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Abstract. In this paper, following Sadefo-Kamdem [3], we generalize the
parametric ∆-VaR method from portfolios with elliptic distributed risk factors
to portfolios with mixture of elliptically distributed ones. We treat both the
expected shortfall and the Value-at-Risk of such portfolios. Special attention
is given to the particular case of a mixture of multivariate t-distribution.
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1. Introduction

The RiskMetrics methodology for estimating VaR was based on parametric meth-
ods, and used the multi-variate normal distribution. This approach works well for
the so-called linear portfolios, that is, those portfolios whose aggregate return is,
to a good approximation, a linear function of the returns of the individual assets
which make up the portfolio, and in situations where the latter can be assumed to be
jointly normally distributed. For other portfolios, like portfolios of derivatives de-
pending non-linearly on the return of the underlying, or portfolios of non-normally
distributed assets, one generally turns to Monte Carlo methods to estimate the
VaR. This is an issue in situations demanding for real-time evaluation of financial
risk. For non-linear portfolios, practitioners, as an alternative to Monte Carlo, use
∆-normal VaR methodology, in which the portfolio return is linearly approximated,
and an assumption of normality is made. Such methods present us with a trade-off
between accuracy and speed, in the sense that they are much faster than Monte
Carlo, but are much less accurate unless the linear approximation is quite good
and the normality hypothesis holds well. The assumption of normality simplifies
the computation of VaR considerably. However it is inconsistent with the empir-
ical evidence of assets returns, which finds that asset returns are fat tailed. This
implies that extreme events are much more likely to occur in practice than would
be predicted based on the assumption of normality.

Some alternative return distributions have been proposed in the world of elliptic
distributions by Sadefo-Kamdem [3], that better reflect the empirical evidence. In
this paper, following [3], I examine one such alternative that simultaneously allows
for asset returns that are fat tailed and for tractable calculation of Value-at-Risk
and Expected Shortfall, by giving attention to mixture of elliptic distributions,
with an explicit formula of VaR and ES in the special case where assets returns
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changes with mixture of Student-t distributions. Note that, the particular case
based on mixture of normal distributions, has been proposed by Zangari(1996)[7],
Subu-Venkataraman [5] and some references therein.

An obvious first generalization is to keep the linearity assumption, but replace the
normal distribution by some other family of multi-variate distributions. In Sadefo-
Kamdem [3], we have such generalization concerning linear portfolios, in the case
where the joint risk factors changes with mixture of elliptic distributions. In this
paper, by using some generalized theorems concerning Delta-Mixture-Elliptic VaR
and Delta-Student VaR in [3], we introduce the notion of Delta-Mixture-Student
VaR, Delta-Mixture-Elliptic ES and the Delta-Mixture-Student ES.

So the particular subject of this paper, is to give an explicit formulas that will
permit to obtain the linear VaR or linear ES, when the joint risk factors of the linear
portfolios, changes with mixture of t -Student distributions. Note that, since one
shortcoming of the multivariate t-distribution is that all the marginal distributions
must have the same degrees of freedom, which implies that all risk factors have
equally heavy tails, the mixture of t -Student will be view as a serious alternatives,
to a simple t -Student-distribution. Therefore, the methodology proposes by this
paper seem to be interesting to controlled thicker tails than the standard Student
distribution.

The paper is organized, as follows: In section 2, we recall some theorems con-
cerning the Delta-Elliptic, Delta-Elliptic and Delta Mixture Elliptic VaR given by
Sadefo-Kamdem [3]. In section 3, following the theorem concerning Delta Mixture
Elliptic VaR, we show how to reduce the computation of the Delta-Mixture-Student
VaR to finding the zeros of a mixture of special function. In section 4, we introduces
the notion of Delta Mixture Elliptic ES , by treat the expected shortfall for general
mixture of elliptic distribution, with special attention to Delta Mixture Elliptic ES
. Finally, in section 5 we discuss some potential application areas.

2. Some Notions on log-elliptic Linear VaR

In this section, following [3], we recall some notions on elliptic distributions and
Linear VaR.

We will use the following notational conventions for the action of matrices on
vectors: single letters x, y, · · · will denote row vectors (x1, · · · , xn), (y1, · · · yn).
The corresponding column vectors will be denoted by xt, yt,the t standing more
generally for taking the transpose of any matrix. Matrices A = (Aij)i,j , B , etc.
will be multiplied in the usual way. In particular, A will act on vectors by left-
multiplication on column vectors, Ayt, and by right multiplication on row vectors,
xA; x · x = xxt = x2

1 + · · · + x2
n will stand for the Euclidean inner product.

A portfolio with time-t value Π(t) is called linear if its profit and loss ∆Π(t) =
Π(t)−Π(0) over a time window, [0 t] is a linear function of the returns X1(t), . . . , Xn(t)
of its constituents over the same time period:

∆Π(t) = δ1X1 + δ2X2 + ... + δnXn

This will for instance be the case for ordinary portfolios of common stock, if we
use percentage returns, and will also hold to good approximation with log-returns,
provided the time window [0,t] is small. We will drop the time t from our notations,
since it will be kept fixed, and simply write Xj ,∆Π, etc. We also put

X = (X1, · · · , Xn),

so that ∆Π = δ · X = δXt.
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We now assume that the Xj are elliptically distributed with mean µ and corre-
lation matrix Σ = AAt:

(X1, . . . , Xn) ∼ N(µ, Σ, φ).

This means that the pdf of X is of the form

fX(x) = |Σ|−1/2g((x − µ)Σ−1(x − µ)t),

where |Σ| stands for the determinant of Σ, and where g : R≥0 → 0 is such that the
Fourier transform of g(|x|2), as a generalized function on R

n, is equal to φ(|ξ|2)1.
Assuming that g is continuous, and non-zero everywhere, the Value at Risk at a
confidence level of 1 − α is given by solution of the following equation:

(1) Prob {∆Π(t) < −V aRα} = α

Here we follow the usual convention of recording portfolio losses by negative num-
bers, but stating the Value-at-Risk as a positive quantity of money.

2.1. Linear VaR with mixtures of elliptic Distributions. Mixture distri-
butions can be used to model situations where the data can be viewed as arising
from two or more distinct classes of populations; see also [1]. For example, in the
context of Risk Management, if we divide trading days into two sets, quiet days
and hectic days, a mixture model will be based on the fact that returns are mod-
erate on quiet days, but can be unusually large or small on hectic days. Practical
applications of mixture models to compute VaR can be found in Zangari [7] (1996),
who uses a mixture normal to incorporate fat tails in VaR estimation. In Sadefo-
Kamdem [3], we have generalized the preceding section to the situation where the
joint log-returns follow a mixture of elliptic distributions, that is, a convex linear
combination of elliptic distributions. In this section, a special attention will be give
to mixture of Student-t distributions.

Definition 2.1. We say that (X1, ..., Xn) has a joint distribution that is the mix-
ture of m elliptic distributions N(µj , Σj , φj)

2, with weights {βj} (j=1,..,m ; βj > 0
;
∑m

j=1 βj = 1), if its cumulative distribution function can be written as

FX1,...,Xn
(x1, ..., xn) =

m
∑

j=1

βjFj(x1, ..., xn)

with Fj(x1, ..., xn) the cdf of N(µj , Σj, φj).

Remark 2.2. In practice, one would usually limit oneself to m = 2, due to esti-
mation and identification problems; see [1].

The following lemma is given by Sadefo-Kamdem [3].

Lemma 2.3. Let ∆Π = δ1X1+. . .+δnXn with (X1, . . . , Xn) is a mixture of elliptic
distributions, with density

f(x) =
m
∑

j=1

βj |Σj |−1/2gj((x − µj)Σ
−1
j (x − µj)

t)

where µj is the vector mean, and Σj the variance-covariance matrix of the j-th
component of the mixture. We suppose that each gj is integrable function over R,
and that the gj never vanish jointly in a point of R

m. Then the value-at-Risk,

1One uses φ as a parameter for the class of elliptic distributions, since it is always well-defined
as a continuous function: φ(|ξ|2) is simply the characteristic function of an X ∼ N(0, Id, φ). Note,
however, that in applications we’d rather know g

2or N(µj , Σj , gj) if we parameterize elliptical distributions using g instead of φ
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or Delta mixture-elliptic VaR, at confidence 1 − α is given as the solution of the
transcendental equation

(2) α =

m
∑

j=1

βjGj

(

δ.µt
j + V aRα

(δΣjδ)1/2

)

,

where

Gj =
|Sn−2|
|Σj |1/2

∫ +∞

0

rn−2
[

∫

−δ·µj−V aRα

|δAj |

−∞
gj(z

2
1 + r2)dz1

]

dr.

Here δ = (δ1, . . . , δn).

Remark 2.4. In the case of a mixture of m elliptic distributions the VaR will
not depend any more in a simple way on the total portfolio mean and variance-
covariance. This is unfortunate, but already the case for a mixture of normal
distributions.

Remark 2.5. One might, in certain situations, try to model with a mixture of
elliptic distributions which all have the same variance-covariance and the same
mean, and obtain for example a mixture of different tail behaviors by playing with
the gj’s. In that case the VaR again simplifies to: V aRα = −δ · µ + qα ·

√
δΣδt,

with qα now the unique positive solution to

α =
m
∑

j=1

βjGj(qα).

The preceding can immediately be specialized to a mixture of normal distributions.
the details is left to the reader.

3. VaR with mixture Student-t distributions

We now consider in detail the case where our mixture of elliptic distributions is
a mixture of multivariate Student-t. We will, unsurprisingly, call the corresponding
V aR the Delta mixture-Student VaR.

In the case of our mixture of multi-variate t-Student distributions, the portfolio
probability density function is given by:

(3) hX(x) =

m
∑

j=1

βj

Γ(
νj+n

2 )

Γ(νj/2).
√

|Σj |(νjπ)n

(

1 +
(x − µj)

tΣ−1
j (x − µj)

νj

)

(
−νj−n

2 )

,

x ∈ R
n and νj > 2. Hence gj is given by

gj(s) = C(νj , n)(1 + s/νj)
− (n+νj)

2 , s ≥ 0,

where we have put

C(νj , n) =
Γ(

νj+n
2 )

Γ(νj/2)
√

(νjπ)n
.

Using this gj , we find that

(4) Gj(s) =
ν

n+νj
2

j

2
|Sn−2|C(νj , n)

∫ ∞

s

Ij(z1)dz1,

where we have put

(5) Ij(z1) =

∫ +∞

z2
1

(u − z2
1)

n−3
2 (νj + u)−

(n+νj)

2 du.
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Following [3], we have the following expression

Gj(s) =
1

νj
√

π

(νj

s2

)νj/2 Γ
(

νj+1
2

)

Γ
(νj

2

) 2F 1

(1 + νj

2
,
νj

2
; 1 +

νj

2
;−νj

s2

)

(6)

we obtain the following corollary

Corollary 3.1. Let ∆Π = δ1X1 + . . . + δnXn with (X1, . . . , Xn) is a mixture of m
t-Student distributions, with density hX defined by (3),where µj is the vector mean,
and Σj the variance-covariance matrix of the j-th component of the mixture. Then
the value-at-Risk, or Delta mixture-student VaR, at confidence 1 − α is given as
the solution of the transcendental equation
(7)

α =

m
∑

j=1

βjΓ
(

νj+1
2

)

νj
√

πΓ
(νj

2

)νj

νj
2

(

δ.µt
j + V aRα

δΣjδ

)

−νj
2

2F 1

(1 + νj

2
,
νj

2
; 1+

νj

2
;−

νj(δ.µ
t
j + V aRα)

δΣjδ

)

where Gj is defined by (4) with g = gj . Here δ = (δ1, . . . , δn).

Corollary 3.2. One might, in certain situations, try to model with a mixture of
t-Student distributions which all have the same variance-covariance Σ = Σj and
the same mean µ = µj, and obtain for example a mixture of different tail behaviors
by playing with the νj’s. In that case the VaR again simplifies to:

V aRα = −δ · µ + qα ·
√

δΣδt,

with qα now the unique positive solution to

α =

m
∑

j=1

βjΓ
(

νj+1
2

)

νj
√

πΓ
(νj

2

)νj

νj
2

(

δ.µt + V aRα

δΣδ

)

−νj
2

2F 1

(1 + νj

2
,
νj

2
; 1+

νj

2
;−νj(δ.µ

t + V aRα)

δΣδ

)

.

Remark 3.3. One might, in certain situations, try to model with a mixture of
t-Student distributions which all have the same νj = ν and the same mean µj ≈ 0,
and obtain for example a mixture of different tail behaviors by playing with the
Σj ’s. In that case the VaR is the unique positive solution to

α =
Γ
(

ν+1
2

)

ν
√

πΓ
(

ν
2

)

m
∑

j=1

βj

(

ν(V aRα)

δΣjδ

)
ν
2

2F 1

(1 + ν

2
,
ν

2
; 1 +

ν

2
;−ν(V aRα)

δΣjδ

)

.

3.1. Some Numerical Result of Delta Mixture-Student VaR coefficient.

Here we give some numerical results when applying the corollary 3.2, in the situation
where m = 2.

By introducing the function F such that

(8) F (s, β, ν1, ν2) = β · G1(s) + (1 − β) · G2(s),

where Gj is define in (6), for j = 1, 2, for given as inputs β, ν1 and ν2, we give
a table that contains some solutions s = qβ,ν1,ν2 = qMS−V aR

α of the following
transcendental equation:

F (s, β, ν1, ν2) = α.

For given Σ, µ, and δ, these solutions will permit to calculate V aRα, when the
confidence is 1 − α.
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(1) In the case where α = 0.01, we obtain some solutions of (4.2) in the following
table:

(ν1, ν2) (2,3) (3,4) (4,6) (5,8) (6,10) (7, 15) (8, 40) (9, 16)
q0.05,ν1,ν2 4.64839 3.78507 3.17184 3.91919 2.78228 2.62175 2.44602 2.59524
q0.10,ν1,ν2 4.7586 3.82348 3.20124 2.94213 2.80092 2.64116 2.46906 2.60704
q0.15,ν1,ν2 4.87115 3.86216 3.23086 2.9652 2.81965 2.6607 2.49235 2.61887
q0.20,ν1,ν2 4.98587 3.9011 3.26066 2.98846 2.83846 2.68035 2.51586 2.63073
q0.25,ν1,ν2 5.10258 3.94025 3.29063 3.01177 2.85734 2.70009 2.53957 2.64261
q0.30,ν1,ν2 5.22106 3.97962 3.32075 3.03518 2.87629 2.71991 2.56344 2.65452
q0.35,ν1,ν2 5.34113 4.01917 3.35100 3.05866 2.89528 2.7398 2.58744 2.66644
q0.40,ν1,ν2 5.46259 4.05888 3.38136 3.08221 2.91432 2.75974 2.6115 2.67838
q0.45,ν1,ν2 5.58523 4.09873 3.41180 3.10502 2.93339 2.77972 2.6357 2.69033
q0.50,ν1,ν2 5.70886 4.13870 3.44231 3.12946 2.95248 2.79972 2.65989 2.70228

(ν1, ν2) (10,20) (20,30) (200, 300) (250,50) (275,15) (300,55) (400,10) (1000,5)
q0.05,ν1,ν2 2.53963 2.46079 2.33916 2.40018 2.58957 2.39322 2.7432 3.3202
q0.10,ν1,ν2 2.55132 2.46432 2.33947 2.39709 2.57661 2.39036 2.72242 3.27401
q0.15,ν1,ν2 2.56304 2.46785 2.33978 2.39399 2.56359 2.38750 2.7014 3.22632
q0.20,ν1,ν2 2.5748 2.47139 2.3401 2.3909 2.55051 2.38464 2.68019 3.17715
q0.25,ν1,ν2 2.58658 2.47492 2.34041 2.3878 2.53738 2.38178 2.6588 3.12651
q0.30,ν1,ν2 2.59838 2.47846 2.34073 2.38471 2.52422 2.37892 2.63726 3.07446
q0.35,ν1,ν2 2.6102 2.482 2.34104 2.38161 2.51102 2.37605 2.61559 3.02112
q0.40,ν1,ν2 2.62204 2.48553 2.34136 2.37851 2.49779 2.37319 2.59382 2.96663
q0.45,ν1,ν2 2.63389 2.48907 2.34167 2.37541 2.48455 2.37033 2.57198 2.91121
q0.50,ν1,ν2 2.64574 2.49261 2.34199 2.37232 2.4713 2.36746 2.55009 2.85513

(2) In the case where α = 0.001, we obtain some solutions of (4.2) in the
following table:

(ν1, ν2) (2,3) (3,4) (4,6) (5,8) (6,10) (7, 15) (8, 40) (9, 16)
q0.20,ν1,ν2 12.8878 7.84891 5.66393 4.82769 4.39245 3.98902 3.62286 3.82625
q0.25,ν1,ν2 13.5577 8.01412 5.77451 4.90665 4.45334 4.05064 3.69896 3.86013
q0.30,ν1,ν2 14.2205 8.17734 5.88317 4.98414 4.51241 4.11084 3.77242 3.89346
q0.35,ν1,ν2 14.874 8.33840 5.98975 5.06004 4.57030 4.16948 3.84285 3.92621
q0.40,ν1,ν2 15.5168 8.49717 6.09412 5.13427 4.62694 4.22648 3.91007 3.95838
q0.45,ν1,ν2 16.1480 8.65357 6.19624 5.20677 4.68229 4.28179 3.97400 3.98993
q0.50,ν1,ν2 16.7671 8.80753 6.29604 5.27752 4.73634 4.33537 3.03470 4.02087

(3) In the case where α = 0, we obtain some solutions of (4.2) in the following
table:

(ν1, ν2) (2,3) (3,4) (4,6) (5,8) (6,10) (7, 15) (8, 40) (9, 16)
q0.20,ν1,ν2 322.785 82.6688 31.0894 20.7154 15.8813 11.4371 10.1089 9.25604
q0.25,ν1,ν2 352.09 87.1881 32.5561 21.541 16.42471 11.7949 10.3957 9.47529
q0.30,ν1,ν2 378.302 91.2285 33.8309 22.2487 16.88721 12.0958 10.6352 9.66243
q0.35,ν1,ν2 402.155 94.8927 34.9619 22.8697 17.2907 12.3561 10.8414 9.82571
q0.40,ν1,ν2 424.137 98.2529 35.981 23.4244 17.6493 12.5858 11.0227 9.97061
q0.45,ν1,ν2 444.591 101.362 36.9102 23.9265 17.9726 12.7919 11.1848 10.1009
q0.50,ν1,ν2 463.771 104.26 37.7655 24.3858 18.2673 12.9789 11.3316 10.2194

Remark 3.4. Note that, the precedent results are available when α = 0. This
means that with our model, one would calculate the linear VaR with mixture of
elliptic distributions, for 100 percent confidence level.



VAR AND EXPECTED SHORTFALL FOR MIXTURE ELLIPTIC LINEAR PORTFOLIOS 7

4. Expected Shortfall with mixture of elliptic distributions

Expected shortfall is a sub-additive risk statistic that describes how large losses
are on average when they exceed the VaR level. Expected shortfall will therefore
give an indication of the size of extreme losses when the VaR threshold is breached.
We will evaluate the expected shortfall for a linear portfolio under the hypothesis
of mixture of elliptically distributed risk factors. Mathematically, the expected
shortfall associated with a given VaR is defined as:

Expected Shortfall = E(−∆Π| − ∆Π > V aR),

see for example [1]. Assuming again a multivariate mixture of elliptic probability

density fX(x) =
∑n

i=1 βi|Σi|−1/2
gi((x − µi)Σ

−1
i (x − µi)

t), the Expected Shortfall
at confidence level 1 − α is given by

−ESα = E(∆Π | ∆Π ≤ −V aRα)

=
1

α
E
(

∆Π · 1{∆Π≤−V aRα}
)

=
1

α

∫

{δxt≤−V aRα}
δxt fX(x) dx

=
n
∑

i=1

βi
|Σi|−1/2

α

∫

{δxt≤−V aRα}
δxt gi((x − µi)Σ

−1
i (x − µi)

t)dx.

Let Σ = At
i Ai, as before.Doing the same linear changes of variables as in section

2, we arrive at:

−ESα =
1

α

m
∑

i=1

βi

∫

{|δAi|z1≤−δ·µi−V aRα}
(|δA|z1 + δ · µi) gi(‖z‖2

)dz

=
1

α

m
∑

i=1

βi

[

∫

{|δA|z1≤−δ·µi−V aRα}
|δAi|z1 gi(‖z‖2) dz + δ · µi

]

.

The final integral on the right hand side can be treated as before, by writing ‖z‖2 =

z2
1 + ‖z′‖2

and introducing spherical coordinates z
′

= rξ, ξ ∈ Sn−2, leading to:

−ESα =

m
∑

i=1

βiδ·µi+
|Sn−2|

α

m
∑

i=1

βi

∫ ∞

0

rn−2
[

∫

−δµt
i−V aRα

|δAi|

−∞
|δAi| z1 gi(z

2
1+r2)dz1

]

dr

We now first change z1 into −z1, and then introduce u = z2
1 + r2, as before. If we

recall that, by theorem ??,

qg
α,i =

δ · µi + V aRα

|δAi|
then, simply writing qα,i for qfX

α,n, we arrive at:

ESα = −
m
∑

i=1

βi

[

δ · µi + |δA| |Sn−2|
α

·
∫ ∞

qα,i

∫ ∞

z2
1

z1(u − z2
1)

n−3
2 g(u) du dz1

]

= −
m
∑

i=1

βi(δ · µ) +
n
∑

i=1

βi|δAi|
|Sn−2|

α
·
∫ ∞

q2
α,i

1

n − 1

(

u − q2
α,i

)

n−1
2 gi(u) du,

since
∫

√
u

qα,i

z1

(

u − z2
1

)

n−3
2 dz1 =

1

n − 1

(

u − q2
α,i

)

n−1
2 .

After substituting the formula for |Sn−2| and using the functional equation for the
Γ-function, Γ(x + 1) = xΓ(x), we arrive at the following result:
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Theorem 4.1. Suppose that the portfolio is linear in the risk-factors X = (X1, · · · , Xn):

∆Π = δ · X and that X ∼ N(µ, Σ, φ), with pdf fX(x) =
∑n

i=1 βi|Σi|−1/2
g((x −

µi)Σ
−1
i (x − µi)

t). If we replace qα by his value, then the expected Shortfall at level
α is given by :
(9)

ESα = −
m
∑

i=1

βi(δ·µi)+

m
∑

i=1

βi|δΣiδ
t|1/2· π

n−1
2

α · Γ(n+1
2 )

·
∫ ∞

(qg
α,i)

2

(

u − (qg
α,i)

2
)

n−1
2 gi(u) du.

Remark 4.2. If we are in situations where µ = µi and Σi = Σ for all i = 1, . . . , n,
therefore qα,i does not depend to i. It will depend only to the qα given by the
mixture of elliptic VaR. In effect, qα,i = qα = qME−V aRα

α such that

V aRα = −δ · µ + qME−V aRα
α ·

√
δΣδt.

We therefore obtain the following corollary:

Corollary 4.3. Suppose that the portfolio is linear in the risk-factors X = (X1, · · · , Xn):

∆Π = δ · X and that X ∼ N(µ, Σ, φ), with pdf fX(x) =
∑m

i=1 βi|Σ|−1/2
gi((x −

µ)Σ−1(x−µ)t). If we replace qα by his value, then the expected Shortfall at level α
is given by :

(10) ESα = −δ · µ + qME−ES
α ·

√
δΣδt

where

(11) qME−ES
α =

π
n−1

2

α · Γ(n+1
2 )

m
∑

i=1

βi ·
∫ ∞

(qME−V aR
α )2

(

u − (qME−V aR
α )2

)

n−1
2 gi(u) du.

4.1. Application: Mixture of Student-t Expected Shortfall. In the case of

multi-variate t-student distributions we have that gi(u) = C(νi, n)(1 + u/νi)
− (n+νi)

2 ,
with C(νi, n) given in section 2. Let us momentarily write q for qt

α,νi
. Following

[3], we can evaluate the integral as follows:

∫ ∞

q2

(u − q)
n−1

2

(

1 +
u

νi

)−n+νi
2

du

= ν
n+νi

2

i (q2 + νi)
−(

νi−1

2 )B

(

νi − 1

2
,
n + 1

2

)

.

If we pose that :

qMST−ES
α =

1

α · √π

m
∑

i=1

βi

Γ
(

νi−1
2

)

Γ
(

νi

2

) ν
νi/2
i

(

(qt

α,νi
)2 + νi

)

1−νi
2

After substitution in (14), we find, after some computations, the following result:

Theorem 4.4. The Expected Shortfall at confidence level 1−α for a multi-variate
Student-distributed linear portfolio δ · X, with

fX(x) =

m
∑

i=1

βi

Γ(νi+n
2 )

Γ(νi/2).
√

|Σ|(νiπ)n

(

1 +
(x − µ)tΣ−1(x − µ)

νi

)

−(
νi+n

2 )

,
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is given by:

ESt

α,ν = −δ · µ
m
∑

i=1

βi + |δΣδt|1/2
m
∑

i=1

βi
1

α · √π

Γ
(

νi−1
2

)

Γ
(

νi

2

) ν
νi/2
i

(

(qMST−V aR
α )2 + νi

)( 1−νi
2 )

= −δ · µ + |δΣδt|1/2
m
∑

i=1

βi

α · √π

Γ
(

νi−1
2

)

ν
νi/2
i

Γ
(

νi

2

)

(

(

δ · µ + V aRα

|δΣδ|1/2

)2

+ νi

)( 1−νi
2 )

= −δ · µ + qMST−ES
α ·

√
δΣδt

The Expected Shortfall for a linear Student portfolio is therefore given by a com-
pletely explicit formula, once the VaR is known. Observe that, as for the VaR, the
only dependence on the portfolio dimension is through the portfolio mean δ ·µ and
the portfolio variance δΣδt.

4.2. Some Numerical Result of Delta Mixture-Student Expected Short-

fall. Here we give some numerical results when applying the corollary 3.2, in the
situation where m = 2.

For given s = qβ,ν1,ν2 = qMS−V aR
α , which is the solution of

F (s, β, ν1, ν2) = α,

by introducing the fonction H such that

(12) H(s, β, ν1, ν2) = β · H1(s) + (1 − β) · H2(s),

where

Hi(s) =
βi

α · √π

Γ
(

νi−1
2

)

Γ
(

νi

2

) ν
νi/2
i

(

s2 + νi

)

1−νi
2

for i = 1, 2. For given as inputs β, ν1 and ν2, we give a table that contains some
values of qMST−ES

α = H(qMST−V aR
α , β, ν1, ν2) = qMST−ES

β,ν1,ν2
.

(1) In the case where α = 0.01, we obtain some solutions of (4.2) in the following
table:

(ν1, ν2) (2,3) (3,4) (4,6) (7,15) (8,40)

qMST−ES
0.25,ν1,ν2

6.36587 1.29375 0.243125 0.00290856 0.000681262

qMST−ES
0.30,ν1,ν2

7.01881 1.41000 0.279435 0.00341273 0.000793844

qMST−ES
0.35,ν1,ν2

7.64714 1.52252 0.31424 0.00389277 0.0008997532

qMST−ES
0.40,ν1,ν2

8.25196 1.63141 0.34759 0.0043495 0.000997532

qMST−ES
0.45,ν1,ν2

8.83444 1.73679 0.379538 0.00478369 0.00108926

qMST−ES
0.50,ν1,ν2

9.3957 1.83877 0.410131 0.00519619 0.00117468

(2) In the case where α = 0.001, we obtain some solutions of (4.2) in the
following table:

(ν1, ν2) (2,3) (3,4) (4,6) (7,15) (8,40)

qMST−ES
0.25,ν1,ν2

20.8961 3.03289 0.576689 0.00661826 0.00164597

qMST−ES
0.30,ν1,ν2

23.1642 3.32289 0.666054 0.0074621 0.00180969

qMST−ES
0.35,ν1,ν2

25.2707 3.58757 0.716427 0.008196 0.00194229

qMST−ES
0.40,ν1,ν2

27.239 3.83719 0.776394 0.00883632 0.00205071

qMST−ES
0.45,ν1,ν2

29.0885 4.07077 0.830853 0.00939711 0.00214048

qMST−ES
0.50,ν1,ν2

30.8351 4.28993 0.880508 0.00989055 0.00221577
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4.3. Delta-Theta Approximation of a Portfolio. In the case where we dealt
with portfolio that contains derivatives, we will consider the Greek Theta of the
portfolio by replace the Delta approximation known in financial literature by the
Delta-Theta approximation.

In clear, suppose that we are holding a portfolio of derivatives depending on
n underlying assets X(t) = (X1(t), . . . , Xn(t)), with elliptically distributed log-
returns rj = log(Xj(t)/Xj(0)), over some fixed small time-window [0,t]. The port-
folio’s present value V will in general be some complicated non-linear function of
the Xi’s. To obtain a first approximation of its VaR, we simply approximate the
present Value V of the position using a first order Taylor expansion:

V (X(t), t) ≈ V (X(0), 0) +

n
∑

i=1

∂V

∂Xi
(X(0), 0)(Xi(t) − Xi(0)) + t · ∂V

∂t
(X(0), 0)

= V (X(0), 0) +

n
∑

i=1

∂V

∂Xi
(X(0), 0)Xi(0) (exp(ri) − 1) + Θ · t

≈ V (X(0), 0) +

n
∑

i=1

δiri + Θ · t(13)

From this, we can then approximate the Profit & Loss function as

∆V ≈ δ · rt + Θ · t,
where we put r = (r1, . . . , rn) and δ = (δ1, ..., δn) with δi = Xi(0) · ∂V

∂Xi
(X(0), 0).

The entries of the δ vector are called the ”delta equivalents ” for the position, and
they can be interpreted as the sensitivities of the position with respect to changes
in each of the risk factors. In this particular case, we have substitute the Delta
normal VaR as known in the financial literature, by the Delta-Theta Elliptic VaR
given by the following corollary of the theorem (??) :

Corollary 4.5. Suppose that the portfolio’s Profit & Loss function over the time
window of interest is, to good approximation, given by ∆Π = δ ·rt +Θ · t , with con-
stant portfolio weights δ = (δ1, . . . , δn). Suppose moreover that the random vector
r = (r1, · · · , rn) of underlying log-returns follows a continuous elliptic distribution,

with probability density given by fr(x) = |Σ|−1/2g((x − µ)Σ−1(x − µ)t) where µ is
the vector mean and Σ is the variance-covariance matrix, and where we suppose
that g(s2) is integrable over R, continuous and nowhere 0. Then the portfolio’s
Delta-Theta-elliptic VaR V aRα at confidence 1 − α is given by

V aRα = −δ · µt + Θ · t + qg
α,n ·

√
δΣδt,

where s = qg
α,n is the unique positive solution of the transcendental equation

α = G(qg
α,n).

The Expected Shortfall of such portfolios is given by the following corollary

Corollary 4.6. Suppose that the portfolio’s Profit & Loss function over the time
window of interest is, to good approximation, given by ∆Π = δ · rt + Θ · t ,and that

r ∼ N(µ, Σ, φ), with pdf f(x) = |Σ|−1/2
g((x−µ)Σ−1(x−µ)t), then the Delta-Theta

Elliptic Expected Shortfall or Delta-Theta ES at confidence level 1 − α is :

(14) ESα = −δ ·µt+Θ·t+|δΣδt|1/2 · π
n−1

2

α · Γ(n+1
2 )

·
∫ ∞

(qg
α,n)2

(

u − (qg
α,n)2

)

n−1
2 g(u) du.

Remark 4.7. In short-term Risk Management, one can usually assume that µ ' 0.
In that case, for t = 1 we have

V aRα = Θ +
√

δΣδt · qg
α,n,
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ESα = Θ + |δΣδt|1/2 · π
n−1

2

α · Γ(n+1
2 )

·
∫ ∞

(qg
α,n)2

(

u − (qg
α,n)2

)

n−1
2 g(u) du.

Remark 4.8. The theorems and corollary of this section work so well under the
hypothesis of mixture of elliptic distributions as defined in corollary (3.2).

As before, The preceding can immediately be specialized to a Student t-distributions
to estimate the Delta-Theta Student VaR and the Delta-Theta Student ES. The
details will be left to the reader.

4.4. Portfolios of Equities. A special case of the preceding is that of an equity
portfolio, build of stock S1, . . . , Sn with joint log-returns r = (r1(t), . . . , rn(t)), that
changes with mixture of elliptic distributions as defined in (3.2). In this case, the
portfolio’s Profit & Loss function over the time window [0,t] of interest is, to good
approximation, given by

Π(t) − Π(0) =

n
∑

i=1

wiSi(0)(Si(t)/Si(0) − 1)

≈
n
∑

i=1

wiSi(0)ri(t) = δ · rt,

where this approximation will be good if the ri(t) are small. In this case the
preceded theorems are applicable where δ = (w1S1(0), . . . , wnSn(0)) and rj(t) =
log(Xj(t)/Xj(0)) for j=1,. . . ,n.

4.5. Businesses as Linear Portfolios of Business Units. An interesting way
of looking upon an big enterprize, e.g. a multi-national or a big financial institution,
is by considering it as a sum of its individual business units, cf. Dowd [2]. If Xj ,
is the variation of price or of profitability of business unit j in one period, then the
variation of price of the agglomerate in the same period will be

∆Π = X1 + · · · + Xn.

The entire institution is therefore modelled by a linear portfolio, with δ = (1, 1, . . . , 1),
to which the results of this paper can be applied, if we model the vector of individ-
ual price variations by a multi-variate mixture of elliptic distributions as defined in
(3.2). Incremental VaR (see below) and Expected Shortfall will be relevant here.
For more details see Dowd [2], chapter XI .

4.6. Incremental VaR. Incremental VaR is defined in [1] as the statistic that
provides information regarding the sensitivity of VaR to changes in the portfolio
holdings. It therefore gives an estimation of the change in VaR resulting from a risk
management decision. Results from [1] for incremental VaR with elliptic distributed
risk-factors generalize straightforwardly to mixture of elliptically distributed ones
when all Σi = Σ and µ = µi ≈ 0 : if we denote by IV aRi the incremental VaR for
each position in the portfolio, with θi the percentage change in size of each position,
then the change in VaR will be given by

∆V aR =
∑

θiIV aRi

By using the definition of IV aRi as in [1] (2001), we have that

(15) IV aRi = ωi
∂V aR

∂ωi

with ωi is the amount of money invested in instrument i. In the case of an equity
portfolio in the elliptically distributed assets as in [?], we have seen that, assuming
µ = 0,

V aRα = −qME−V aR
α

√
δΣδt,
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We can then calculate IV aRi for the i-th constituent of portfolio as

IV aRi = ωi
∂V aR

∂ωi
= ωiγi

with

γ = −qME−V aR
α,n

Σω√
δΣδt

.

The vector γ can be interpreted as a gradient of sensitivities of VaR with respect
to the risk factors. This is the same as in [1], except of course that the quantile
has changed from the elliptic one to the one associated to the mixture of of elliptic
distributions if all Σi = Σ and µi = µ = 0.

4.7. Problem of the aggregation of risks. Suppose that we have a constituted
portfolio with several under portfolios of assets from different markets. Given the
Value-at-Risk of the portfolios constituting the global portfolio, under the hypoth-
esis that the joined risks factors follow an mixture of elliptic distribution , the
question is how to get the VaR of the global portfolio.

In order to be clearer and simpler, let us consider a global constituted portfolio
of 2 under portfolios from different markets with respective weights δ1 and δ2. Σ1

represents the matrix of interrelationship in the under portfolio of market 1; Σ2

represents the matrix of interrelationship in the under portfolio of market 2. One
will be able to write the matrix of interrelationship of a global portfolio like this:

Σ =

(

Σ1 Σ12

Σ12
t Σ2

)

,

where Σ12 is the correlation matrix that takes into consideration the interaction
between the market M1 and the market M2 . If δt = (δ1, δ2), we have

(16) δtΣδ = δ1
tΣ1δ1 + δ2

tΣ2δ2 + 2 · δ1tΣ12δ2.

Therefore, since we know that when µi = µ ≈ 0 and Σi = Σ, we have

V aRα = qME−V aR
α,n ·

√
δΣδt,

the Value-at-Risk of the global portfolio will be given by

(17) V aRα(M) =

√

VaRα(M1)2 + VaRα(M2)2 + 2[qg
α,n]2 · δ1tΣ12δ2.

An implicit interrelationship with the hypothesis of mixture of elliptic distribu-
tions when all Σi = Σ and µi = µ, is obtained in an analogous way, like in the
case where one works with the hypothesis of the elliptic distribution ( see Sadefo-
Kamdem [?], for details). Note that, one will distinguish several situations from
the behavior of Σ12. With some simple operations, the implicit interrelationship is

(18) φ =
δ1

tΣ12δ2
√

(δ1
tΣ1δ1)(δ2

tΣ2δ2)

with the Value-at-Risk V aRα(M) of the global portfolio being given as follows:
(19)

V aRα(M) =
√

[VaRα(M1)]2 + [VaRα(M2)]2 + 2φ · VaRα(M1)VaRα(M2)).

Also, for µ ≈ 0,

ESα = qME−ES
α ·

√
δΣδt,

therefore by using the same technics that proves (19), we have that the expected
shortfall of the global portfolio is given by:

(20) ESα(M) =
√

ESα(M1)2 + ESα(M2)2 + 2[Kg
ES,α]2 · δ1tΣ12δ2.
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This imply that

(21) ESα(M) =
√

[ESα(M1)]2 + [ESα(M2)]2 + 2φES ·ESα(M1)ESα(M2)),

where

(22) φES =
δ1

tΣ12δ2
√

(δ1
tΣ1δ1)(δ2

tΣ2δ2)

Remark 4.9. The result about the agregation of risks work so well in the situation
where, the joint risk factors of our portfolio changes with mixture of ellitic distri-
butions as define in (2.3), and where all Σi = Σ, for i = 1, . . . , m. In particular,
when µi = µ = 0, we have the results (21) and (19).

5. conclusion

In this paper, we have shown how to reduce the estimation of Value-at-Risk for
linear elliptic portfolios to the evaluation of one dimensional integrals which, for
the special case of a mixture of t-Student distributions, can be explicitly evaluated
in terms of a hypergeometric function. We have also given a similar, but simpler,
integral formula for the expected shortfall of such portfolios which, again, can be
completely evaluated in the Student case. Following the calculations in the case of
Delta mixture-Student VaR, we indicated how to extend it to the case of mixture of
t-distributions expected shortfall . We finally surveyed some potential application
areas.
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