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Abstract
The Solow growth model assumes that labor force grows exponentially.

This is not a realistic assumption because, exponential growth implies that
population increases to in�nity as time tends to in�nity. In this paper we
propose replacing the exponential population growth with a simple and
more realistic equation - the Von Bertalan¤y model. This model utilizes
three hypotheses about human population growth: (1) when population
size is small, growth is exponential; (2) population is bounded; and (3) the
rate of population growth decreases to zero as time tends toward in�nity.
After making this substitution, the generalized Solow model is then solved
in closed form, demonstrating that the intrinsic rate of population growth
does not in�uence the long-run equilibrium level of capital per worker.
We also study the revised model�s stability, comparing it with that of the
classical model.
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1 Introduction

This paper describes a generalization of the Solow economic growth model that
allows population growth rate to diminish over time. The original Solow growth
model assumes that the labor force L grows at a constant rate n > 0. In
continuous time, the population growth rate used in the original Solow model
is

n =
_L

L
=

@L
@t

L
(1)

for any initial level L0, at time t the level of the labor force is

L(t) = L0e
nt (2)

This assumption is realistic only for small values of the labor force because, with
unlimited exponential growth, as time tends toward in�nity, so too does the
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labor force. Several studies support the hypothesis that the world�s population
growth rate is deceasing and tends toward zero.1 Natural resources are limited,
implying that food shortages, unemployment, and pollution eventually limit
population growth. This limit is usually called the carrying capacity of the
environment (denoted herein as L1) and forms a numerical upper bound on
the population size.
Therefore, as described by Maynard Smith [9], a more realistic model of the

growth of the labor force L(t) must exhibit the following properties:

1. when population is small enough in proportion to environmental carrying
capacity L1, then L grows at a constant rate n > 0.

2. when population is large enough in proportion to environmental carrying
capacity L1, the economic resources become scarcer, reducing the rate of
population growth.

3. population growth rate decreases to 0 over time.

In this paper we assume that the labour force L(t) exhibits all these proper-
ties. In particular, we introduce the von Bertalan¤y equation (von Bertalan¤y
(1938)).2 This model is widely used in population studies and data analysis 3

and is one of the simplest realistic models of population dynamics that incor-
porate all the properties previously introduced.
The von Bertalan¤y function is the solution of the initial value problem:�

_L = r (L1 � L)
L(0) = L0

(3)

where L1 is a theorical maximum asymptote size of the labor force (carrying
capacity), L0 is the labor force at time t0 and r is a constant which determines
the speed at which the labor force reaches the asymptote. This equation shows
that the growth rate is a decreasing linear function of the population size. In
addition, the equation veri�es four relevant facts:

1. The growth rate is greatest when the population size is smallest;

1See, for example, Day (1996)
2See Mingari Scarpello et al. (2003) for a similar generalization, which uses the logistic

model of population growth. In this paper the authors focus upon the solutions to the equation
of motion in a closed form by using the special functions.

3Cloern et al. (1978) apply the von Bertalan¤y equation to predict body growth for
Macoma balthica. Jurado-Molina et al. (1992) conduct a study in which the von Bertalan¤y
equation is applied to Mugil curema to calculate its weight growth. Xiao (2000) uses the von
Bertalan¤y model to calculate the parameters from a set of tagging data concerning times at
liberty, lengths at release, and lengths at recapture of a Lates calcarifer. Anislao, Auró, and
González (2002) present a work in which the speed of growth of Cyprinus carpio was estimated
with data including length and weight of Cyprinus carpio, a work in which they employ the
von Bertalan¤y equation. Finally, De Graaf and Prein (2005) compare three approaches to
the multivariate analysis of Oreochromis niloticus growth, based upon the von Bertalan¤y
equation.
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2. The growth rate decrease to zero as the population size approaches the
carrying capacity;

3. If the population size is greater than the carrying capacity, the growth
rate is negative; and

4. There is a constant upper limit on population size (L1).

This equation has only one steady state L1 and the solution is given by:

L(t) = L1 � (L1 � L0)e�rt (4)

Note that, with the von Bertalan¤y model, the growth rate becomes:

n(t) =
_L(t)

L(t)
=

r (L1 � L)
L1 � [L1 � L0] e�rt

=
r (L1 � L0)

(L0 � L1) + L1ert
(5)

which decreases monotonically to 0 as t tends to in�nity.

2 The Model

The original Solow model assumes that:

1. There is an aggregate production function Y = F (K;L); which is assumed
to satisfy a series of technical conditions, such as:

(a) it is increasing in both factors;

(b) it shows decreasing marginal returns for each factor;

(c) it displays constant returns to scale; and

(d) it satis�es the Inada conditions.

Among all the possible production functions satisfying these properties, we
shall assume the Cobb-Douglas function, as it is the most often cited in the
literature:

F (K;L) = K�L1��; 0 < � < 1 (6)

2. The change in capital stock equal the gross investment I = sF (K;L)
minus the capital depretiaton �K. It is

_K = sF (K;L)� �K (7)

3. There exists a law of motion for the stock of capital per worker. In con-
tinuous time, this law is:

_k = sk� � (� + n) k (8)
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4. The population grows at rate n; which equals:

L(t) = L0e
nt (9)

In this paper the last assumption is set aside. In its place we assume that
the labor force follows a von Bertalan¤y model:�

_L = r (L1 � L)
L(0) = L0

(10)

In growth theory it is convenient to express all the variables of interest in
per capita terms. Thus, we shall use small letters to denote the variables
in per worker terms. If k = K

L is the capital per worker we have

_k

k
=

_K

K
�
_L

L
(11)

and then

_k

k
=
sF (K;L)� �K

K
� r (L1 � L0)
(L0 � L1) + L1ert

= sk��1 � � � n(t) (12)

From this, we obtain the equation of motion for the stock of capital per worker
for the modi�ed Solow growth model, which uses the von Bertalan¤y labor
growth mode. This describes how capital per worker varies over time:

_k = sk� � (� + n(t)) k (13)

where n(t) = r(L1�L0)
(L0�L1)+L1ert . In the next section, we solve the di¤erential

equation (13) and analyze the stability of the model obtaining the asymptotic
value of the variables.

3 Closed form solutions and stability analysis

It has recently been pointed out that the classical Solow growth model with
Cobb-Douglas technology has closed form solutions. See, for example, the recent
textbook of Barro and Sala-i-Martin [2] and the references [7] and [11]. In
a recent paper, Mingari Scarpello et al. [10] showed that this result can be
extended when the population growths following the logistic law. In this section,
we will show that equation 13 can also be solved in closed form. Equation (13)
is a Bernoulli type equation that can be transformed by the change of variables

u = k1�� (14)

into the linear equation

_u+ (1� �) (� + n(t))u = (1� �) s: (15)
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In order to �nd the solutions to this linear di¤erential equation, one must re-
member that, given the continuous functions a(t) and b(t), the solution of a
linear di¤erential equation:

_x+ a(t)x = b(t) (16)

with the initial condition x0 = x(0) is

x(t) = eA(t)
�
x0 +

Z t

0

b(�)e�A(�)d�

�
(17)

where

A(t) =

Z t

0

a(�)d� : (18)

Observe that
jx0 � x1j eA(t) (19)

gives the di¤erence between two di¤erent solutions with initial conditions x0
and x1. Then, a solution of the linear di¤erential equation (16) is stable if and
only if the function A(t) is bounded from above in [0;+1). If, besides, it is

lim
t!+1

A(t) = �1 (20)

then the solutions are globally asymptotically stable. Observe that the solutions
of equation (16) have an horizontal asymptote if there exists the limit:

lim
t!+1

b(t)

a(t)
= x1 (21)

and, in this case we have:
lim

t!+1
x(t) = �x1 (22)

In fact, by the L�Hopital�s rule,

lim
t!+1

x(t) = lim
t!+1

eA(t)
�
x0 +

Z t

0

b(�)e�A(�)d�

�
= lim

t!+1

b(t)

�a(t) = �x1 (23)

Now we can employ these observations to solve the equation (15). In this case,
the continuous functions a(t) and b(t) are:

a(t) = (1� �) (� + n(t)) = (1� �)
�
� +

r (L1 � L0)
(L0 � L1) + L1ert

�
(24)

b (t) = (1� �) s

and then we have that

A(t) = (1� �)
h
�t+

R t
0

r(L1�L0)
(L0�L1)+L1er� d�

i
= (1� �)

h
�t� rt+ ln

�
(L0�L1)+L1ert

L0

�i
;

(25)
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eA(t) = e
(1��)

�
�t�rt+ln

�
(L0�L1)+L1ert

L0

��

= e(1��)(��r)t
�
(L0�L1)+L1ert

L0

�1�� (26)

andR t
0
b(�)e�A(�)d� =

R t
0
(1� �) se(��1)(��r)�

�
(L0�L1)+L1er�

L0

���1
d�

= (1��)s
L��10

R t
0
e(��1)(��r)� ((L0 � L1) + L1er� )��1 d�:

(27)

Then, to obtain the closed form solution of equation (15) we have to compute
the integral

I (t) =

Z t

0

e(��1)(��r)� ((L0 � L1) + L1er� )��1 d� : (28)

This can be done in terms of the hypergeometric function 2F1 obtaining that.

I (t) =

�
L1�L0
L1

���1
(��1)(��r)

h
A
�

L1
L0�L1

�
� e(��1)(��r)t2 A

�
ertL1
L0�L1

�i
(29)

where

A(Z) =2 F1

�
1� �; 1� �+ �

r
; 2� �+ �

r
; Z

�
:

In the paper [10] there is a detailed description of the evaluation of integral I (t)
and an Appendix with a short outline on the hypergeometric function.
Then we have that the solutions to equation (15) are given by

u(t) = e(1��)(��r)t
�
(L0 � L1) + L1ert

L0

�1�� �
k1��0 +

(1� �) s
L��10

I (t)

�
(30)

where k0 is the initial value verifying k0 = k (0) and I (t) is given by equation
(29). This is the closed form solution of equation (15). From this and the change
of variables k = u

1
1�� we can obtain the closed form solution of equation (13),

representing the generalized Solow model.
Note that A(t) is bounded from above in [0;+1) and tends to �1 as

t ! +1. Thus, the solutions of equation (15) are globally asymptotically
stable. Finally, we have that:

lim
t!+1

b(t)

a(t)
= lim

t!+1

(1� �) s
(1� �)

�
� + r(L1�L0)

(L0�L1)+L1ert

� = s

�
(31)

and then all the solutions of (15) have the horizontal asymptote at level s� as

t! +1: The change of variables k = u 1
1�� transforming solutions of equation

(15) into solutions of (13) is continuous. This implies that equation (13) is
globally asymptotically stable, and, as time approaches to in�nity, capital per
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worker k tends to the long run limit value
�
s
�

� 1
1�� . This equilibrium value

k̂ =
�
s
�

� 1
1�� is not a steady state, since it is not a solution of equation (13).

Nevertheless, it is the long run value of the per worker level of capital k. Observe
that the intrinsic rate of population growth n(t) does not in�uence the long-run
equilibrium per worker level of capita k. For any initial condition, capital per
worker converges to the value k̂. This is true since the model is asymptotically
stable.
Now we will contrast the long run levels of capital per worker k̂ (modi�ed

Solow model with von Bertalan¤y equation) and ~k (original Solow model),we
can see that:

k̂ =
�s
�

� 1
1��

>

�
s

� + n

� 1
1��

= ~k (32)

comparing the long run levels of output per worker ŷ (modi�ed Solow model
with von Bertalan¤y equation) and ~y (original Solow model) we have that:

ŷ =
�s
�

� �
1��

>

�
s

� + n

� �
1��

= ~y (33)

�nally, we show the long run levels of consumption per capital ĉ (modi�ed
Solow model with von Bertalan¤y equation) and ~c (original Solow model)

ĉ = (1� s)
�s
�

� �
1��

> (1� s)
�

s

� + n

� �
1��

= ~c (34)

That is, if population growth follows the von Bertalan¤y law, the long run levels
of the Solow model are improved.

4 Concluding Remarks

The original Solow model assumes that population growth is exponential. This
is not a realistic assumption because, with limited resources, population growth
must be bounded. In this paper we have used the von Bertalan¤y equation
instead of the exponential equation to model labor growth in the Solow model.
The von Bertalan¤y equation is the simplest model of population growth that
has the following characteristics: (1) population size is bounded; and (2) the rate
of population growth decreases to zero as time tends toward in�nity. These are
most remarkable hypotheses concerning human population growth. Adapting
this model to the labor force, we have solved the generalized Solow model in
closed form in terms of the hypergeometric function, and we have analyzed the
stability of this model. This paper demonstrates that, using the von Bertalan¤y
equation, the intrinsic rate of population growth does not in�uence the long-run
equilibrium levels of the per capita variables, and that the equilibrium levels of
consumption per capita, capital, and output are improved.
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