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Abstract

We explore commons problems when agents have access to capital markets.
The commons has a high intrinsic rate of return but its fruits cannot be
secured by individual agents. Resources transferred to the capital market
earn lower returns, but are secure. In a two period model, we assess the con-
sequences of market access for the commons’ survival and welfare; we com-
pare strategic and competitive equilibria. Market access generally speeds
extinction, with negative welfare consequences. Against this, it allows in-
tertemporal smoothing, a positive effect. In societies in which the former
effect dominates, market liberalisation may be harmful. We reproduce the
multiple equilibria found in other models of competitive agents; when agents
are strategic, extinction dates are unique. Strategic agents generally earn
their surplus by delaying the commons’ extinction; in unusual cases, strate-
gic agents behave as competitive ones even when their numbers are small.
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1 Introduction

We analyse commons problems when agents have access to capital markets.
We are particularly interested the effect of capital market access on the com-
mons’ survival and on welfare.

As, in almost any contemporary common access problem, those drawing
on the resource also have access to capital markets, this research contributes
to most commons analyses: fishermen may sell their catch and bank the
proceeds; power plants may be financed against future profits earned, in
part, by emitting into a common atmosphere.

The problem most directly motivating our interest is that considered in
Tornell and Velasco (1992). It noted that capital might flee from capital
scarce poor countries to capital abundant rich countries if property rights in
the former were weak.1 Its chief insight was to view property rights as entirely
absent, treating the entire capital stock of poor countries as a communal
endowment. Access to foreign capital markets then allowed agents to convert
these insecure but high yield resources into privately appropriable assets, with
reduced yields, held abroad.2

In addition to being of theoretical interest, this environment is the subject
of policy debate. Free markets and strong property rights are both elements
of the ‘Washington Consensus’ on development and transition policy.3 While
the case for each of its elements individually is often strong,4 the Consensus
implicitly outlines a theory of the first best. It is, however, well known that
“it is not true that a situation in which more, but not all, of the optimum
conditions are fulfilled is necessarily, or is even likely to be, superior to a
situation in which fewer are fulfilled” (Lipsey and Lancaster, 1956).

In practice, as strengthening property rights requires enhancing state ca-

1Reinhart and Rogoff (2004) provide a recent discussion of this question, regarding
sovereign debt default as a central example of weak property rights.

2In contrast, Thirsk (1967) notes that the classical English commons earned lower
returns than did enclosed land. This was a consequence of management: aware of the
problem of communal management, grazing of animals was not allowed on commons land,
restricting its use to tillage.

3See Williamson (2000) for both a more detailed description and a caveat on the broad
use of this term.

4Besley and Burgess (2003) assess the ability of commonly discussed policies for poverty
reduction (e.g. foreign aid, debt relief) to meet the World Bank’s stated aim of halving
the number of poor by 2015. While pessimistic about the effectiveness of many of these
policies, they find that strengthening property rights by half a standard deviation would
suffice to halve global poverty. Roll and Talbott (2001) seek to uncover ‘deep’ determinants
of wealth - those conditions realistically amenable to change. They conclude that over 80%
of GNP differences are susceptible to change, and find property rights and black market
activity have the highest level of significance.
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pacity, doing so may take longer than implementing those policies involving
reduced state controls - e.g. liberalising markets. Thus, it is possible that
liberalising capital markets while property rights remain weak may encourage
the pillaging of domestic assets and capital flight - impeding development.
Rich ‘oligarchs’ with a comparative advantage in predation may even favour
the persistence of weak property rights: this help explain some of Russia’s
immediate post-Soviet experience (Sonin, 2003; Hoff and Stiglitz, 2004).

The conclusion of Tornell and Velasco (1992) was more uniformly posi-
tive: access to foreign capital markets may “ameliorate the tragedy of the
commons, and increase welfare” by putting “a floor on the common-access
asset’s rate of return and, thus, a ceiling on the appropriation rate”.

They derived this result by modelling the problem as a continuous time,
infinite horizon differential game. To ensure tractability, they restricted
agents’ extraction in two ways. First, extraction strategies are Markovian
and stationary, thus dictated by the same function of the communal endow-
ment in each instant. These are standard assumptions in infinite horizon
differential games.

Second, extraction rates are restricted to be shares of the commons stock.
This reduces the dimension of the problem, allowing each agent’s strategy
to be identified with a single fraction. In continuous time this precludes the
possibility of extinguishing the resource in finite time. However, as access to
the outside option of capital markets may increase the rate of return below
which a project ceases to be viable, a central effect of market access may be
to encourage extinction of the commons.

We, therefore, analyse the simplest version of this problem in order to
impose as few restrictive assumptions on strategies as possible: agents make
extraction and consumption decisions at two points in time. Thus, they may
extinguish the communal endowment immediately, in the second period, or
not at all. Without capital markets, consumption in each period cannot
exceed extraction. Capital markets replace this set of budget constraints
with a single, intertemporal constraint.

While capital market access improves welfare under a broad range of
circumstances, we find that it may also reduce welfare: market access intro-
duces two opposing effects. The welfare enhancing effect is the intertemporal
smoothing of consumption and extraction plans allowed by markets. Against
this, capital market access reduces incentives to preserve the commons, a de-
pletion effect: consumption utility can still be earned without it. This effect
is particularly strong in competitive equilibria, whose agents regard them-
selves as ‘extinction date takers’ - akin to price takers in a GE environment.

Competitive equilibria may yield multiple extinction dates, an effect found
elsewhere in the literature (Kremer and Morcom, 2000; Dutta and Rowat,
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2004). This reflects strategic complements in extraction arising from the com-
petitive equilibrium concept: when other agents extract sufficiently quickly
to extinguish the resource rapidly, rapid extraction is a best response; when
they extract slowly enough to ensure its preservation, slow extraction is a
best response. We present a sufficient condition for unique extinction dates;
this places an upper bound on the slopes of agents’ best response functions
ensuring that best response functions, having intersected once, cannot do so
again.

Under strategic equilibria, agents take the effect of their own extraction
on the extinction date into account. This seems to eliminate the multiple
equilibria found under ‘extinction date taking’. As agents recognise that their
conservation may yield them returns in later periods, they tend to preserve
the commons more, earning their surplus by doing so. Thus, the welfare
effects of capital market access may not be monotonic in the market rate.
When the market rate is low, savings are insufficiently attractive to speed the
commons’ depletion, but nevertheless aid intertemporal smoothing - a gain.
At higher market rates, the commons will be exhausted earlier, the efficiency
loss outweighing the smoothing effect. As the market rate increases further,
the smoothing gains may again come to outweigh the depletion loss.

Under competitive equilibria with market access, constant marginal ex-
traction costs do not necessarily exhaust the commons. This contrasts to
their consequences in Dutta and Rowat (2004) and Gaudet, Moreaux, and
Salant (2002), where they produce ‘jump extinctions’, extinguishing the com-
mons in single instants.

Two reasons explain these differences. First, with only two consumption
periods, our agents may become satiated if extraction costs are positive.
Second, in Gaudet et al. (2002), scarcity increases the market price of the
extracted good to the point where it covers extraction costs.

Before proceeding, we review the related literature in Section 2. We
introduce the model in Section 3. Section 4 analyses competitive equilibria
in the general case with access to capital markets. Section 5 then analyses
strategic equilibria. Section 6 revisits the analysis in the absence of capital
markets. Section 7 discusses the results and concludes. Unless indicated
otherwise, proofs are relegated to the Appendix A.

2 Related literature

Formal analyses of the commons problem has a long history, beginning with
static formulations (Gordon, 1954). This assumed that free-entry would yield
the competitive outcome, dissipating all rents. Much subsequent commons
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analysis has been dynamic, but intertemporally autarkic (Mirman, 1979; Lev-
hari and Mirman, 1980; Benhabib and Radner, 1992; Dutta and Sundaram,
1993b; Dockner and Sorger, 1996; Sorger, 1998): agents may extract from the
commons over time, but are forced to consume the goods upon extraction.

Dutta and Sundaram (1993a) and Brooks, Murray, Salant, and Weise
(1999) compare results under different equilibrium concepts: the former show
that strategic equilibrium dynamics can deviate considerably from those aris-
ing under the first best; the latter present a model in which, as the number of
agents goes to infinity, one strategic equilibrium converges to the competitive,
while the other yields rents (but violates a finite valuation condition). Clark
(1973) considered when a single owner would drive a resource to extinction.

Tornell and Lane (1999) considered a variant on Tornell and Velasco
(1992) with a high yield formal sector, subject to predatory taxation, and a
low yield informal sector, hidden from taxation. A companion paper, to this
one, Dutta and Rowat (2004), analyses competitive equilibria in an infinite
horizon, continuous time model with stationary Markov extraction strategies.
For low communal endowments, the depletion effect of capital market access
outweighs the smoothing effect. At intermediate levels, there are generally
three equilibria with capital market access: autarky is superior to some of
these, but not to others. At high levels, the smoothing effect dominates the
depletion effect.

Otherwise, analyses of the commons that do not force agents to consume
their harvest immediately have focussed on competitive agents with a storage
capability rather than full capital market access.

Kremer and Morcom (2000) studied poachers, who may kill elephants (an
open access resource) and store their ivory tusks at the opportunity cost.5

As we do, they found multiple equilibria: “if others poach, the animal will
become scarce, and this will increase the price of the good, making poaching
more attractive.” Homans and Wilen (2001) allowed fish catches to be sold
either immediately to the fresh market or over the rest of the year on the
frozen market. They concluded that fishing industry rents both induce entry
and shorten the fishing season, causing more fish to be sold on the inferior
market. Finally, Gaudet et al. (2002), explored abstract private storage and
found that, as average extraction costs become constant, ‘jump extinctions’
occur, similar to speculative attacks on currency.

5See Bulte, Horan, and Shogren (2003) and Kremer and Morcom (2003) for further
discussion.
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3 The model

An endowment of resources, k1, is communally held. In other words, property
rights are either not defined or not enforced over this stock. A finite set of
N agents, indexed by i or j, take two actions at each of two points in time,
t ∈ {1, 2}: agents extract from the commons; these decisions are denoted by
x1i and x2i, respectively; agents also consume resources, denoted by c1i and
c2i. We defer explanation of how agents make these decisions and how they
are related, until the environment is fully described.

Collectively, agents’ extraction causes the communal stock to evolve to
k2 at t = 2 according to:

k2 = (1 + a)

(
k1 −

N∑
i=1

x1i

)
; (1)

where a > 0 is an exogenous constant.6

Agent i’s utility depends on four arguments, as specified here:

Ui (ci,xi) =
c1−α
1i + βc1−α

2i

1− α
− x1+γ

1i + βx1+γ
2i

(1 + γ) θ
; (2)

where α > 0 makes consumption utility concave, β ∈ [0, 1] is a (common)
discount factor, and γ ≥ 0 makes extraction disutility convex; θ ≥ 0 allows
extraction costs to be further scaled.7

The concavity of consumption utility needs no further explanation. The
curvature of extraction disutility implies diseconomies of scale in extraction.
The case of γ = 0, linear extraction costs, may be interpreted as a situation
in which there is a competitive market for the inputs (e.g. a labour market)
into a CRS extraction function.

In contrast with the traditional literature, extraction and consumption
need not be equal in any given period. Instead, the presence of capital
markets merely requires satisfaction of an intertemporal budget constraint:

c1i +
c2i

1 + r
≤ x1i +

x2i

1 + r
. (3)

6In continuous time, the analogous equation of motion is

k̇ (t) = ak (t)−
∑

i

xi (t) .

Constraining extraction to be shares of the stock, so that xi (t) = fik (t), yields k̇ =
(a− f) k (t), where f ≡ ∑

i fi. Thus, the stock either remains constant, grows exponen-
tially or asymptotically approaches zero. These modelling assumptions therefore preclude
extinction in finite time.

7We rule out α = 0 to avoid bang-bang effects.
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Thus, r is the exogenous market interest rate. As our society is a small one
relative to the global, net lending or borrowing need not equal zero across
our agents. We further assume that a > r as this creates a trade-off between
efficiency, which dictates that resources should remain in the commons, and
weak property rights, which create incentives for removing them. In the
enclosure interpretation, a− r is the cost of protecting enclosed resources.

The structure of the problem is common knowledge, as is the endowment,
k1. At t = 2, the t = 1 extraction decisions also become common knowledge.8

Now consider how extraction and consumption are determined. We con-
sider two different concepts of agents’ behaviour, a competitive one and a
strategic one. In both, capital markets allow agents’ consumption problem to
be treated decision-theoretically (Tornell and Velasco, 1992). We therefore
divide agents’ problems into two separate problems: optimal consumption
subject to a budget constraint (defined by extraction); and optimal extrac-
tion subject to a feasibility constraint.

3.1 The consumption problem

Agents’ consumption problems are decision rather than game theoretic prob-
lems. The consumption problem facing agent i is subject to a single intertem-
poral budget constraint:

max
c1i,c2i≥0

c1−α
1i + βc1−α

2i

1− α
s.t. c1i +

c2i

1 + r
≤ y (r,xi) ;

where y (r,xi) ≡ x1i + x2i

1+r
, the present value of the private benefits of ex-

traction, is assumed fixed in this sub-problem.
Therefore

c∗ti =
[(1 + r) β]

t
α

1 + (1 + r)
1−α

α β
1
α

y (r,xi) . (4)

Given these optimal consumption levels, the agent’s utility function may
be rewritten in terms of xi alone as the value function

Vi (xi) = φ
y (r,xi)

1−α

1− α
− x1+γ

1i + βx1+γ
2i

(1 + γ) θ
; (5)

where
φ ≡

[
1 + (1 + r)

1−α
α β

1
α

]α

. (6)

Thus, the value function is strictly concave in the extraction levels.

8The game is therefore a continuous game of almost perfect information, in the sense
of Harris, Reny, and Robson (1995): agents’ actions sets are continua; information about
past play is perfect but there are simultaneous moves each period.
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3.2 Equilibrium concepts

Two equilibrium concepts are compared in this paper, a competitive and
a strategic one. Before presenting these, we define a number of ancillary
objects.

First, let

sti ≡ max

{
0, kt −

∑

j 6=i

xtj

}
;

be the upper bound on i’s extraction at time t. Then

Definition 1. A Markov strategy πi for agent i is a pair of functions,
{π1i, π2i} such that

xti = πti (sti) ∈ [0, sti] ;

for each t = 1, 2. Let Πi (sti) be the set of all Markov strategies available to
agent i.

Markov strategies are history independent. By defining them over a do-
main, sti, that depends on the simultaneous actions of the remaining agents,
we have specified a generalised game (Debreu, 1952). Doing this allows us
to avoid specification of arbitrary allocation rules in the event that agents
collectively seek infeasible extraction from the commons.9 In what follows,
we focus on symmetric equilibria, consistent with egalitarian allocation rules.

As our model only has two time periods, we do not need to impose the
further requirement of stationarity for analysis to remain tractable.

The competitive concept is:

Definition 2. A strategy profile, {π}N
i=1 is a rational expectations equilib-

rium (RE) if, for each i, (π1i, π2i) maximise objective function 5 subject to

x1i ≤ s1i; and x2i ≤ s2i.

Thus, the intertemporal feasibility constraint is not faced by any agent
individually: agents do not take the effect of their extraction on the capital
stock into account. They may therefore be thought of as capital takers, anal-
ogously to price takers in competitive equilibrium. Where the latter interact
through their collective effect on prices, our agents interact through their col-
lective determination of the extinction date. This equilibrium concept seems
more reasonable when agents are numerous and small.

The strategic equilibrium concept is:

9See Dutta and Sundaram (1993a) for a discussion.
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Definition 3. A strategy profile {πi}N
i=1 ∈ ×N

i=1Πi is a Markov perfect equi-
librium (MPE) if, for each i:

1. π2i (s2i) maximises objective function 5 given π1i (·); and

2. π1i (s1i) maximises objective function 5 given π2i (·).
Subgame perfect equilibria, of which MPE form a subset, need not exist

in games of almost perfect information, even in mixed strategies: counter-
examples are presented in both Harris et al. (1995) and Dutta and Sundaram
(1993a). Harris et al. (1995) prove that public randomisation restores exis-
tence. In our case, MPE exist in pure strategies.

As the communal resources’ extinction date is a central interest of ours,
we categorise equilibria, whether RE or MPE, by these:

1X is an equilibrium in which the resource is instantly extinguished, at t = 1:∑
i x1i = k1, x2i = 0∀i.

2X is an equilibrium in which the resource is extinguished at t = 2:
∑

i x1i <
k1,

∑
i x2i = k2;

NX is an equilibrium in which the resource is not extinguished:
∑

i x1i <
k1,

∑
i x2i < k2;

In 1X and 2X RE equilibria, extraction is generally indeterminate: if the
endowment is scarce, any division of it may be an equilibrium. Had we not
specified a generalised game, a rule for resolving infeasible extraction would
be the standard approach for ensuring determinacy. Instead, we pin them
down by considering only symmetric equilibria.

4 Rational expectations equilibria

We fully characterise necessary and sufficient conditions for the rational ex-
pectations equilibria.

The lemma doing so then allows this section’s main result, which provides
necessary and sufficient conditions on k1 for extinction dates.

Lemma 1. Extraction in a symmetric RE equilibrium is characterised by:

1X x1i = k1

N
and x2i = 0
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2X

xγ
1i

[
1 + a

1 + r

k1

N
+

r − a

1 + r
x1i

]α

= φθ; (7)

x2i = (1 + a)

(
k1

N
− x1i

)
.

NX

xNX
1 ≡ (φθ)

1
α+γ

[
(1 + r)

1+γ
γ β

1
γ

(1 + r)
1+γ

γ β
1
γ + 1

] α
α+γ

; (8)

xNX
2 ≡ (φθ)

1
α+γ

[(1 + r) β]
1
γ

[
(1 + r)

1+γ
γ β

1
γ

(1 + r)
1+γ

γ β
1
γ + 1

] α
α+γ

. (9)

If symmetry is not imposed, extraction under the NX equilibrium is un-
altered: agents are already extracting to their glut points. Before addressing
the condition under which the above equilibria arise, we take two preliminary
steps.

First, differentiate x1i, as defined by equation 7, with respect to s2i for:

−1 <
dx1i

ds2i

= − αx1i

(1 + r) [αx1i + γy (r, x1i, s2i)]
< 0. (10)

Second, define:

Definition 4. Threshold capital stocks κ1 and κ2 are defined by

κ1 ≡ N (φθ)
1

α+γ ;

κ2 ≡ N

[
xNX

1 +
xNX

2

1 + a

]
.

Thus, costless extraction (Tornell and Velasco, 1992; Tornell and Lane,
1999), which sets θ = ∞, also sets κ1 = κ2 = ∞.

The main result of this section is:

Theorem 1. Necessary and sufficient conditions for symmetric RE equilibria
are:

1X k1 ≤ κ1;

2X k1 ∈ (κ1, κ2] or k1 ∈ [κ2, κ1), as appropriate;
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NX k1 > κ2.

It therefore follows that:

Corollary 1. A sufficient condition for the coexistence of 1X, 2X and NX
equilibria is κ2 < κ1.

Multiple extinction dates may be avoided by ensuring that κ1 < κ2:

Proposition 1. A sufficient condition for κ1 < κ2 is

1 + r

1 + a
≥ α

α + γ
. (M)

The proof, in the Appendix, shows that Condition M ensures that tighter
constraints at t = 2 reduce the present value of the extraction path. The
condition holds when extraction costs are sufficiently non-linear. If we in-
terpret γ = 0 as corresponding to perfectly competitive labour markets, the
condition requires sufficient imperfections. We now show that γ = 0 yields
unique extinction dates in spite of violating Condition M ; we then provide
an intuition for the condition itself.

Example 1. Consider the case of constant marginal extraction costs, γ = 0.
When a > r, this violates condition M . Nevertheless, substitution of γ = 0
into equations 8 and 9 reveal that

xNX
1 =

{
(φθ)

1
α when (1 + r) β > 1

0 otherwise

}
; and (11)

xNX
2 =

{
0 when (1 + r) β > 1

(φθ)
1
α otherwise

}
; (12)

so that

κ1 = N (φθ)
1
α ; and (13)

κ2 =

{
N (φθ)

1
α when (1 + r) β > 1

N
1+a

(φθ)
1
α otherwise

}
. (14)

Therefore, when γ = 0, extinction dates are unique when (1 + r) β > 1.

We now interpret Condition M . In the case of 2X equilibria, equation 10
and ds2i

d
P

j 6=i x1j
= − (1 + a) allow us to write

dx1i

d
∑

j 6=i x1j

=
1 + a

1 + r

αx1i

αx1i + γy (r, x1i, s2i)
> 0.
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Thus, the problem exhibits strategic complementarity in t = 1 extraction:
larger aggregate extraction by all j 6= i induces larger extraction by i. The
derivative takes on its maximum value when s2i = 0:

dx1i

d
∑

j 6=i x1j

≤ 1 + a

1 + r

α

α + γ
.

Condition M therefore ensures that the slope of i’s best response function is
bounded above by unity in 2X equilibria. Equally, the slope of the aggregate
best response of all j 6= i is bounded above by N − 1.

Similar logic applies to 1X and NX equilibria. In 1X, dx1i

d
P

j 6=i x1j
< 0 by

the resource constraint. In NX, dx1i

d
P

j 6=i x1j
= 0 as the resource is sufficiently

abundant that x1i is independent of others’ extraction. Thus, in both cases,
the slopes of the best response functions are bounded above by zero.

Thus, if there is a fixed point in
(
x1i,

∑
j 6=i x1j

)
space, the upper bound

on best responses ensure that there are no further intersections at higher
values of

∑
j 6=i x1j.

10

This interpretation also explains Example 1: γ = 0 ensures linear best
responses functions, which intersect once.

Finally, interpreting condition M in terms of best responses allows eco-
nomic intuitions for it. We mention two. First, as 1+r

1+a
increases, i’s best

response to j 6= i becomes flatter: as the disadvantage of private savings rel-
ative to use of the commons is reduced, more extraction becomes appealing
independently of others’ actions. Second, play also becomes less responsive
as γ increases: the increased curvature of the extraction costs makes i less
responsive to increases in ‘unclaimed’ communal resources.

5 Markov perfect equilibria

Value function 5 is strictly concave in its arguments. Therefore, given any
x−i, agent i has a unique best response in each period; this means that only
pure strategies need be considered.

Before presenting our main result we define

κ−1 ≡ κ1

[
1− 1 + a

(1 + r) N

] 1
α+γ

10This argument also holds for asymmetric equilibria. Generally, extraction is indeter-
minate for 1X and 2X equilibria. In these cases, the monotonic mapping between s2i and
x1i means that a different s2i could be chosen, leading to a different, unique, intersection
in (x1i, x1j) space.
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This section’s main result parallels that of the previous section:

Theorem 2. 1X a necessary condition for a 1X MPE is that k1 ≤ κ1. A
sufficient condition is that

k1 ≤ κ−1 .

2X a necessary condition for a 2X MPE is that k1 ≤ κ2. A sufficient con-
dition for a 2X MPE is that

κ−1 < k1 ≤ κ2.

NX a necessary and sufficient condition for an NX MPE is that k1 > κ2.

- k1

κ1

2X MPE

2X RE

κ2

1X RE

κ−1

1X MPE NX MPE

NX RE

Figure 1: Symmetric RE and MPE equilibria with market access

Figure 1 compares the conditions presented in Theorems 1 and 2. As
the proofs of the sufficiency conditions presented above rely on symmetric
examples, it is the sufficiency conditions that are displayed.

When the endowment is abundant, the competitive and strategic concepts
yield identical extinction dates, regardless of the number of agents. This
reflects the problem’s finite horizon: strategic and competitive agents alike
know that resources left in the commons at t = 2 will be lost. Thus, they
face the same incentives to conserve at t = 2, namely none.

When the communal resource is scarce, however, strategic and compet-
itive agents think differently about the consequences of conservation: while
a strategic agent assumes that he will receive 1

N
of the returns to extraction

foregone now, a competitive agent assumes that he will later receive none.
This explains strategic agents’ ability to obtain 2X equilibria for k1 levels at
which competitive agents attain 1X equilibria.

The difference in k1 sufficient to achieve a 2X outcome is proportional to
1+a

(1+r)N
. The statics on the wedge are intuitively appealing: it increases with
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returns to the commons, a, and decreases with returns to private saving, r,
and the number of agents, N . Thus, as N increases, the gap closes, so that
the MPE converges to the RE.

k120151050

1.4

1.2

1

0.8

0.6

0.4

0.2

0

MPE
y

RE
y

Figure 2: Welfare with capital market access when (N, a, r, α, β, γ, θ) =(
10, 40

100
, 35

100
, 2

10
, 97

100
, 8

10
, 1

)
under symmetric strategies.

Strategic agents’ more sophisticated consideration of the consequences of
conservation provide them with a surplus relative to competitive agents. An
example is plotted in Figure 2. When the resource is non-scarce, or when it
is sufficiently scarce to yield a 1X under either equilibrium concept, welfare is
identical. For intermediate endowments, strategic agents’ returns to moving
to 2X at lower k1 are clearly displayed. When both concepts yield 2X, the
difference owes to strategic agents’ reducing their t = 1 extraction relative
to competitive agents.

Under some circumstances, a 2X may be guaranteed for all scarce k1:

N ≤ 1 + a

1 + r
; (S ′)

ensures that the boundary between the 1X and 2X sufficiency conditions of
Theorem 2 is non-positive. Thus, when k1 is insufficient for NX, a symmetric
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2X always exists. Intuitively, the left hand side of condition S ′ is a measure
of the benefits of commonly held assets; its right hand side is a measure of
the costs of leaving them there.

Further, extraction under condition S ′ may be efficient:

Lemma 2.

φθ

[
1 + a

1 + r

k1

N

]−α [
1− 1 + a

(1 + r) N

]
+ β

(
1 + a

N

)1+γ

kγ
1 ≤ 0

is necessary and sufficient for x1i = 0∀i.
The Lemma’s condition is the derivative of the value function (q.v. equa-

tion 21 in the Appendix) at x1i = 0. Thus, its negativity ensures the corner
solution. This is efficient as it allows society to use the high growth rate, a,
rather than the lower market rate, r. For any parameter values satisfying
condition S ′ there is a value of θ above which it holds: as extraction costs
fall, so do the advantages of smoothing extraction.

Less optimistically, plausible values of N, a and r do not satisfy condition
S ′. Even the easiest case, N = 2, requires a ≥ 1 + 2r > 2r, which seems
strong.

The complementary condition,

N >
1 + a

1 + r
; (S)

seems more usual. When it holds, the 1X-2X sufficiency boundary is positive,
allowing 1X. If extraction is costless, the boundary (and κ2) become infinite;
then, 1X is the unique MPE for all finite k1.

6 No capital markets

This section re-analyses the results of the preceding two sections in the game
without capital market access. This is the standard approach taken in the
dynamic commons literature. The comparison allows us to address our main
question, that of the consequences of market access.

Analysis proceeds as before, with two exceptions. First, the intertemporal
budget constraint is replaced by two separate budget constraints.

Second, cti is equated to xti: the consumption and extraction problems
cannot be disentangled. This reduces value function 5 to

V ∅
i (xi) =

x1−α
1i + βx1−α

2i

1− α
− x1+γ

1i + βx1+γ
2i

(1 + γ) θ
. (15)
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This differs in three ways from equation 5, all pertaining to consumption
utility: φ has been replaced by 1 ≤ φ; the consumption term is now the sum
of concave functions, instead of being a concave function of a sum; and the
market discount rate, 1

1+r
, has been replaced by the subjective discount rate,

β.
These effects do not work in the same direction. Thus, whether extraction

under markets exceeds that under autarky will depend on parameter values,
including the level of k1.

As before, we define an endowment level that will help distinguish extinc-
tion dates:

κ∅2 ≡
2 + a

1 + a
Nθ

1
α+γ .

Following the comparison of equations 5 and 15, this may be greater or less
than κ2: the inequality does not seem to reduce to a simple expression.

6.1 Rational expectations equilibria

1X 2X NX

k1

[
0, Nθ

1
α+γ

] (
Nθ

1
α+γ , κ∅2

] (
κ∅2,∞

)

x1i
k1

N
θ

1
α+γ θ

1
α+γ

x2i - (1 + a)
(

k1

N
− θ

1
α+γ

)
θ

1
α+γ

Table 1: Symmetric RE EQ under autarky

Without access to capital markets, extinction dates are unique. Table 1
presents necessary and sufficient conditions for symmetric RE under autarky.
Although marginal consumption utility is infinite at x2i = 0, 1X RE exist for
some k1: competitive agents do not believe that conservation at t = 1 will
gain them access to consumption at t = 2.

The effects of market access on extinction dates may be seen by comparing
Theorem 1 to Table 1. Autarky attains symmetric 2X for (weakly) lower
endowment levels than do capital markets. This follows directly from the
Inada consumption utility specification: marginal utility at c2i = 0 is infinite;
under autarky, this can only be obtained by preserving the commons.

Whether market access or autarky achieves NX at lower k1, however, is
parameter dependent. When β = 1

1+r
, κ2 and κ∅2 are identical: if the market

discount rate and the subjective discount rates are the same, access to a
market rate does not alter the problem. Otherwise:

Proposition 2. β ∈
[

1
(1+r)1+γ , 1

1+r

)
⇒ κ2 < κ∅2 while β > 1

1+r
⇒ κ2 > κ∅2.
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Intuitively, the higher interest rate allows society to consume more by
increasing the efficiency of capital markets.

Theorem 3. For any calibration, symmetric RE under market access are
Pareto superior to those under autarky for at least some values of k1.

Proof. Comparing welfare under the 1X equilibria shows that market access
outperforms autarky by a factor of φ. Thus, φ > 1 suffices for the result.

k120151050
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6

4

2

0

market access
y

autarky
y

Figure 3: Welfare under symmetric RE when (N, a, r, α, β, γ, θ) =(
10, 40

100
, 35

100
, 8

10
, 97

100
, 2

10
, 1

)
.

Theorem 3 leaves two possibilities: markets may outperform autarky for
all k1; and, markets may outperform autarky for some k1. Figures 3 and 4,
respectively, illustrate these cases. In both cases, condition M is satisfied;
under market access, this guarantees unique extinction dates. The two cases
differ only in their choices of α and γ.

In Figure 3, the curvature of consumption utility is greater than that of
extraction disutility. Thus, consumption smoothing is important relative to
extraction smoothing. The relative unimportance of extraction sequencing
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Figure 4: Welfare under symmetric RE when (N, a, r, α, β, γ, θ) =(
10, 40

100
, 35

100
, 2

10
, 97

100
, 8

10
, 1

)
.

does not seem to convey much advantage: knowledge of the extinction date
already imposes controls on extraction. For high levels of extraction, the
difference in consumption utility between budget constraints every period
and a single intertemporal constraint is reduced: in both cases, marginal
consumption utility is small.

In Figure 4, the relative importance of consumption and extraction smooth-
ing is reversed. Nevertheless, the welfare curves resemblance each other more
closely than do their counterparts in Figure 3. This may owe to the RE con-
cept already encouraging extraction smoothing in both Figures.

The higher levels of utility in Figure 3 reflect the lower extraction costs.
The mixed welfare results illustrate clearly the two effects of market ac-

cess. First, a consumption effect, whereby agents may optimise their con-
sumption paths. This increases the value of assets in the capital markets,
as indexed by φ. It is a positive effect, even without concave consumption
utility.

The second effect is an extraction effect, whereby the higher value of assets

17



in the capital markets prompts the more rapid depletion of the commons.
This effect is negative, and seems to grow stronger as φ increases above
unity.

The general benefits to market access may not be surprising under RE:
as agents do not regard themselves as able to alter the extinction date, one
of the main concerns about the ability to take resources drawn from the
commons to the capital markets disappears.

Dutta and Rowat (2004) also found that autarky outperformed market
access for some levels of communal endowment. For low endowment lev-
els, autarky dominated market access; at intermediate levels, market access
yielded multiple equilibria, some of which outperformed autarky. Here, when
autarky is superior, it is so for intermediate rather than low endowment lev-
els.

In both cases, the results reflect the autarkic environment’s superior abil-
ity to preserve the commons. Here, this requires attaining a 2X outcome

which requires, in turn, k1 > Nθ
1

α+γ . In Dutta and Rowat (2004), time is
continuous; thus, autarky delays extinction relative to the market for all low
levels of k1. In both cases, market access outperforms autarky when the
communal resource is non-scarce (NX, here).

6.2 Markov perfect equilibria

The parallel result to the main result of Section 5 is:

Theorem 4. For an NX MPE under autarky, k1 > κ∅2 is necessary and
sufficient; the complement is necessary and sufficient for a 2X MPE. No
finite k1 is consistent with a symmetric 1X MPE under autarky.

Thus, as under RE, extinction dates are unique. Now, however, symmet-
ric 1X equilibria are eliminated: strategic agents expect their conservation
at t = 1 to yield returns at t = 2. Thus, autarky’s ability to preserve the
commons is strengthened under MPE.

Asymmetric 1X MPE do, however, exist for some values of k1. Consider a
candidate equilibrium in which some subset of agents is to divide k1 between
them; out of equilibrium, a distinct subset will divide whatever is produced
by deviation at t = 1. A member of this first subset now effectively faces a
single extraction period: while he may wish to take advantage of the infinite
marginal consumption utility at t = 2, he cannot.

The MPE transition between 2X and NX is the same as that for RE.
An exact parallel to Theorem 3 holds, for the same reasons:
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Theorem 5. For any calibration, symmetric MPE under market access are
Pareto superior to those under autarky for at least some values of k1.
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Figure 5: Welfare under symmetric MPE. Parameters as in Figures 3 and 4.

Figure 5 provides the MPE analogs of Figure 3 and 4 in its left and
right panels, respectively. In both cases, the deep scallops present in the
autarkic RE outcomes have been reduced by the elimination of 1X MPE.
This is particularly dramatic in the former calibration. The shallow scallop
in the second calibration around k1 ≈ 8 therefore does not reflect a 1X to
2X transition but the relative extraction levels, x1i and x2i: while x1i grows
almost linearly in k1 for low endowments, x2i remains near zero until k1 ≈ 8,
when it begins to grow quickly.

Thus, as under RE, market access conveys both consumption and extrac-
tion effects. Under MPE, however, agents’ additional foresight allows them
to mitigate substantially autarky’s harmful effects.

As before, the MPE equilibria converge to the RE as N → ∞. As this

causes Nθ
1

α+γ →∞, 1X becomes the unique autarkic RE for all finite k1. For
autarkic MPE, 2X remains the unique equilibrium, but k2

N
vanishes, making

the outcome effectively a 1X one.

7 Discussion

Example 1 presented an example of unique extinction dates for RE equilibria
which violated Condition M . The example is also interesting as it produces
jump extinctions in Dutta and Rowat (2004) and Gaudet et al. (2002). In
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the former, the extinction date went to zero as γ did. In the latter, when
reserves reached a critical level after being sold at a constant price, instant
depletion would occur when average extraction costs were constant. This is
not the case here: κ1 and κ2 are finite, meaning that there are finite k1 that
yield 1X, 2X (when k1 = κ1 = κ2) and NX RE equilibria.

We now explain these differences.
In Gaudet et al. (2002), the non-renewable resource is sold at its marginal

- also the average - extraction cost until stocks are reduced to a level at which
the price begins to rise at the rate of interest, r: the standard Hotelling
result. Instant depletion occurs at that point. Thus, market demand ensures
that prices will eventually rise to the point where they cover finite, constant
marginal extraction costs.

In Dutta and Rowat (2004), the continuous time formulation means that
there are an infinite number of consumption periods. Infinite marginal con-
sumption utility at cti = 0 then ensure that finite, constant marginal extrac-
tion costs are covered.

In the present paper, however, there are only two consumption periods.
Thus, agents may collectively reach their glut points - points at which the
marginal extraction costs exceed the marginal consumption benefits - with
finite k1.

Intriguingly, the resource may survive even under more consumption pe-
riods. When the Uzawa consumption condition,

(1 + r)1−α β < 1; (UC)

holds, φ and κ1 converge to finite values even as the number of consumption
periods goes to infinity. When this condition is violated, κ1 becomes infi-
nite, allowing 1X depletion for any initial commons stock. The condition is
violated at β = 1, making sense of why such a condition is not relevant in
Dutta and Rowat (2004). In that, there are an infinite number of consump-
tion periods even in the first interval of time. Here, the infinite consumption
periods are spaced out over an infinite length of time.

The results for rational expectations generalise naturally to games with
more stages. When T = ∞, Vi (xi) may be infinite for some xi. Problems
associated with this may be avoided by imposing Uzawa conditions to ensure
finite valuations. The Uzawa consumption condition has already been for-
mally introduced, in equation UC. The corresponding extraction condition,
equation UX, is present in the Appendix, although not introduced as such.11

Generalising results for MPE to longer games is not as easy. The difficulty
reflects the need, in general, to consider two state variables, both kt and a

11This condition appears in equations 11 and 12.
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measure of private savings or debt. This latter becomes relevant as agents
must consider the possibility of deviating at every subgame. As private
savings or debt is generally payoff relevant, this dimension must generally be
considered.

The model used here can be extended in a number of ways. We consider
four possibilities. First, the commons’ growth rate might, if it represents bi-
ological growth, be a function of the stock. Second, we have not considered
the possibility of default. Third, the capital stock is not an argument in the
utility function in this model. This seems more consistent with an interpre-
tation of k as physical capital than as natural capital. In the latter case, k
might provide eco-system services directly. Allowing k to enter directly into
the utility function would allow re-analysis of the problem as the marginal
rate of substitution between k and ci varied. This might contribute to the
‘weak’ and ‘strong’ sustainability debate.

Finally, it seems of interest to consider weak, rather than entirely absent,
property rights. In addition to seeming to cover more plausible cases, it would
allow closer engagement with the empirical literature, which uses interior
measures of the rule of law (q.v. Acemoglu, Johnson, and Robinson, 2001).
Technically implementing weak property rights might require tracking N
state variables rather than the single k1. This would both allow sensitivity
analysis of the results obtained under the present extreme assumption and
allow engagement with the empirical literature.

A Appendix

Proof of Lemma 1. The 1X extraction is trivial. Next consider the NX ex-
traction. In an NX equilibrium, each agent regards the extraction constraints
as non-binding. The first order conditions from value function 5 produce

xNX
ti =

[
φθ

(1 + r)t−1 βt−1y (r,xNX
i )

α

] 1
γ

for t = 1, 2. (16)

The definition of y
(
r,xNX

i

)
allows this to be manipulated for the result.

Finally, consider 2X. The t = 2 extraction follows from symmetry and
definition of the case. The t = 1 optimisation problem yields first order
condition

∂Vi (x1i, x2i)

∂x1i

=
φ

y (r,xi)
α −

xγ
1i

θ
;

which produces the result.
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Proof of Theorem 1. First consider the 1X case. Agent i maximises value
function 5 subject to x2i = 0 and x1i ≤ [s1i]

+. Doing so yields

x1X
1i = min

{
(φθ)

1
α+γ , [s1i]

+
}

. (17)

To satisfy the 1X requirement that
∑

i x
1X
1i = k1 the lemma’s condition is

therefore necessary. As the value function is concave in x1i and the single
constraint convex, equation 17 is the unique maximiser; the lemma’s condi-
tion is therefore also sufficient.

Now turn to the NX case. Given strategies {x1i, x2i}N
i=1, this requires

∑
i

x1i < k1; and

∑
i

[
x1i +

x2i

(1 + a)

]
< k1. (18)

As the first of these is less strict than the second, only the second need be
considered. As the objective function is concave in x1i and x2i and uncon-
strained, this condition is also sufficient.

Finally, consider the 2X case. When

∂y (a, x1i, s2i)

∂s2i

≥ 0; (19)

the least k1 consistent with 2X sets s2j = 0∀j 6= i and s2i > 0. Were
s2i = 0∀i, a 1X would result, in which x1i = x1X

1i ∀i. For an s2i > 0 it must be

that x1X
1i = (φθ)

1
α+γ . Otherwise agents j 6= i would increase their extraction.

Thus, k1 >
∑

i y
(
a, (φθ)

1
α+γ , 0

)
= κ1.

Similarly, when the social present value of extraction increases with s2i,
the greatest k1 consistent with 2X sets s2i = xNX

2 ∀i. As extracting xNX
2 at

t = 2 implies extracting xNX
1 at t = 1, k1 ≤

∑
i y

(
a, xNX

)
= κ2.

These arguments are reversed when y (a, x1i, s2i) decreases in s2i. In this
case, the least k1 consistent with 2X sets s2i = xNX

2 ∀i while the greatest k1

sets s2j = 0∀j 6= i and s2i > 0.
As value function 5 is concave in x1i and x2i, each of which is subject to

a convex constraint, the necessary conditions above are also sufficient.

Proof of Proposition 1. Let y (a, x1i, s2i) be the present value of the social
costs of agent i’s extraction in a 2X equilibrium. Condition M , ensures
that inequality 19 holds. As y (a, x1i, s2i) is continuous at s2i = xNX

2 , κ2 =∑
i y

(
a,xNX

i

)
. The result follows from κ1 =

∑
i y (a, x1i, 0).
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Proof of Theorem 2. First consider 1X MPE. The candidate x2i that prompts
the greatest extraction at x1i is zero. Given this t = 2 extraction, no agent

i has a unilateral incentive to set x1i > (φθ)
1

α+γ . The necessary condition
follows by summation.

To establish sufficiency, use candidate strategies x̂1i = 1
N

k1, fi (k2) =
1
N

k2∀i. The payoff to candidate play is

φ

1− α

(
k1

N

)1−α

− 1

(1 + γ) θ

(
k1

N

)1+γ

;

while that to deviating by δ ∈ (
0, k1

N

]
is

φ

1− α

[
k1

N
− δ +

1 + a

1 + r

δ

N

]1−α

− 1

(1 + γ) θ

{(
k1

N
− δ

)1+γ

+ β

[
(1 + a) δ

N

]1+γ
}

.

Denote the difference between deviant play and candidate play by ∆ (δ).
If d∆

dδ
≤ 0 at δ = 0 then deviation is never profitable: the convex instan-

taneous disutility of extraction ensures that marginal extraction savings at
t = 1 and marginal extraction costs at t = 2 are greatest at δ = 0.

As
∂∆

∂δ

∣∣∣∣
δ=0

= φ
(1 + a)− (1 + r) N

(1 + r) N

(
N

k1

)α

+
1

θ

(
k1

N

)γ

;

the lemma’s condition guarantees that the egalitarian candidates considered
here survive deviations.

Now consider the sufficiency component of the NX MPE. Let x1j and
x2j be defined by equations 8 and 9, respectively, for all j 6= i. When the
condition holds, agent i faces an unconstrained optimisation problem and
chooses identically to agents j 6= i.

Now consider necessity. At t = 2, no agent has an incentive to extract
less than xNX

2 , as defined by equation 9. This must be strictly feasible for
an NX equilibrium. Thus, it must be that k2 > NxNX

2 . Consequently, the
marginal utility obtained by each agent at t = 2 is zero. Thus, no agent will
sacrifice positive marginal utility at t = 1 to obtain it. Indeed, to support
an NX equilibrium, each necessarily extracts up to xNX

1 at t = 1. The strict
inequality of the condition distinguishes this from a 2X equilibrium.

The 2X necessary condition follows directly from the upper bounds on
desirable extraction in each period that result from the concave objective
function.

Finally, the symmetric profile,
{
x̂1,

k2

N

}N

i=1
establishes the sufficiency con-

dition for the 2X MPE. At t = 2, upward deviations to 1X are no longer
possible. Downward deviation to NX is avoided when k2

N
is less than each
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agent’s glut point. By the intertemporal budget constraint, this is a function
of x̂1:(

k2

N

)γ (
x̂1 +

k2

(1 + r) N

)α

≤ φθ

(1 + r) β

⇔(1 + a)γ (1 + r)1−α β

φθNα+γ
(k1 −Nx̂1)

γ [(1 + r) Nx̂1 + (1 + a) (k1 −Nx̂1)]
α ≤ 1.

(20)

Now consider behaviour at t = 1. The candidate t = 2 play reduces value
function 5 to

Vi (x1i) =
φ

1− α

[
x1i +

1 + a

(1 + r) N
(k1 − (N − 1) x̂1 − x1i)

]1−α

− 1

(1 + γ) θ

{
x1+γ

1i + β

[
(1 + a)

N
(k1 − (N − 1) x̂1 − x1i)

]1+γ
}

. (21)

When play is symmetric, the first order necessary condition for an interior
solution is

[(1 + r) Nx̂1 + (1 + a) (k1 −Nx̂1)]
α

[
x̂γ

1 − β

(
1 + a

N

)1+γ

(k1 −Nx̂1)
γ

]

× [(1 + r) N ]1−α

φθ [(1 + r) N − (1 + a)]
= 1. (22)

A 2X MPE requires that first order condition 22 and the 1X and NX
inequalities hold. The 1X inequality requires k1 > Nx̂1; rearranged, this
produces the lower bound on k1 in the statement of the lemma. The latter
requires that x̂1 and k1 satisfy inequality 20 with equality as well as equation
22. As each defines a contour in (k1, x1) space, we solve for their intersection.
Taking advantage of the term common to each, produces, by cancellation,

k1 −Nx̂1 =
Nx̂1

(1 + a) [(1 + r) β]
1
γ

; (23)

and, eventually,

x̂1 =
(1 + a) [(1 + r) β]

1
γ

(1 + a) [(1 + r) β]
1
γ + 1

k1

N
;

an original ray.
These define the locus of all intersections of the two surfaces, not just

those of their unit contours. Substituting equation 23 back into first order
condition 22 yields x̂1 = xNX

1 . As this produces x2i = k2

N
= 1+a

N
(k1 −Nx̂1) =

xNX
2 , the k1 that is just extinguished in 2X by these extraction plans is κ2.
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Proof of Proposition 2.

∂κ2

∂r
= Nθ

1
α+γ [1 + fα (β, r)]

α
α+γ

[
fγ (β, r)

1 + fγ (β, r)

] α
α+γ

×




(1− α) fγ (β, r) γ
[
1 + r+afα(β,r)

1+fα(β,r)

]
+ α (1 + γ)

[
1 + r+afγ(β,r)

1+fγ(β,r)

]

(α + γ) (1 + r)
− 1



 ;

where

fα (β, r) ≡ (1 + r)
1−α

α β
1
α ; and

fγ (β, r) ≡ (1 + r)
1+γ

γ β
1
γ .

A necessary and sufficient condition ∂κ2

∂r
> 0 is that the term in braces be

positive. This is guaranteed by

β >
1

(1 + r)1+γ . (UX)

As κ∅2 is insensitive to r, the result follows.

Proof of Theorem 4. As the proof of the NX result parallels that of Theorem
2, we merely prove the latter elements. First consider the 1X case. A sym-
metric equilibrium implies that x̂1i = k1

N
∀i. A deviation yields k2 > 0. As

each agent i has infinite marginal consumption utility but only finite mar-
ginal extraction disutility at x2i = 0, each will wish to consume at least some
of this. While some agents may be allocated no share of k2 in a candidate
equilibrium, at least one will be. That agent has both the ability to deviate
downwards from x̂1i = k1

N
and the incentive to do so. A 2X MPE results as

long as not all agents exceed their glut points.
Whether the MPE is a 2X and the NX then depends on whether k1 is

sufficiently high to allow all agents to reach their glut points in each period.
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