. Under the conditions of Theorem 2, (ui
T , α

i, βi) ∈ Φi (xT , t;T )
satisfies

J i
φ−i,T

(

ui
T (·)

)

≥ J i
φ−i,T

(

ũi (·)
)

;

given φ−i for all feasible ũi.

The proof of the Lemma combines those for Theorems 3.1 and 3.5 in
Dockner et al. (2000):

Proof. Take φ−i as fixed. By assumption 1, any feasible control, ũi (t), in-
duces an absolutely continuous state trajectory, x̃ (t).

By assumption 2a, the ensuing V i (x̃ (t) , t;T ) is locally Lipschitz. Thus,
its generalised gradients ∂V i (·, t;T ) exist (Clarke, 1983, 2.5.1).

By the chain rule (Clarke, 1983, 2.3.9), the discounted value function
satisfies the differential inclusion

d

dt

[

e−rtV i (x̃ (t) , t;T )
]

∈
{

e−rt
[

−rV i (x̃ (t) , t;T ) + αi ˙̃x (t) + βi
]

|
(

αi, βi
)

∈ ∂V (x̃ (t) , t;T )
}

.

Adding terms independent of αi and βi to both sides does not alter the
inclusion:

d

dt

[

e−rtV i (x̃ (t) , t;T )
]

+e−rtF
(

x̃ (t) , ũi, φ−i
)

+ re−rtV (x̃ (t) , t)

∈
{

e−rt
[

F
(

x̃ (t) , ũi, φ−i
)

+ αif
(

x̃, ũi, φ−i
)

+ βi
]

|
(

αi, βi
)

∈ ∂V (x̃ (t) , t;T )
}

.

As the final term on the left hand side of the inclusion maximises its right
hand side, the remaining left hand side terms must be non-positive:

e−rtF
(

x̃ (t) , ũi, φ−i
)

≤ −
d

dt

[

e−rtV i (x̃ (t) , t;T )
]

. (38)

Now consider the candidate control, ui
T (t), which induces state trajectory

xT (t). Manipulation of equation 35 yields

d

dt

[

e−rtV i (xT (t) , t;T )
]

+ e−rtF
(

xT (t) , ui
T , φ

−i
)

+ re−rtV i (xT (t) , t;T )

= e−rt
[

F
(

xT (t) , ui
T , φ

−i
)

+ αi (t) f
(

xT , u
i
T , φ

−i
)

+ βi (t)
]

.
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As the right hand side is, by inclusion 34, maximal, the first two left hand
side terms must sum to zero:

e−rtF
(

xT (t) , ui
T , φ

−i
)

= −
d

dt

[

e−rtV i (xT (t) , t;T )
]

(39)

for almost all t ∈ [0, T ], in the sense of Lebesgue.
As the definition of objective functional 1 uses the left hand side terms

of equations 38 and 39, the candidate may be compared to other feasible
controls:

J i
φ−i,T

(

ui
T (·)

)

=

∫ T

0

e−rt
[

F
(

xT (t) , ui
T , φ

−i
)]

dt

= −e−rTV i (xT (T ) , T ;T ) + V i (x0, 0;T )

= V i (x0, 0;T ) ; (40)

and

J i
φ−i,T

(

ũi (·)
)

=

∫ T

0

e−rt
[

F
(

x̃ (t) , ũi, φ−i
)]

dt

≤ −e−rTV i (x̃ (T ) , T ;T ) + V i (x0, 0;T )

= V i (x0, 0;T ) .

In both cases, the final equalities owe to terminal condition 33.
Thus, the difference between the values is

J i
φ−i,T

(

ui
T (·)

)

− J i
φ−i,T

(

ũi (·)
)

≥ V i (x0, 0;T ) − V i (x0, 0;T ) = 0.

The result is established.

Now return to the proof of the Theorem; it is based on that of Theorem
3.4 in Dockner et al. (2000):

Proof of Theorem 2. As V i (x (t)) solves HJB equation 37, we may write the
T -truncation of objective functional 1 as

J i
φ−i,T

(

ui (·)
)

=

∫ T

0

e−rt
{

rV i (x) − αif
(

x, ui, φ−i
)

|ui ∈ U
(

x, φ−i
)

, αi ∈ ∂V i (x)
}

dt

=

∫ T

0

d

dt

[

−e−rtV i (x (t))
]

dt

= V i (x0) − e−rTV i (x (T )) .
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By equation 40 we may therefore write

lim inf
T→∞

[

J i
φ−i,T

(

ui (·)
)

− J i
φ−i,T

(

ui
T (·)

)]

= lim inf
T→∞

[

V i (x0) − e−rTV i (x (T )) − V i (x0, 0;T )
]

= lim inf
T→∞

[

−e−rTV i (x (T ))
]

≥ 0;

by the definition of the limiting value functions, 36, and assumption 4.
As, by Lemma 7,

J i
φ−i,T

(

ui
T (·)

)

≥ J i
φ−i,T

(

ũi (·)
)

;

it follows that

lim inf
T→∞

[

J i
φ−i,T

(

ui (·)
)

− J i
φ−i,T

(

ũi (·)
)]

≥ 0.

As φi (x (t)) ∈ Φi (x) for almost all t ∈ [0,∞), the set of times for which
it fails to be catching up optimal has Lebesgue measure zero. The result
therefore follows.
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