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Abstract

We consider sets defined by the usual stochastic ordering relation and by the second order stochastic
dominance relation. Under fairy general assumptions we prove that in the space of integrable random
variables the closed convex hull of the first set is equal to the second set.
Keywords: Stochastic Dominance, Convexity.

1 Stochastic Ordering Relations

The notion of stochastic ordering (or stochastic dominance of first order) has been introduced in statistics
in [11, 10] and further applied and developed in economics [15, 6]. It is defined as follows. For a random
variable X ∈ L1 we consider its distribution function, F(X; η) = P[X ≤ η], η ∈ R. We say that a
random variable X dominates in the first order a random variable Y if

F(X; η) ≤ F(Y ; η) for all η ∈ R.

We denote this relation X �(1) Y .
For two integrable random variables X and Y , we say that X dominates Y in the second order if∫ η

−∞

F(X;α) dα ≤
∫ η

−∞

F(Y ;α) dα for all η ∈ R.

We denote this relation X �(2) Y . The second order dominance has been introduced in [8]. We refer the
reader to [13, 14, 17] for a modern perspective on stochastic ordering and to [1, 7] for recent applications
in statistics.

In recent publications [3, 4], we have introduced a new stochastic optimization model involving
stochastic dominance relations of second (or higher) order as constraints. These constraints allow us
to use random reference outcomes, instead of fixed thresholds. We have discovered the role of concave
utility functions as Lagrange multipliers associated with dominance constraints of second order and higher
orders.

In this paper we analyze sets defined by first order stochastic dominance constraints.
Let us introduce some notation used throughout the paper. An abstract probability space is denoted by

(Ω,F ,P). The expected value operator is denoted by E. The standard symbol L1(Ω,F ,P;Rn) (shortly
Ln

1) denotes the space of all integrable mappings X from Ω to Rn .
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2 Sets Defined by Dominance Constraints

Define for a given random variable Y ∈ L1(Ω,F ,P) two sets

A(1)(Y ) = {X ∈ L1(Ω,F ,P) : X �(1) Y },

A(2)(Y ) = {X ∈ L1(Ω,F ,P) : X �(2) Y }.

The random variable Y ∈ L1 plays the role of a fixed reference outcome.

Lemma 1 The set A(1)(Y ) is closed in L1(Ω,F ,P).

Proof. The result follows from the fact that convergence in L1 implies convergence in probability. �

Lemma 2 ([4]) The set A(2)(Y ) is convex and closed in L1(Ω,F ,P).

The set A(1)(Y ) is not convex in general.

Example 1 Suppose that Ω = {ω1, ω2}, P[ω1] = P[ω2] = 1/2 and Y (ω1) = −1, Y (ω2) = 1. Then
X1 = Y and X2 = −Y both dominate Y in the first order. However, X = (X1 + X2)/2 = 0 is not an
element of A(1)(Y ) and thus the set A(1)(Y ) is not convex.

We may notice, though, that X dominates Y in the second order, and this is the starting point of our
analysis. Our main result here is that under fairly general assumptions the set A(2)(Y ) is a convexification
of A(1)(Y ).

3 Convexification

Directly from the definition we see that first order dominance implies second order dominance, and thus
A(1)(Y ) ⊆ A(2)(Y ). Since the set A(2)(Y ) is convex we also have

conv A(1)(Y ) ⊆ A(2)(Y ). (1)

Here the symbol convA denotes the convex hull of the set A. We shall use convA for the closure of the
convex hull. We are interested in establishing the inverse inclusion.

We start from the special case of discrete distributions.

Theorem 1 Assume thatΩ = {1, . . . , N },F is the set of all subsets ofΩ and P[k] = 1/N, k = 1, . . . , N.
If Y is a random variable on (Ω,F ,P) then

conv A(1)(Y ) = A(2)(Y ).

Proof. To prove the inverse inclusion to (1), suppose that X ∈ A(2)(Y ). Define xi = X (i) and yi = Y (i),
i = 1, . . . , N . We can identify X and Y with vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ). Since the
probabilities of all elementary events are equal, the second order stochastic dominance relation coincides
with the concept of weak majorization:

[
X �(2) Y

]
⇔

[ l∑
k=1

x[k] ≥
l∑

k=1

y[k], l = 1, . . . , N
]
,

where x[k] denotes the kth smallest component of x (see [12]).
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It follows from the theorem by Hardy, Littlewood and Polya [9] (see also [12, Proposition D.2.b] )
that weak majorization is equivalent to the existence of a doubly stochastic matrix5 such that x ≥ 5y. By
Birkhoff’s Theorem [2], we can find permutation matrices Q1, . . . , QM such that5 ∈ conv{Q1, . . . , QM

}.
Defining z j

= Q j y we conclude that there exist nonnegative reals α1, . . . , αM totaling 1, such that
x ≥

∑M
j=1 α j z j . Identifying with the vectors z j random variables Z j on (Ω,F ,P) we also see that

X (ω) ≥
M∑

j=1

α j Z j (ω),

for all ω ∈ Ω . Since each vector z j is a permutation of y and the probabilities are equal, the distribution
of Z j is identical with the distribution of Y . Thus Z j

�(1) Y, j = 1, . . . ,M . Let us define

Ẑ j (ω) = Z j (ω)+
(

X (ω)−
M∑

k=1

αk Z k(ω)
)
, ω ∈ Ω, j = 1, . . . ,M.

Then the last two inequalities render Ẑ j
∈ A(1)(Y ), j = 1, . . . ,M , and X (ω) =

∑M
j=1 α j Ẑ j (ω), as

required. �
The result of the above theorem is not true for general probability spaces, as the following example

illustrates.

Example 2 Suppose thatΩ = {ω1, ω2}, P[ω1] = 1/3, P[ω2] = 2/3 and Y (ω1) = −1, Y (ω2) = 1. Then
it is easy to see that X �(1) Y if and only if X (ω1) ≥ −1 and X (ω2) ≥ 1. Thus A(1)(Y ) is convex.

Consider the random variable Z = E[Y ] = 1/3. It dominates Y in the second order, but it does not
belong to conv A(1)(Y ) = A(1)(Y ).

It follows from this example that the probability space must be sufficiently rich to observe our
phenomenon. If we could define a new probability space Ω ′ = {ω1, ω21, ω22}, in which the event
ω2 is split in two equally likely events ω21, ω22, then we could use Theorem 1 to obtain the equality
conv A(1)(Y ) = A(2)(Y ). The theorems of Strassen follow this line (see [16, 14]). In our problem, and in
the optimization context in general, the probability space has to be fixed at the outset and we are interested
in sets of random variables as elements of functional spaces Lp(Ω,F ,P;Rn), rather than sets of their
distributions. Therefore, the Strassen theory cannot be directly applied here.

Theorem 2 Assume that (Ω,F ,P) is nonatomic and Y ∈ L1(Ω,F ,P). Then

A(2)(Y ) = conv A(1)(Y ).

Proof. Assume that Y has a continuous probability distribution. Suppose that X �(2) Y . By the
integrability of X , for every ε > 0 we can find a finite σ -subalgebra B associated with some finite
partition {Ω1, . . . ,ΩN } of Ω such that the discrete random vector X̂ = E

[
X |B

]
satisfies the inequality

‖X̂ − X‖ ≤ ε. Here and everywhere else in this proof the symbol ‖X‖ refers to the L1-norm of X . For
each Ωi , i = 1, . . . N , the conditional distribution of Y is continuous. Therefore, for any δ > 0, we can
findΩ ′i ⊆ Ωi such that the probability ofΩ ′i is a rational number and P

[
Ω ′i
]
≥ P

[
Ωi
]
− δ, i = 1, . . . , N .

Define
X̃(ω) = E

[
X |Ω ′i

]
for ω ∈ Ω ′i , i = 1, . . . , N + 1, (2)

where Ω ′N+1 = Ω \
⋃N

i=1Ω
′

i . Since X is integrable, we can always choose δ small enough so that
‖X̃ − X̂‖ ≤ ε. Since the probabilities of Ω ′i , i = 1, . . . , N + 1, are rational, we can use the conditional
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distributions of Y to split these events in such a way that all elements of the resulting partition have equal
probabilities. Thus we obtain a partition {B1, . . . , BK } ofΩ such that P[Bk] = 1/K , k = 1, . . . , K . The
random variable X̃ is constant on each Bk and ‖X̃ − X‖ ≤ 2ε.

Jensen’s inequality and (2) imply that for any concave function u(·) E
[
u(X̃)

]
≥ E

[
u(X)

]
, whenever

E
[
u(X)

]
exists [5, 10.2.7]. Thus X̃ dominates X in the second order. The stochastic dominance relations

are transitive and therefore
X̃ ∈ A(2)(Y ).

For each Bk the conditional distribution of Y is continuous. Denote by qk(α) the α-quantile of this
conditional distribution with the convention qk(0) = −∞ and qk(1) = +∞. We partition each Bk into
equally probable disjoint subsets Bkl , l = 1, . . . , L , such that

Y (Bkl) ⊂
(

qk(
l − 1

L
), qk(

l
L
)
]
, l = 1, . . . , L .

In this way we define a certain subalgebra B′ of F .
Since Y is integrable, we can choose L big enough so that the discrete random variable Ỹ = E

[
Y |B′

]
satisfies the inequality

‖Ỹ − Y‖ ≤
ε

K
. (3)

Consider the function
F (2)(Y, η) =

∫ η

−∞

P
[
Y ≤ α

]
dα = E

[
(η − Y )+

]
.

The last equation can be obtained by changing the order of integration. It follows from the last two
relations that

F (2)(Ỹ , η) = E
[
(η − Ỹ )+

]
≥ E

[
(η − Y )+

]
− E

[
|Y − Ỹ |

]
≥ F (2)(Y, η)−

ε

K
.

Since X̃ dominates Y in the second order, for every η ∈ R we can continue the last chain of inequalities
as follows

F (2)(Ỹ , η) ≥ F (2)(Y, η)−
ε

K
≥ F (2)(X̃ , η)−

ε

K
.

Observe that F (2)(X̃ , ·) is convex and piecewise linear and its smallest nonzero slope equals at least
1/K . Moreover, F (2)(Ỹ , ·) is nonnegative. Shifting F (2)(X̃ , η) by ε to the right yields a lower bound for
F (2)(Ỹ , η). Thus the last inequality implies that

F (2)(Ỹ , η) ≥ F (2)(X̃ , η − ε) for all η ∈ R.

Equivalently,
X̃ + ε �(2) Ỹ .

We can consider the random variables X̃ and Ỹ as defined on a finite probability space Ω̃ = {Bkl : k =
1, . . . , K , l = 1, . . . , L} with equally likely elementary events.

As in the proof of Theorem 1, we associate with X̃ and Ỹ vectors x and y in RK L . We conclude that
there exist nonnegative numbers αm , m = 1, . . . ,M , totaling 1, and permutations Qm such that

x + ε1l ≥
M∑

m=1

αm Qm y, (4)
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where 1l = (1, . . . , 1) ∈ RK L . Each Qm is a permutation matrix of dimension K L × K L . Consider the
vector zm

= Qm y. It can be interpreted as the vector of realizations of a discrete random variable Zm .
Inequality (4) can be rewritten as

X̃(ω)+ ε ≥
M∑

m=1

αm Z̃m(ω), ω ∈ Ω. (5)

By construction, the distribution of Z̃m is the same as that of Ỹ and therefore Zm
∈ A(1)(Ỹ ).

Suppose that Qm maps the event Bkl to the event Bst , that is, the value of Zm at all ω ∈ Bst is equal
to the value of Ỹ at all ω ∈ Bkl . Our aim is to define an analogous “permutation” V m of the original
reference outcome Y . We want to have the distribution of V m the same as that of Y , and thus V m

�(1) Y .
Moreover, V m will be close to Zm .

Consider an arbitrary ω ∈ Ω . Suppose that ω ∈ Bst for some (s, t). Let Fs(·) be the conditional
distribution function of Y , given X̃ = xs . Clearly, Fs(Y (ω)), givenω ∈ Bst , is uniform in [(t−1)/L , t/L].
We now find (k, l) such that Qm maps the event Bkl to the event Bst . This allows us to translate the interval
[(t − 1)/L , t/L] to the interval [(l − 1)/L , l/L]. Finally, we define

V m(ω) = F−1
k

(
Fs
(
Y (ω)

)
+

l − t
L

)
.

If the equation Fk(v) = η has many solutions, we can choose any of them as F−1
k (η). The probability of

such a situation is zero.
By construction, the distribution of V m(ω) for ω ∈ Bst is exactly the same as the distribution of Y (ω)

for ω ∈ Bkl . All events Bi j are equally likely and simply permuted, and therefore the distribution of V m

is identical with the distribution of Y . Consequently, V m
∈ A(1)(Y ). Thus,

M∑
m=1

αm V m(ω) ∈ conv A(1)(Y ).

Furthermore, by the construction of V m and inequality (3), we have ‖V m
−Zm
‖ = ‖Y− Ỹ‖ ≤ ε. Observe

that
A(1)(Y ) = A(1)(Y )+ L+1 ,

where L+1 = {X ∈ L1 : X ≥ 0 a.s.}. Using (5) and the last three relations we obtain the following
estimate of the L1-distance of X to the set conv A(1)(Y ):

d(X, conv A(1)(Y )) = d(X, conv A(1)(Y )+ L+1 )
≤ ‖X − X̃ − ε‖ + d(X̃ + ε, conv A(1)(Y )+ L+1 )

≤ 3ε + d(X̃ + ε,
M∑

m=1

αm V m
+ L+1 )

≤ 3ε + d(X̃ + ε,
M∑

m=1

αm Zm
+ L+1 )+

M∑
m=1

αm‖Zm
− V m

‖

≤ 3ε + 0+
M∑

m=1

αmε = 4ε.

Since ε was arbitrary, we conclude that d(X, conv A(1)(Y )) = 0, which proves the statement.
For a general distribution of Y we approximate it by continuous random variables, and the result

follows by passing to the limit. �
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