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Abstract

The general equilibrium model with incomplete asset markets provides a uni�ed

framework for many problems in �nance and macroeconomics. In its simplest version

with only two time periods and a single physical commodity the model is ideally suited

for the study of problems in cross sectional asset pricing and portfolio theory. In this

paper we develop a homotopy algorithm to approximate equilibria in these '�nance

economies'. Since the algorithm is tailor made for �nance economies, the number of

nonlinear equations that has to be solved for, and therefore the computing time, is

an order of magnitude smaller than that of existing general purpose algorithms. The

algorithm is shown to be generically convergent. We implement the algorithm using

HOMPACK. To illustrate its performance, we present various numerical examples

and report running times.
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1 Introduction

During the last two decades there has been substantial interest in the general equilibrium

model with incomplete asset markets, the GEI-model. One of the important features of

this model is its integrated approach to the real, �nancial and monetary sectors of an

economy. The version of the model that is studied most, involves two time periods. There

is uncertainty as to which one of several states of nature will realize in the second period.

In the �rst time period, it is possible to trade on spot markets for commodities and on

�nancial markets for assets that permit income to be transferred across time and states

of nature. In the second period one of the states of nature realizes, which determines the

pay-o�s of the portfolio of assets purchased in the �rst period. The resulting revenues are

used to buy commodities on the spot markets.

The model �nds its origins in the contributions of Arrow (1953) and Radner (1972).

Existence of an equilibrium turned out to be hard to prove, unless exogenously given lower

bounds on trades are imposed. The latter approach, however, was put under suspicion by

the inuential paper of Hart (1975), where it was shown that the equilibrium may depend

crucially on the arbitrarily chosen speci�cation of the lower bounds. This caused research

in the GEI-model to stagnate. A revival occurred when Du�e and Shafer (1985) succeeded

in giving a generic existence proof. For almost all GEI-economies, a competitive equilib-

rium exists. The tools required to show existence of an equilibrium are demanding, and

involve many results from di�erential topology, including the concept of the Grassmannian

manifold.

The complications of the GEI-model imply that it is no longer possible to compute

equilibria by the same methods that are used for the standard general equilibrium model.

For instance, convergence of Scarf's algorithm, see Scarf (1967), or the homotopy algorithm

of Eaves (1972) is not guaranteed. By using algorithms that operate on the Grassmannian

manifold, Brown, DeMarzo and Eaves (1996b) and DeMarzo and Eaves (1996) have pro-

duced computational methods that converge for a generic GEI-economy. The contribution

of Brown, DeMarzo and Eaves (1996a) is even more remarkable, as it develops a generically

convergent algorithm by means of switching homotopies. This algorithm does not involve

the Grassmannian manifold, and it is therefore the only existence proof of an equilibrium

in the GEI-model that avoids this manifold. For numerical purposes, one may also want to

use the homotopy algorithm of Schmedders (1998) that does not involve homotopy switch-

ing. The drawback of that algorithm is that it is an open question whether it displays

generic convergence to an equilibrium.

Our interest in computing solutions in the GEI-model is derived from our desire to study

the pricing of �nancial assets. For instance to study whether the equity premium puzzle

of Mehra and Prescott (1985), the huge di�erence between the historical returns on stocks

and the historical returns on riskless bonds, can be explained by market incompleteness.

Or to study whether the lessons of the capital asset pricing model remain valid in a setting

with market incompleteness, heterogeneous investors, assets whose distributions have fat
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tails, and so on. For all these applications, one needs to approximate a multivariate

probability distribution by a �nite probability distribution. In order to achieve a reasonable

approximation, a big state space is required. In a companion paper, Herings and Kubler

(2000), we focuses on the application to the capital asset pricing model and we need up to

32,768 states of nature for reasonable approximations to log-normal distributions.

Most existing algorithms transform the equilibrium problem into a problem that in-

volves so-called state prices. This is essential to show convergence, but has the drawback

that the number of equations increases rapidly. For instance, the homotopy proposed by

Brown, DeMarzo and Eaves (1996b) involves 2S+1 non-linear equations. Another compli-

cation in applying that algorithm is that it involves closed form solutions for the demand

functions for assets of the agents, but such closed form solutions are notoriously hard to

obtain when asset markets are incomplete. The solution to that problem is to state the

problem not in terms of demand functions themselves, but in terms of the �rst order con-

ditions of agents that yield the demand function. This approach is suggested in Garcia and

Zangwill (1981), and followed by Schmedders (1998). It increases the number of equations

further, to 2(H+1)(S+1)+HJ+1 non-linear equations, where H is the number of agents

in the economy and J the number of �nancial assets traded. In the application described

in this paper, H = 3 and J = 8; so the use of Schmedders' algorithm involves solving

16,417 non-linear equations.

The algorithms of Brown, DeMarzo and Eaves (1996b) and Schmedders (1998) are

designed to deal with the general version of the GEI-model. In many applications, one is

interested in what is known as the �nance version of the GEI-model, or �nance economy

for short. In the �nance version of the GEI-model, the modeling of the �nancial sector is

the same as in the general version of the GEI-model. The consumption sector, however, is

drastically simpli�ed, in that in each time period, at each state of the world, there is only

one commodity, called income. In this paper we develop an algorithm that is tailor made

for �nance economies. The restriction to �nance economies leads to a great reduction in

the number of equations to be solved for, and thereby to great improvements in computing

times. If closed form solutions for demand functions are available, then the number of

non-linear equations to be solved for by our algorithm equals J+1: Otherwise, the number

amounts to (H+2)(J+1)+H+1; which is 49 in the application reported on in this paper.

Our algorithm is a homotopy algorithm, a class of algorithms introduced in Eaves

(1972). We do not follow the piecewise linear approach of Eaves (1972), but exploit the

di�erentiability that is present in the problem and choose methods from the theory of

di�erential equations to follow the homotopy path in our implementation. We show that

this is possible for almost all �nance economies. For recent surveys on homotopies, the

reader is referred to Judd (1998) or Eaves and Schmedders (1999).

Compared to traditional general equilibrium theory, �nance economies pose a number

of additional di�culties. The prices of assets are not necessarily positive, but may well be

zero or negative. This rules out some of the algorithms that are used in traditional general

equilibrium theory, for instance the simplicial variable dimension algorithm of Doup, van
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der Laan and Talman (1987) or its di�erentiable counterpart described in Herings (1997).

Crucial to the convergence proof of homotopy methods applied to traditional general equi-

librium models is the boundary behavior of the excess demand function. When prices

of commodities converge to zero, demand for commodities explodes. As a price of zero

has no special meaning in the case of �nancial assets, that boundary behavior cannot be

used. The convergence proof of our homotopy algorithm builds on the approach to show

existence of an equilibrium in �nance economies as outlined in Hens (1991).

The paper is organized as follows. Section 2 introduces the notation and the model

of a �nance economy. In Section 3 we present an algorithm that is tailored to compute

equilibria in �nance economies. Special attention is given to the problem that closed

form solutions for demand functions of assets rarely exist in �nance economies. A second,

related, algorithm is introduced that does not require closed form solutions. In Section 4

we show generic convergence of the algorithm, that is for an open set of �nance economies

with full Lebesgue measure, the algorithm converges to an equilibrium. Section 5 discusses

the implementation of the algorithm, and in Section 6 we describe numerical examples.

Section 7 concludes.

2 The Finance Economy

The �nance version of the GEI-model describes an economy over two periods of time,

t = 0; 1; with uncertainty over the state of nature resolving in period t = 1. There are

S + 1 states in the economy; at time t = 0 the economy is in state s = 0; at time t = 1

one state of nature s out of S possible states of nature realizes. In each state s = 0; : : : ; S;

there is a single nondurable consumption good, which we call income.

There are H agents, indexed by h = 1; : : : ; H; that participate in the economy. Agent

h is characterized by the initial income stream eh = (eh0 ; e
h
1 ; : : : ; e

h
S)

> 2 IRS+1
++ and his

preferences over income streams available for consumption ch = (ch0 ; c
h
1 ; : : : ; c

h
S)

> 2 IRS+1
++ .

To distinguish between �rst period consumption and the random second period con-

sumption, we de�ne ex = (x1; : : : ; xS)
> for any vector x = (x0; x1; : : : ; xS)

>. Aggregate

incomes are e =
PH

h=1 e
h: An agents' preferences are represented by a continuous, strictly

quasi-concave utility function uh : IRS+1
++ ! IR:

There are J �nancial assets, indexed j = 1; : : : ; J; that are used to reshu�e income

across states. Asset j pays dividends at date t = 1 which we denote by dj 2 IRS: The price

of asset j at time t = 0 is qj. We collect all assets' dividends in a pay-o� matrix

A = (d1; ::::; dJ) 2 IRS�J :

At time t = 0 agent h chooses an asset portfolio �h 2 IRJ which uniquely de�nes the agents'

consumption by ch0 = eh0 � �h � q and ech = eeh + A�h. The net demand of agent h; ech � eeh;
therefore belongs to the marketed subspace hAi = fz 2 IRS

j 9� 2 IRJ ; z = A�g:

The exogenous parameters de�ning a �nance economy E = ((uh; eh)h=1;:::;H ;A) are

agents' utility functions and endowments, and the pay-o� matrix. Without loss of gener-
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ality, we assume throughout that there are no redundant assets, so rank(A) = J: If there

are redundant assets, it follows from an arbitrage argument that their price is uniquely

determined by the price of the other assets. Markets are incomplete when J < S. Prices

for assets are said to be arbitrage free if it is not possible to achieve a positive income

stream in all states by trading in the available assets. It is well known that a price system

q 2 IRJ precludes arbitrage if and only if there exists a strictly positive state price vec-

tor � 2 IRS
++ such that q = �>A. We de�ne Q to be the set of arbitrage free prices for assets.

Definition 2.1 (Competitive Equilibrium): A competitive equilibrium for an

economy E is a collection of portfolio-holdings �� = (�1�; : : : ; �H�) 2 IRHJ and prices for

assets q� 2 IRJ that satisfy the following conditions:

(1) �h�2argmax�h2IRJ uh(ch) s.t. ch = eh+

 
�q�

>

A

!
�h and ch2 IRS+1

++ ; h = 1; : : : ; H;

(2)
PH

h=1 �
h� = 0.

Under an additional assumption of strictly increasing utility functions, and a condition

on the utility function, the so-called boundary condition presented in Assumption A1 below,

existence of an equilibrium follows from the results of Geanakoplos and Polemarchakis

(1986).

3 The Algorithm

In this section we develop a globally convergent algorithm to compute equilibria in �nance

economies. The presentation of the algorithm, and the convergence proof, is simpli�ed by

restricting attention to an economy without �rst period consumption. From the arguments

given in Geanakoplos and Polemarchakis (1986) it follows that this is without loss of

generality. Indeed, given the pay-o� matrix A of the previous section, if we de�ne the

matrix A 2 IR(S+1)�(J+1) by A00 = 1; A0j = 0; j = 1; : : : ; J; As0 = 0; s = 1; : : : ; S; and

Asj = Asj; s = 1; : : : ; S; j = 1; : : : ; J; then state 0 can be identi�ed with the �rst period,

and purchasing one unit of asset 0 corresponds to having one more unit of �rst period

consumption. In Sections 3-5, the index of assets runs from 0 to J:

We strengthen the assumptions made so far to Assumption A below, which states the

standard assumptions on �nance economies that are invoked when twice di�erentiability

of the demand for assets is required.

A1 uh is three times continuously di�erentiable, @uh(ch) 2 IRS+1
++ for all ch 2 IRS+1

++ (strong

monotonicity), y>@2uh(ch)y < 0 for all y 6= 0 such that @uh(ch)y = 0; for all ch 2

IRS+1
++ (negative Gaussian curvature), and fch 2 IRS+1

++ j uh(ch) � uh(ch)g is closed in

IRS+1 for all ch 2 IRS+1
++ (boundary condition).
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A2 eh 2 IRS+1
++ :

A3 rank(A) = J + 1 and A�0 > 0:1

Usually Assumption A3 is replaced by the weaker assumption that there is � 2 IRJ+1 such

that A� > 0: Assumption A3 is without loss of generality. Indeed, if there is � 2 IRJ+1 such

that A� > 0; we take A� as asset 0 and we delete an asset j for which �j 6= 0: Equilibria of

the original economy are obtained by a simple transformation of the equilibria of the thus

resulting economy. Under A3 it holds that q0 > 0 for all q 2 Q; a property that is used in

the convergence proof of the algorithm.

Given arbitrage free prices for assets q 2 Q; the demand for assets by agent h; denoted

gh(q); is the asset portfolio that solves the following maximization problem

max
�h2IRJ

uh(ch) s.t. ch = eh +

 
�q>

A

!
�h and ch2 IRS+1

++ :

If prices for assets are arbitrage free, then the maximization problem is well-de�ned. A1

guarantees that the solution to the optimization problem is unique.

>From the demand function for assets of agent h; gh : Q ! IRJ+1; the total demand

function for assets G : Q ! IRJ+1 follows as G =
PH

h=1 g
h: Prices for assets q� induce a

competitive equilibrium for an economy E if and only if G(q�) = 0:

The following properties are useful when showing convergence of the algorithm.

Lemma 3.1: If the economy E satis�es A1-A3, then the following properties hold.

1. The function G : Q! IRJ+1 is twice continuously di�erentiable.

2. For all q 2 Q; for all � > 0; G(�q) = G(q):

3. For all q 2 Q; q �G(q) = 0:

4. If (qn)n2IN is a sequence in Q; qn ! q 2 @Q;2 q 6= 0; then for all bq 2 Q; bq �G(qn)!1:

Proof. See Hens (1991). Q.E.D.

Let g0 : Q ! IRJ+1 be the excess demand function for assets of some arti�cial agent

having a utility function and initial endowments satisfying Assumptions A1 and A2. We

will discuss a sensible choice for this agent later on. Since Lemma 3.1 also applies to an

economy consisting of just one agent, we obtain the properties of Lemma 3.1 for g0:

1The notation x > 0 means that all components of the vector x are non-negative and at least one

component is positive.
2
@Q represents the boundary of Q:
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The function g0 with component zero deleted is denoted by bg0; G with component zero

deleted is denoted by bG: The homogeneity of degree 0 stated in Lemma 3.1.2, implies that

there is no loss of generality in normalizing prices for assets by taking
PJ

j=0(qj)
2 = 1:

We propose to compute equilibria in a �nance economy by means of the homotopy H :

[0; 1]�Q! IRJ+1 de�ned by

H(t; q) =

8<:
PJ

j=0(qj)
2 � 1

t bG(q) + (1� t)bg0(q):
We are looking for solutions toH(t; q) = 0: IfH(t; q) = 0; then q0 is positive, so Lemma 3.1.3

implies tG0(q) + (1 � t)g00(q) = 0: At any solution (t; q) to H(t; q) = 0; it holds that

tG(q) + (1� t)g0(q) = 0: In particular, if t = 1; it follows that q is a competitive equilib-

rium price system.

4 Generic Convergence

A homotopy is in general constructed in such a way that there is a unique solution to

H(0; q) = 0; solutions to H(1; q) = 0 are solutions to the problem of interest, and the

unique solution to H(0; q) = 0 is linked by a path of solutions to H(t; q) = 0; for varying t;

to one solution to H(1; q) = 0: By following this path a solution to the problem of interest

is found. When the unique solution to H(0; q) = 0 is indeed linked by a path to a solution

to H(1; q) = 0; then the homotopy is said to converge. For an excellent discussion on the

numerical techniques available to follow the path we refer to Allgower and Georg (1990).

It cannot always be guaranteed that our homotopy converges. There may exist economies

such that the set of solutions H�1(0) does not link the unique solution to H(0; q) = 0 to

one solution to H(1; q) = 0: The set H�1(0) may display bifurcations, and even higher

dimensional solution sets. Nevertheless, we show that for typical economies, convergence

of the homotopy takes place, and non-convergence can only happen in exceptional cases.

To make precise what typical means, we have to parameterize economies. We �x a

tuple of utility functions (uh)h=1;:::;H and an asset pay-o� matrix A: Then any choice of

initial endowments (eh)h=1;:::;H 2 IR
H(S+1)
++ induces an economy E = ((uh; eh)h=1;:::;H ;A):

In this way, economies are parametrized by initial endowments. A property is said to be

typical if it holds for a class of economies that is large in both a topological and a measure

theoretic sense, that is when it holds for a set of initial endowments that is open and of

full Lebesgue measure.

Theorem 4.1: Fix utility functions (uh)h=1;:::;H and an asset pay-o� matrix A satisfy-

ing A1 and A3. Then, for all initial endowments e in an open set of initial endowments

with full Lebesgue measure E � IR
H(S+1)
++ ; the homotopy H related to the resulting economy

E satis�es the following.

7



� H�1(f0g) is a compact C2 1-dimensional manifold with boundary, with boundary

given by H�1(f0g) \ (f0; 1g �Q):

� There is an odd number of solutions in H�1(f0g) \ (f1g � Q); i.e. there is an odd

number of competitive equilibria.

For any choice of initial endowments e in IR
H(S+1)
++ ; the homotopy H related to the resulting

economy E satis�es the following.

� There is one solution in H�1(f0g) \ (f0g �Q):

� There is no sequence (tn; qn)n2IN in H�1(f0g) converging to (t; q) 2 [0; 1]� @Q:

Proof. The only solution in H�1(f0g) \ (f0g �Q) is obviously given by

(0; q0) = (0; @u0(e0)A=k@u0(e0)Ak2):

Suppose (tn; qn)n2IN is a sequence in H�1(f0g) converging to (t; q) 2 [0; 1]� @Q: Then,

tn bG(qn) + (1� tn)bg0(qn) = 0; so, for q 2 Q;

0 = q � (tnG(qn) + (1� tn)g0(qn));

but, by Lemma 3.1.4,

q � (tnG(qn) + (1� tn)g0(qn))!1;

a contradiction. Solutions to the homotopy equations stay away from [0; 1]�@Q: It follows

that H�1(f0g) is compact.

The proof is completed by showing that @qH(0; q); and, generic in initial endowments,

@qH(1; q); and @t;qH(t; q) have full rank for points in H�1(f0g):

It holds that g0(q) = � if and only if there is � 6= 0 such that

@u0(e0 + A�)A� �q> = 0;

q � � = 0:

By the inverse function theorem it holds that

 
@qg

0(q)

@q�
0(q)

!
=

24 A
>
@2u0(e0 + A�)A �q

q> 0

35�1 " ��I
�>

#
;

where I denotes the (J + 1)-dimensional unit matrix. The �rst matrix on the right-hand

side is indeed invertible. Suppose not, then there is (y; z) 2 (IRJ+1
� IR) n f0g such that24 A

>
@2u0(e0 + A�)A �q

q> 0

35 y

z

!
= 0:
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It follows that y 6= 0; since otherwise y = 0 and A
>
@2u0(e0+A�)Ay�qz = 0 implies z = 0;

contradicting (y; z) 6= 0: Since A has full column rank, Ay 6= 0:Moreover, @u0(e0+A�)Ay =

�q � y = 0; so the non-zero Gaussian curvature of u0 implies

0 = y>A
>
@2u0(e0 + A�)Ay + y>qz = y>A

>
@2u0(e0 + A�)Ay 6= 0;

a contradiction.

Consider (0; q0) 2 H�1(f0g)\ (f0g�Q): Since �0(q0) 6= 0; (@qg
0(q0); @q�

0(q0)) has rank

J +1; so @qg
0(q0) has at least rank J: It follows that @qbg0(q0) has rank J; since q � g0(q) = 0

for q 2 Q and g0(q0) = 0 imply @qg
0
0(q

0) = �
PJ

j=1(qj=q0)@qg
0
j (q

0): Since homogeneity of

degree zero of g0 in prices for assets implies @qbg0(q0)q0 = 0; it follows that

@qH(0; q0) =

"
�2q00 � � � �2q0J

@qbg0(q0)
#

has full rank, J + 1:

We de�ne H : [0; 1]�Q� IRS+1
++ ! IRJ+1 by

H(t; q; e1) =

8<:
PJ

j=0(qj)
2 � 1;

t bG(q; e1) + (1� t)bg0(q);
where bG(q; e1) = bg1(q; e1) +PH

h=2
bgh(q): We show next that H : (0; 1)�Q� IRS+1

++ ! IRJ+1

is transversal to zero, or equivalently, that @t;q;e1H(t; q; e1) has full row rank whenever

H(t; q; e1) = 0:

For j 0 = 1; : : : ; J; de�ne the asset portfolio �
j0

by �
j0

0 = �qj0; �
j0

j0 = q0; and �
j0

j = 0; j 6= 0;

j 6= j 0: Then changing the initial endowment of agent 1 to e1 + �A�
j0

with � su�ciently

small, changes his asset demand to g1(q; e1)� ��
j0

: Since the vectors �
j0

; j 0 = 1; : : : ; J; are

independent, even with component 0 deleted, it follows that @e1
bG(q; e1) has rank J:

Homogeneity of degree zero of bG in prices for assets implies @q
bG(q; e1)q = 0: It follows

that @t;q;e1H(t; q; e1) has rank J + 1: By the transversal density theorem, see Mas-Colell

(1985), I.2.2, page 45, the set of economies for which @t;qH(t; q) has full rank for all points

in H�1(f0g) has full Lebesgue measure.

Exactly the same argument shows that for a set of initial endowments with full Lebesgue

measure @qH(1; q) has full rank for points in H�1(f0g) \ (f1g �Q):

The transversality proofs given, show that for a set of initial endowments with full

Lebesgue measure H�1(f0g) is a C2 1-dimensional manifold with boundary, where the

boundary is given by H�1(f0g) \ (f0; 1g �Q):

Using Lemma 3.1.3, it follows by a standard argument that the set of initial endowments

for which transversality holds can be taken open and of full Lebesgue measure.

Concluding, for an open set of initial endowments with full Lebesgue measure, H�1(f0g)

is a compact C2 1-dimensional manifold with boundary, therefore a �nite collection of arcs
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and loops.3 Each arc has two boundary points. Since all boundary points belong to

f0; 1g�Q; and there is exactly one boundary point in f0g�Q; it follows that for an open

set of initial endowments with full Lebesgue measure, there is an odd number of solutions

in H�1(f0g) \ (f1g �Q): Q.E.D.

Since H is a system of J + 1 independent equations in J + 2 variables, it is not sur-

prising that H�1(f0g) is generically a compact 1-dimensional manifold with boundary, i.e.

a �nite collection of arcs and loops. There is a unique solution to H(0; q) = 0; obtained

by taking q equal to @u0(e0)A: The boundary behavior of G guarantees that there is no

sequence (tn; qn)n2IN in H�1(f0g) converging to (t; q) 2 [0; 1] � @Q: Therefore the unique

solution to H(0; q) = 0 is generically part of a path in H�1(f0g) that does not run o�

to the boundary, but reaches t = 1: The unique solution to H(0; q) = 0 is thereby con-

nected to exactly one point (1; q�) 2 H�1(f0g); a competitive equilibrium for E ; and the

homotopy converges. Notice that there is no need to compute the set Q explicitly. Our

homotopy is constructed in such a way that its projection on the set Q stays away from @Q:

Corollary 4.2: Let E be an economy satisfying A1-A3. Then, for an open set of

initial endowments with full Lebesgue measure, the homotopy H converges to a competitive

equilibrium.

If there are multiple equilibria, then in addition to the arc connecting q0 and a compet-

itive equilibrium q�; there is a �nite number of arcs, each one having two more competitive

equilibria as its end points. This gives a constructive proof of the fact that there is an

odd number of competitive equilibria. In fact, using the properties of a homotopy, we can

get an index theorem for our economy, a result already obtained by Hens (1991), and for

certain classes of economies with more than one good per state by Schmedders (1998).

The computation of the demand for assets as a function of prices for assets is not

necessarily an easy problem. It is notoriously hard when the asset market is incomplete.

The theoretical homotopy H is therefore replaced by the di�eomorphic implementable

homotopy H� : [0; 1]�Q� IR(H+1)(J+1)
� IRH+1

! IR1+J+(H+1)(J+1)+(H+1);

H
�(t; q; �; �) =

8>>>>>>><>>>>>>>:

PJ
j=0(qj)

2 � 1;PH
h=0 �

h
j ; j = 1; : : : ; J;

@uh(eh + A�h)A� �hq>; h = 0; : : :H;

q � �h; h = 0; : : : ; H:

We have replaced the demand functions of the agents by their �rst order conditions, an

approach proposed in Garcia and Zangwill (1981).

3An arc is a set homeomorphic to the unit interval and a loop a set homeomorphic to the unit circle.

10



Theorem 4.3: Let E be an economy satisfying A1-A3. Then H��1

(f0g) is C2 di�eo-

morphic to H�1(f0g):

Proof. It holds that (t; q; �; �) 2 H��1

(f0g) if and only if (t; q) 2 H�1(f0g); �
h
= gh(q);

h = 0; : : : ; H; and �
h
= @uh(eh + Agh(q))A�0=q0; h = 0; : : : ; H: The claim follows since gh

and @uh are twice continuously di�erentiable functions. Q.E.D.

Since H��1

(f0g) is di�eomorphic to H�1(f0g); the results of Theorem 4.1 carry over to

H��1

(f0g):

Corollary 4.4: Let E be an economy satisfying A1-A3. Then, for an open set of ini-

tial endowments with full Lebesgue measure, the homotopy H� converges to a competitive

equilibrium.

The speed of homotopy algorithms depends mainly on two factors, the number of

equations and the arc length of the homotopy path. A quick comparison shows the great

bene�ts of developing a special purpose homotopy tailored to the �nance GEI-model. The

homotopy algorithms as reported in Brown, DeMarzo and Eaves (1996a) and Schmedders

(1998) are designed to deal with the general GEI-model with multiple commodities per

state, but can be applied to �nance economies.

The homotopy proposed by Brown, DeMarzo and Eaves (1996a) needs closed form

solutions for excess demand functions and should therefore be compared with our homotopy

H: Applied to two-period �nance economies, their algorithm has 2S+1 equations, whereas

ours only has J + 1: The algorithm of Schmedders (1998) does not require closed-form

solutions for excess demand functions, and also uses the �rst order conditions. The number

of equations of his algorithm amounts to 2(H + 1)(S + 1) +HJ + 1; whereas the number

of equations in our algorithm H� equals (H + 2)(J + 1) +H + 1:

In both cases, we roughly need a fraction J=2S only of the equations of alternative

algorithms. This is especially favorable when S is high, which is the case for many appli-

cations, and also for the application discussed in detail in this paper, where J = 8 and

S = 2; 048: The high number of states is used to get a good discrete approximation of

a continuously distributed multivariate random variable. On top of the great number of

equations saved, our method also has the exibility of choosing the initial price system as

desired, contrary to the homotopies of Brown, DeMarzo and Eaves (1996a) or Schmedders

(1998). Since it is not too hard to make a reasonable guess for an equilibrium price system

using the method of the next section, our algorithm will generally substantially reduce the

arc length of the homotopy path.
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5 Implementation

We implemented the algorithm using HOMPACK - a suite of FORTRAN 77 subroutines

designed to solve systems of non-linear homotopy equations with path-following methods.

See Watson (1979) and Watson, Billups and Morgan (1987) for details on HOMPACK.

We now turn to the determination of the starting point and the speci�cation of the

arti�cial agent's demand function.

The demand function g0(q) should be chosen such that an a priori selected starting

point q0 2 Q with
PJ

j=0(q
0
j )

2 = 1 is the unique solution to g0(q) = 0 and
PJ

j=0(qj)
2�1 = 0:

We take a Cobb-Douglas utility function for the arti�cial agent,

u0(c0) =
SX

s=0

�ss ln(c
0
s); c0 2 IRS+1

++ :

Let �0 2 IRS+1
++ be any state price vector such that �0

>

A = q0: If the arti�cial agent is

de�ned by

e0s = 1; s = 0; : : : ; S;

s = �0s=�s; s = 0; : : : ; S;

then the unique solution in Q to g0(q) = 0 and
PJ

j=0(qj)
2 � 1 = 0 is indeed given by q0:

In applications with �rst period consumption, there is usually no need to solve for

�>A = q0:4 Instead, we take �0 equal to the weighted average over all agents of @uh(eh);

with weight for agent h equal to 1=�h; where �h denotes the marginal utility of �rst period

consumption at the initial endowment eh: Next we take q0 equal to �0
>

A=k�0
>

Ak2: Prices

for assets q0 are in general a very reasonable �rst guess for equilibrium prices for assets.

6 Numerical Examples

In order to illustrate the performance of our algorithm and in order to show how running

times increase with the number of households, the number of assets and the number of

states, we consider several examples. In all examples, households have constant relative

risk aversion utility of the form

uh(ch) = vh(ch0) + �h
SX

s=1

1

S
vh(chs); ch 2 IRS+1

++ ;

4If q0 2 Q with
PJ

j=0(q
0
j )
2 = 1 is given and there is a need to solve for �>A = q

0
; an easy way to

achieve this for an economy where the �rst asset corresponds to �rst-period consumption is to solve the

following linear program

min

SX
s=0

�s s.t. A
>

� � �0q
0
=q

0
0 = 0

� � 1S+1 � 0;

and divide the solution found, say �
0
; by k�0

>

Ak2:
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with

vh(chs ) =
(chs )

1�h

1� h
; chs > 0;

where �h is the discount factor and h the coe�cient of relative risk aversion. We choose

�1 = �2 = �3 = 0:95; and 1 = 6; 2 = 4 and 3 = 2: (Varying the discount factor and

gamma does not have a signi�cant e�ect on running times as long as the coe�cient of

relative risk aversion remains below 9.)

We will consider an example with 3 households and 8 assets, an example with 2 house-

holds and 8 assets and an example with 3 households and 5 assets. For each example we

consider the case of 10,000 states, of 20,000 states, of 30,000 states and of 40,000 states.

This results in 12 examples for which we will report running times.

Each agent is endowed with an initial portfolio (0; �h�) of the riskless bond and the

available stocks, with current income, representing current labor income plus dividends

from �h�; e
1
0 = 2=3; e20 = 1; and e30 = 4=3 (in the case of three agents), and with stochastic

future labor income given by some lh 2 IRS
++: We are back in the framework of Section 2 by

setting e10 = 2=3, e20 = 1 and e30 = 4=3; and eeh = lh +
PJ

j=2 �
h
�jd

j for h = 1; :::; H. The �rst

agent has no capital income, �1� = 0: For the other agents we have �2�j = 1=3; j = 2; : : : ; J;

and �3�j = 2=3; j = 2; : : : ; J: In the case of only two agents, we just drop the �rst agent

from the economy.

The assets available are given by a riskless bond and risky stocks. The dividends of

risky assets j = 2; : : : ; J depend on a single common factor f 2 IRS as well as on an

idiosyncratic shock "j 2 IRS. We denote asset j's load in the factor by cj, varying from

0:25 to 1:75 (for the case of 8 assets) or from 0.75 to 1.5 (for the case of 5 assets) in steps

of 0:25.

The standard deviation of both the factor and the idiosyncratic shock determining the

dividends are 0:13 - giving an overall standard deviation of the stock market of 0:17. The

standard deviation of labor income is chosen to be 0:10 and labor income constitutes 2=3

of total income. For the case of 3 households and 8 assets, there are 11 random variables

- ((lh)h=1;:::;H; f; ("
j)j=2;:::;J). Throughout this section we assume that all random variables

are log-normally distributed, so lhs ; fs; and "js are drawn independently from a log-normal

distribution. The log-normal distribution with mean � and variance �2 is denoted by

LN(�; �2): Asset 1 is the riskless bond. For j � 2; we de�ne asset j's dividend to be

djs = 1=3 � 1=7 � 1:02 � f j
s � "

j
s

and we choose

lhs � LN(2=3 � 1:02; (2=3)2 � 0:01);

f j
s � LN(1; cj � 0:0161);

"js � LN(1; 0:0161):
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The actual (f j
s )

J
j=2 are all based on a single realization of a normal random variable bfs: For

each asset j; we linearly transform the realization of this random variable in such a way

that after taking the exponent a log-normally distributed random variable with mean 1

and variance cj � 0:0161 results. The construction of the random variables implies that all

dividends themselves are log-normally distributed. To get a similar variance of the entire

stock market as before, the variance of the factors and the idiosyncratic shock have to be

chosen to be 0:0161 instead of 0:0169.

For the base-case H = 3 and J = 8 solving for an equilibrium involves solving a system

of 49 non-linear equations. The number of equations is independent of the number of

states. However, running times increase signi�cantly with the number of states, since the

time needed for a single evaluation of the �rst order conditions increases. For the case of

two households and 8 assets we have 39 equations and for the case of 3 households and 5

assets we have 34 equations.

10000 states 20000 states 30000 states 40000 states

3 agents, 8 assets 6.41 16.31 25.01 32.09

2 agents, 8 assets 4.09 10.35 16.14 22.10

3 agents, 5 assets 3.47 10.31 17.10 21.09

Table 1: Running times (mm.ss).

Table 1 shows the running times in minutes. All running times refer to an implementa-

tion in FORTRAN 77 on a 500 MHz Pentium III processor running Red Hat Linux. Note

that the running times do increase signi�cantly with the number of states. However, the in-

crease is more or less linear in the number of states. If the number of states would increase

the number of equations, running times in this order of magnitude would be impossible.

7 Conclusion

In this paper we develop a homotopy algorithm to compute equilibria in the �nance version

of the GEI-model that is particularly useful for cases with a large state space. The generic

convergence of this algorithm is shown, where generic means that for an open set of �nance

economies with full Lebesgue measure convergence takes place. The implementation of the

algorithm is discussed. Its e�ectiveness is veri�ed by means of numerical examples. In

Herings and Kubler (2000) the algorithm is used to explore asset pricing implications of

the GEI model when the number of states is large.
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