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Abstract

In the paper, the asymptotic distribution of the equilibrium price in markets
with the random demand and supply is described. Two special cases - the one
with smooth demand and supply curves and the one with jump demand and
supply curves - are studied. It is found that in both the cases the fluctuations
of the price vanish at the rate O(n−1/2) as the number of the agents n tends to
infinity. Finally, a normal approximation of the distribution of the equilibrium
price is suggested.
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Introduction

In many real situations, the demand and/or supply curves have to be taken as
stochastic. Even if there exist models with stochastic demand and/or supply,
I have neot found a work describing the distribution of the equilibrium price.

The reason of this absence could be that the equilibrium price is generally
a non-linear transformation of random parameters, hence its distribution may
be described only in special cases, and even there the resulting formulas are
complex (cf. Šmı́d [2004a,b]).

One of the possible ways how to overcome these difficulties is studying the
asymptotic properties of the model instead of trying to infer “exact” distribu-
tions.

Until now, no work applying this approach is known to me except for my
own research report (Šmı́d [2004b]) dealing with the special case of linear de-
mand and supply curves. The present paper generalizes the results of the
report.

The model of a market with stochastic demand nad supply, defined in the
present paper, assumes a finite number number of market participants and
the individual demand and supply curves are taken as identically distributed
independent random elements taking values in function spaces. In accordance
with the standard economic theory, the equilibrium price is assumed to lie in
the intersection of the aggregate demand and supply curves.
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Two special cases of the general model are studied in the paper: the case of
continuous twice differentiable demand and supply curves (which may be suit-
able for modeling markets with a divisible good) and the case of jump demand
and supply curves taking integer values (which could be suitable for markets
with an indivisible commodity). In both the cases, the asymptotic behavior
of the equilibrium price, as the number of participants tends to infinity, is
described.

In both the “continuous” and “jump” cases, the distribution of the price
Pn converges to a constant, namely to the intersection of the expected demand
curve and the expected supply curve, and the variance of Pn vanishes at the
rate O(n−1/2) where n is the number of participants.

The asymptotic distribution of
√

n(Pn − p?), where p? is the limit price,
depends directly only on the derivatives of the expected aggregate demand and
supply curves in the point p?, and on the variance of the curves in p?. Rather
surprisingly, the asymptotic distribution is identical in both the “continuous”
and “smooth” cases.

As a main result of the paper, a normal approximation of the equilibrium
price distribution is suggested.

The paper is organized as follows. In Section 1, the general model is defined.
In Section 2, the asymptotic behavior of the price in the “continuous” case is
analyzed. In section 3, the same is done for the “jump” case. In Section 4, the
normal approximation is suggested.

1 Definition of the Model

Assume a market peopled by n agents with the individual demand functions
di, i = 1, 2, . . . , n, and with individual supply functions di, i = 1, 2, . . . , n,
such that di is a random element taking values in the space of non-negative
non-increasing real functions, and si is a random element taking values in the
space of non-negative non-decreasing real functions for each i = 1, 2, . . . , n. Let
(di, si), i = 1, 2, . . . , n, be identically distributed and let (di, si) be independent
of (dj, sj) for each i 6= j. Moreover, let the expectations

δ(p)
4
= Ed1(p),

and
σ(p)

4
= Es1(p)

exist and be finite for each p ∈ R, and let there exist a unique p? ∈ R such
that δ(p?) = σ(p?).

Further, assume that the equilibrium price Pn “happens” in some point
of the “intersection” of the aggregate demand curve Dn =

∑n
i=1 di with the
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aggregate supply curve Sn =
∑n

i=1 si, i.e. it fulfils the condition

PL
n ≤ Pn ≤ PH

n (1)

where
PL

n = inf{p : Dn(p) ≤ Sn(p)},
and

PH
n = sup{p : Dn(p) ≥ Sn(p)}.

2 The Case of Continuous Demand

and Supply Functions

Assume, in the present section, that each realization of di, and each realization
of si are twice differentiable for each i = 1, 2, . . . , n.

Theorem 1 If E|d1(p
?)| < ∞, E|s1(p

?)| < ∞, 0 < E[s′1(p
?) − d′1(p

?)] < ∞,
E|d′′1(p?)| < ∞, and E|s′′1(p?)| < ∞ then

√
n(Pn − p?)

n→∞−→ N (0, V ) (2)

in distribution where

V =
var(s1(p

?)− d1(p
?))

[E(s′1(p?)− d′1(p?))]2

independently on the choice of Pn.

If, moreover, there exists an open interval I, such that p? ∈ I, and a random
variable g, Eg < ∞, such that

s′1(p)− d′1(p) ≤ g (3)

for each p ∈ I almost sure then

V =
var(s1(p

?)− d1(p
?))

[σ′(p?)− δ′(p?)]2
. (4)

Proof. The proof is given in the Appendix A. 2

3 The Case of Jump Demand and Supply

Functions

Assume, in this section, that each realization of di, i = 1, 2, . . . , n, is left-
continuous with integer values, and that each realization of si, i = 1, 2, . . . , n,
is right-continuous with integer values. Further, assume that there exist twice
differentiable functions δ̂ and σ̂ such that
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(a) d1(p) ∼ Po(δ̂(p)) for each p ∈ R,

(b) d1(p)− d1(p
′) ∼ Po(δ̂(p)− δ̂(p′)) for each p < p′,

(c) s1(p) ∼ Po(σ̂(p)) for each p ∈ R,

(d) s1(p)− s1(p
′) ∼ Po(σ̂(p)− σ̂(p′)) for each p′ < p.

Evidently, δ(p) = δ̂(p) and σ(p) = σ̂(p) for each p ∈ R under these assumptions.

Theorem 2 If σ′(p?)− δ′(p?) > 0 then
√

n(Pn − p?)
n→∞−→ N (0,W ) (5)

in distribution where

W =
var(s1(p

?)− d1(p
?))

[σ′(p?)− δ′(p?)]2
.

If, moreover d1 is independent of s1, it holds that

W =
σ(p?)− δ(p?)

[σ′(p?)− δ′(p?)]2
. (6)

Proof. The proof in given in the Appendix B. 2

4 Normal Approximation

Our asymptotic results indicate that, if the assumptions of Theorem 1 (together
with (3)) or the assumptions of Theorem 2 are fulfilled, and if n is sufficiently
large, we may write

Pn∼̇N
(

p?,
1

n
· var(s1(p

?)− d1(p
?))

[σ′(p?)− δ′(p?)]2

)
.

Rewritten “in the language of aggregate functions”, the formula sounds

Pn∼̇N
(

p?,
var(Sn(p?)−Dn(p?))

[Σ′
n(p?)−∆′

n(p?)]2

)

where ∆n = EDn, Σn = ESn.1

1Indeed,
var(Sn(p?)−Dn(p?)) = n var(s1(p?)− d1(p?)),

and
E(S′n(p?)−D′

n(p?)) = n(σ′(p?)− δ′(p?)).
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Conclusion

In the paper, the asymptotic behavior of the equilibrium price in markets
with random demand and supply, and with the independent behavior of its
participants was studied. In particular, markets with smooth demand and
supply curves, and markets with jump demand and supply curves were taken
into account. As a main result, a normal approximation of the distribution
of the equilibrium price, depending only on the aggregate demand and supply
curves, was suggested.

Acknowledgement: This paper was partially supported by the grant no
402/04/1294 of the Grant Agency of the Czech Republic and by the grant no.
402/03/H057 of the same institution.

A Proof of Theorem 1

The core of the proof consists in the determination of the asymptotic distribu-
tion of the vector

Ξn
4
=
√

n(PH
n − p?, PL

n − p?).

It could be shown analogously to e.g. Araujo and Giné [1980], p. 8, that

Sc1,c2 = (−∞, c1]× (−∞, c2), c1 ∈ R, c2 ∈ R, (7)

is a convergence determining system of sets, i.e. it suffices to study the con-
vergence on the sets (7).

Let us do it: From the continuity of Dn and Sn, it follows that

PL
n ≤ p ⇐⇒ Sn(p) ≥ Dn(p)

for each p ∈ R. Using it and the Taylor expansions

di(p
? + ∆) = di(p

?) + d′i(p
?)∆ + d

′′
i (p

?)

(
ξ∆
i

)2

2
,

and

si(p
? + ∆) = si(p

?) + s′i(p
?)∆ + s

′′
i (p

?)

(
η∆

i

)2

2
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where ξ∆
i and η∆

i are constants lying between 0 and ∆, we get

√
n(PL

n − p?) ≤ c1 ⇐⇒ PL
n ≤ p? +

c1√
n

⇐⇒ Dn

(
p? +

c1√
n

)
− Sn

(
p? +

c1√
n

)
≤ 0

⇐⇒ 1√
n

[
Dn

(
p? +

c1√
n

)
− Sn

(
p? +

c1√
n

)]
≤ 0

⇐⇒ An − c1Bn + Rc1
n ≤ 0

(8)

where

An =
1√
n

n∑
i=1

[di(p
?)− si(p

?)], Bn =
1

n

n∑
i=1

[s′i(p
?)− d′i(p

?)],

and

Rc
n =

1

2
√

n

[
n∑

i=1

d
′′
i (p

?)(ξ
c/
√

n
i )2 −

n∑
i=1

s
′′
i (p

?)(η
c/
√

n
i )2

]
.

Since
PH

n < p ⇐⇒ Sn(p) > Dn(p)

we could prove, similarly to the case of PL
n , that

√
n(PH

n − p?) < c2 ⇐⇒ An − c2Bn + Rc2
n < 0. (9)

Further, it follows from the Central Limit Theorem for the sums of i.i.d. vari-
ables that

An
n→∞−→ U, (10)

where U ∼ N (0, var(d1(p
?)− s1(p

?))), in distribution. Further, due to the
Law of Large Numbers,

Bn
n→∞−→ E(s′1(p

?)− d′1(p
?)) (11)

in probability, hence in distribution. Finally, since

|Rc
n| ≤ 1√

n

(
1

n

n∑
i=1

[
c2|d′′i (p?)|

2
− c2|s′′i (p?)|

2

])
,

we may use the Law of Large Numbers to get that

Rc
n

n→−→ 0 (12)
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in distribution.2 By a combination of (8), (9), (10), (11) and (12) and by using
the Continuous Mapping Theorem (cf. Pollard [2002], p.175), we get that

lim
n→∞

P {Ξn ∈ (−∞, c1]× (−∞, c2)}
=P {U − c1E[s′1(p

?)− d′1(p
?)] ≤ 0, U − c2E[s′1(p

?)− d′1(p
?)] < 0}

=P
{

U

E[s′1(p?)− d′1(p?)]
≤ c1,

U

E[s′1(p?)− d′1(p?)]
< c2

}

=P
{

U

E[s′1(p?)− d′1(p?)]
≤ c1,

U

E[s′1(p?)− d′1(p?)]
≤ c2

}
,

(13)

i.e.

Ξn
n→∞−→ 1

E[s′1(p?)− d′1(p?)]
(U,U)

in distribution.

Now that we have the asymptotic distribution of Ξn, it is easy to prove the
rest. It follows from (13) that

√
n(PL

n − p?)
n→∞−→ N (0, V ) . (14)

in distribution, and, by the Continuous Mapping Theorem, that

∣∣√n(Pn − PL
n )

∣∣ (1)

≤
∣∣√n(PH

n − PL
n )

∣∣ =
∣∣√n(PH

n − p?)−√n(PL
n − p?)

∣∣
n→∞−→ 1

E[s′1(p?)− d′1(p?)]
|U − U | = 0

in distribution, which, together with (14), gives

√
n(Pn − p?) =

√
n(Pn − PL

n ) +
√

n(PL
n − p?)

n→∞−→ N (0, V )

by the Continuous Mapping Theorem.

Ad (4): The formula follows from the well known theorem on the exchange-
ability of an integral with a derivative (see e.g. Lukeš and Malý [1995], par.
9.2.).

2Indeed, if X1, X2 are i.i.d. such that E|X1| < ∞ then

P
{

n−1/2|X̄n| ≥ ε
}

≤ P
{

n−1/2(|X̄n − EX1|+ |EX1|) ≥ ε
}

≤ P {|X̄n − EX1| ≥ ε/2
}

+ P
{

n−1/2|EX1| ≥ ε/2
}

n→∞−→ 0

from the Law of Large Numbers.
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B Proof of Theorem 2

It follows from the definition of PL
n that

PL
n ≤ p ⇐⇒ Sn(p+) ≥ Dn(p+).

which is equivalent to

PL
n ≤ p ⇐⇒ Sn(p) ≥ Dn(p+).

due to the right-continuity of Sn. Moreover, since

P {
Dn(p)−Dn(p+) > 0

} (b)
= 0, (15)

it holds that

P {
PL

n ≤ p
}

= P {
Sn(p) ≥ Dn(p+)

}

=P {Sn(p) ≥ Dn(p)} − P {
[Sn(p) ≥ Dn(p+)] ∧ [Dn(p)−Dn(p+) > 0]

}
(15)
= P {Sn(p) ≥ Dn(p)}

i.e.
PL

n ≤ p ⇐⇒ Sn(p) ≥ Dn(p) almost sure. (16)

Similarly we get that

PH
n ≥ p ⇐⇒ Sn(p) ≤ Dn(p) almost sure

which is equivalent to

PH
n < p ⇐⇒ Sn(p) > Dn(p) almost sure. (17)

Using it, we are getting

P {√
n(PL

n − p?) ≤ c1,
√

n(PH
n − p?) < c2

}

=P
{

PL
n ≤ p? +

c1√
n

, PH
n < p? +

c2√
n

}

(16)(17)
= P

{
1√
n

[
Dn

(
p? +

c1√
n

)
− Sn

(
p? +

c1√
n

)]
≤ 0,

1√
n

[
Dn

(
p? +

c2√
n

)
− Sn

(
p? +

c1√
n

)]
< 0

}
.

(18)

Let us expres the aggregate curves similarly to the proof of Theorem 1: Thanks
to the the differentiability of δ(•), we may expand

δ(p? + ∆) = δ(p?) + δ′(p?)∆ + δ
′′
(p?)

(ξ∆)2

2

9



where ξ∆ lies somewhere between 0 and ∆. Hence, and thanks to the divisibility
of the Poisson distribution, we may write

di

(
p? +

c√
n

)
= ai + bc

i + rc
i (19)

where

ai ∼ Po(δ(p?)), bc
i ∼ Po

(
δ′(p?)

c√
n

)
, rc

i ∼ Po

(
δ
′′
(p?)

(ξc/
√

n)2

2

)
.

Similarly, we can write

si

(
p? +

c√
n

)
= αi + βc

i + ρc
i (20)

where

αi ∼ Po(σ(p?)), βc
i ∼ Po

(
σ′(p?)

c√
n

)
, ρc

i ∼ Po

(
σ
′′
(p?)

(ηc/
√

n)2

2

)

for some ηc/
√

n lying between 0 and c/
√

n.

By summing the individual curves, we obtain

1√
n

(
Dn

(
p? +

c√
n

)
− Sn

(
p? +

c1√
n

))
= An −Bc

n + Rc
n (21)

where

An =
1√
n

n∑
i=1

[ai − αi], Bc
n =

1√
n

n∑
i=1

[βc
i − bc

i ], Rc
n =

1√
n

n∑
i=1

[rc
i − ρc

i ].

Therefore and due to (18),

P {√
n(PL

n − p?) ≤ c1,
√

n(PH
n − p?) < c2

}

= P {An −Bc1
n + Rc1

n ≤ 0, An −Bc2
n + Rc2

n < 0} .

Finally, since
An

n→∞−→ N (0, var(d1(p
?)− s1(p

?))) ,

in distribution,
Bn

n→∞−→ c(σ′(p?)− δ′(p?))
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in distribution3 for each c ∈ R, and since

Rc
n

n→∞−→ 0

in distribution4 for each c ∈ R, we may use the Continuous Mapping Theorem
to get that

An −Bc
n + Rc

n
n→∞−→ N (0, var(d1(p

?)− s1(p
?)))− c(σ′(p?)− δ′(p?))

in distribution for each c ∈ R. The rest of the proof of (5) is identical to the
proof of Theorem 1.

Ad. (6). The formula follows from basic rules for computing variances.
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