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Abstract 
 

 We study a class of interactive decision making situations in which each agent must 

choose to participate in one of several lotteries with commonly known prizes. In contrast to 

the widely studied paradigm of choice between gambles in individual decision making under 

risk, the probability of winning a prize in each of the lotteries in our study is endogenously 

determined. In particular, for each lottery, it is known to decrease in the number of agents 

choosing to play that lottery. We construct the Nash equilibrium solution to this game and 

then test it experimentally in the special case where each lottery yields only a single prize. 

The results show a remarkable degree of tacit coordination that supports the equilibrium 

solution under the assumption of common risk-aversion. However, this coordination is not 

achieved via individual level randomization. Rather, the entry decisions of most of the 

subjects can be characterized by local adjustments to the outcome of the previous iteration of 

the same game along the lines suggested by anticipatory learning models. 
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1. Introduction 

It often happens in markets that the demand for some good far exceeds the supply, but 

suppliers do not increase prices in order to reduce demand. For example, this is the case when 

there is a surge in demand for new products (e.g., toys, electronic gadgets) that are introduced 

in the market at a fixed price and become fashionable, or when tickets for popular concerts 

and other cultural events are sold to the general public. In general, shops do not increase the 

price of air conditioners when there is a surge in demand due to a heat wave, customers are not 

required to pay more for snow shovels after a severe snow storm, and restaurants do not 

increase their prices on Saturday nights (Kahneman, Knetsch, & Thaler, 1986)1. Depending on 

the nature of the good and the social context, societies have developed alternative mechanisms 

to allocate the limited supply.  

Mechanisms for allocating limited supply  

A common mechanism is the priority list in which claimants are ranked according to 

some measure of need, contribution, seniority, power, or some combination of factors. For 

example, priority to receive an organ for transplantation may depend on the likelihood of 

success of the transplantation, urgency of the case, and other related factors; and admission to 

public housing often depends on financial need and family size (Young, 1994). The problem 

with this mechanism is that the criteria for determining priority lists are often open to heated 

debate raising controversial issues of fairness. A second mechanism for allocating indivisible 

goods that are in short supply is simply to distribute them to those who demand them first. 

Seats in popular restaurants, tickets for most sport events, and new products (e.g., Sony Play 

Station 2) are typically sold in this fashion. The problem with this popular “first come, first 

served” mechanism is that it creates inefficiencies (queueing in lines), imposes hardship on the 

claimants, and penalizes customers who cannot stand in line. For example, McDonald’s has 

recently been criticized by a political party in Hong Kong over the long queues formed by 
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consumers to collect the “Hello Kitty” and “Dear Daniel” toys that it distributed in its 

restaurants.  A Democratic Party le gislator suggested that “McDonald’s should consider lucky 

draws” (Hong Kong Standard, July 20, 1999).  This takes us to a third mechanism that avoids 

the inefficiencies associated with the “first come, first served” mechanism and the 

controversies associated with allocation by priority lists.  This mechanism distributes the 

limited supply by a lottery. For example, apartments in new development housing projects in 

Hong Kong, positions in medical schools in the Netherlands (Young, 1994), hunting permits, 

and IPO shares to individual investors are allocated in this manner. The principle underlying 

this mechanism is of no preferential treatment; each of the claimants is assigned the same 

probability of getting it2. 

The major feature of these lotteries is that the probability of winning a given prize is 

determined endogenously so that the larger the number of persons participating in the lottery, 

the smaller the probability of winning one of the prizes it offers. Our interest in the present 

paper is in problems of tacit coordination that arise when claimants can register to only one of 

several independent lotteries. For example, households in Hong Kong seeking to purchase a 

new apartment (a commodity in short supply) are often presented with alternative public 

development projects that put out for sale (at a fixed and attractive price) individual 

apartments by lottery, but are prohibited by law from registering for more than a single 

apartment (to prevent speculation). 

The lottery mechanism is not to be interpreted narrowly; it has other interpretations 

that dispense with the need of throwing dice, tossing coins, or using some other random device 

to determine the allocation of prizes. For example, consider the case of competing firms, each 

faced with the decision which of several newly emerging markets to enter. The firms may 

fully recognize their mutual interdependence. Budget constraints often prohibit the firms from 

entering more than a single market. Although no physical lotteries are involved in this case, 
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each firm's decision is typically based on the conditional probability of successful entry into 

one of the markets, given the anticipated number of entrants into this market (as well as on the 

profit associated with successful entry into one of the different markets). If the subjective 

probability of each firm of successful entry into a given market is proportional to the number 

of entrants into the same market (in other words, each firm believes that its chances of success 

are neither better nor worse than those of any other of the competing firms), these commonly 

shared beliefs operate like a lottery mechanism.  

Whether a lottery mechanism is physically used to allocate the prizes or the system of 

commonly shared beliefs operates like a lottery mechanism, the decision is strategic because 

the probability of winning any given prize, once one of several alternatives (e.g., housing 

projects, newly emerging markets) is chosen, depends not only on the number and values of 

the prizes associated with each of the alternatives, but also on the decisions made by other 

participants.  Depending on the assumptions made about the agent's information structure, 

interactive decision making situations of this type may be modeled as non-cooperative n-

person games under either complete or incomplete information. However modeled, these 

situations include two sources of uncertainty: strategic uncertainty about the choices made by 

the other agents, and outcome uncertainty about the result of the lottery chosen to be played by 

the agent. 

 The purpose of the present research is to investigate tacit coordination under both 

sources of uncertainty when n agents have to choose only one of several alternatives 

(lotteries) in which the prizes associated with the choice of each alternative are determined 

probabilistically. Because there is no simple way to assess systems of beliefs and verify 

whether or not they are commonly shared in real-life situations, we resort to experimentation 

that uses physical lotteries. We propose a game to simulate the situation, construct its Nash 

equilibrium solution, and then examine its descriptive power.  
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The paper is organized as follows. Section 2 describes the Consumer Choice of Prizes 

(CCP) game that we propose for simulating basic features of the problem, and then constructs 

and illustrates its multiple equilibria. Section 3 describes a laboratory experiment that allows 

for only a single prize in each location but varies the values of the different prizes. The CCP 

game is extended in Section 4 to the case where only the distribution of the group size n, 

rather than the exact value of n, is commonly known. Section 5 discusses the results. 

2. Theory 

The CCP Game 

 The CCP game is a non-cooperative n-person game with complete information.  The 

game is played by a group of n subjects. There are J separate alternatives (called locations) 

with mj identical prizes in each location j (j = 1, 2, . . . , J). Each prize is worth gj units.  

 Once publicly informed of the values of n, J, mj, and gj , each subject i must decide 

independently and anonymously which location to enter. Denote the number of entrants in 

location j by nj ( ∑
=

J

j
jn

1

= n). Once all the n subjects make their entry decisions, individual 

payoffs are determined for each subject as follows: 

 If nj < mj , then each entrant in location j receives the prize gj. 

 If nj > mj , then the mj prizes are distributed by lottery among the nj entrants such that 

exactly mj subjects receive one prize each. 

Equilibrium Solutions 

Because the players are symmetric, we focus only on the symmetric mixed strategy 

equilibrium in which each of the n players enters locations 1, 2, . . . , J with respective 

probabilities q1, q2, . . . , qJ. Without loss of generality, assume that the J locations are ordered 

from 1 through J in terms of mjqj. To ensure that each location is chosen with some 

probability, small as it may be, we require that n > g1m1/gjmj ∀ j.  Recall that the J locations 
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are independent, and that if entering location j, player i either receives the prize gj with 

certainty (if nj < mj) or with probability mj/nj (if nj > m j). Therefore, the equilibrium solution 

for risk-neutral players consists of the probability values q1 , q2, . . . , qJ, that satisfy the 

following J + 1 equations in J + 1 unknowns (q1, q2, . . . , qJ, V): 

gj ∑
−

=

1

0

jm

k





 −

k

n 1 qj
k(1 – qj)n – 1 – k + gj ∑

−

=

1n

mk j






 −

k

n 1 (
1+k

m j )qj
k(1 –  qj)n – 1 – k = V,   (1) 

 
and 
 

∑
=

J

j
jq

1

= 1, qj > 0,  j = 1, 2, . . . , J, 

 
where V denotes the expected value associated with equilibrium play. 

 
In the special case considered in the present study, where each location offers only a 

single prize (mj = 1 ∀ j), the top equation simplifies to 
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Omitting the subscript on q, we can write  
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Thus, if mj = 1 ∀  j, the system of J + 1 equations for the general case (Eq. 1) simplifies to 

j

j

nq

g
 [1 –  (1 –  qj)n] = V,        (2) 

 
and 
 

∑
=

J

j
jq

1

= 1,   qj > 0,  j = 1, 2, . . . , J. 

 
These equations are solved numerically. 

 Pure strategy equilibria consist of n1
*, n2

*, . . . , nJ
* entrants into locations 1, 2, . . . , J, 

respectively ( ∑
=

J

j 1

nj
* = n), such that no single player benefits from unilaterally switching from 

location j to location j’ (j ≠  j’). Given the parameter values mj and gj, the values of nj
* are 

determined computationally. Whereas the symmetric mixed strategy equilibrium is unique, 

there are multiple pure strategy equilibria. In particular, the number of pure strategy 

equilibria is given by n!/(n1
*!n2

*!…nJ
*!). Note that with sufficiently many iterations of the 

same game, the mixed strategy equilibrium solution is testable on both the individual and 

aggregate levels. In contrast, the pure strategy equilibria are only testable on the aggregate 

level, as they have no implications for individual play. The number of entrants under pure 

strategy equilibrium play (nj
*) and the expected number of entrants under mixed strategy 

equilibrium play (nqj) are approximately the same, therefore obviating the need to test these 

solutions separately on the aggregate level: nj
* ≈ nqj for j = 1, 2, . . . , J. 

Table 1 presents the six different games used in our experiment with their parameter 

values as well as their pure and mixed strategy equilibria. For all six games, n = 18. The 

approximation nj
* ≈ nqj gets worse as the differences among the prize values increase. For 

example, the parameter values for Game 1 are g = (g1, g2, g3) = (14, 12, 10) and m = (m1, m2, 

m3) = (1, 1, 1). Under mixed strategy equilibrium play the respective probabilities of entry are 
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0.389, 0.334, and 0.277, and the associated expected number of entrants (nqj)  are 7.002, 

6.012, and 4.986. These values come very close to the number of entrants under pure strategy 

equilibrium play, namely, 7, 6, and 5. The largest discrepancy occurs in Game 6 where the 

expected frequencies of entry in locations 1, 2, and 3 under mixed strategy equilibrium play 

are 16.308, 1.818, and 0.144, respectively, compared with the pure strategy equilibrium 

number of entrants, namely, 15, 2, and 1. It is easy to verify that for any distribution of the 

prize values, the approximation improves as n increases: nqj → nj
* as n → ∞. 

--Insert Table 1 about here-- 

3. Experiment  

Method 

Subjects.  Seventy-two subjects participated in four separate groups of n = 18 persons each. 

The subjects were Hong Kong University of Science and Technology students, mostly 

undergraduate students of business administration, who volunteered to participate in a single 

session of a decision making experiment for payoff contingent on performance. Subjects 

earned on the average HK$146.00 plus HK$30.00 show-up fee for an average total payoff of 

HK$176.00 per subject3 (approximately US$22.8). The payoff ranges were [76, 204], [76, 

222], [52, 304], and [88, 226] for Groups 1, 2, 3, and 4, respectively.  

Experimental Design.  The experimental design consisted of six different games (G = 1, 2, . . 

. , 6) each of which iterated 12 times (blocks) for a total of 6 ×12 = 72 trials. Only a single 

prize was offered by each of the three lotteries in each of the six games (m1 = m2 = m3 = 1), 

whereas the prize values differed across the six games (Table 1). The six games were 

constructed to differ from one another in the variability of the prizes. We measured this 

variability by the range of the three prizes, denoted by ∆ (Table 1). The ranges for games 1, 2, 

3, 4, 5, and 6 were 4, 10, 10, 18, 20, and 28, respectively. The sum of the prizes was fixed at 

$36 for each game G.  
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Procedure.  The experiment was computer-controlled. Upon arrival at the computer 

laboratory (which contains 80 PCs), the subjects of each group were seated at one of 18 

computer terminals that were spread over the entire laboratory. Communication between the 

subjects was prohibited. The instructions were presented on the individual computer screens 

in front of the subjects using PowerPoint Slide Show 4. The subjects read the instructions at 

their own pace with no time pressure. The first twelve computer screens of the instructions 

are reproduced in the Appendix 5. 

 The subjects were instructed that they would participate in a game played repeatedly. 

Their task was to choose one of three lotteries, called (and marked on the screen) Yellow, 

Blue, and Red. At the beginning of the round, the prize values (gj) and number of prizes in 

each lottery (mj) were displayed to the subjects, who were then required to choose one of the 

three lotteries. Screen 4 of the Appendix shows an example with three lotteries, where g = 

(10, 15, 20) and m = (1, 1, 1). (The colors of the three lotteries in the Appendix are 

suppressed.) The subjects were instructed that the game parameters would vary from round to 

round. Once all of them made their decision, the values of nj were displayed on the individual 

screens (see screen 6 of the Appendix), and the prizes were distributed (see screens 7 – 10 of 

the Appendix). 

 After reading the information displayed on the first 12 screens, the subject’s 

understanding of the procedure was tested through four hypothetical questions (not displayed 

in the Appendix) that varied the parameter values and number of entrants. The experiment 

commenced only after each of the 18 subjects answered these questions correctly. The 

subjects were told that they would be paid their cumulative earnings at the end of the 

experiment plus HK$30.00 show-up fee. 

 On each of the 12 blocks of trials, Games 1 through 6 (Table 1) were presented in a 

different random order. To prevent response biases (e.g., color preference), the prize values 
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for the same game were varied across colors in a balanced design, so that each of the six 

permutations of the three prize values appeared exactly twice. The entire experiment lasted 

about 75 minutes. 

Results 

We begin this section with a brief summary of the major findings. We first provide 

evidence for significant game effects but no differences between the four groups and no 

evidence for changes in the aggregate choice of entry locations across iterations of each of 

the six games. Next, we show that the mixed strategy equilibrium solution for risk-neutral 

players organizes the aggregate results quite well. However, we observe a systematic 

departure from equilibrium play, namely, an inverted S-shaped function that is first concave 

and then convex, slightly over-weighting low equilibrium probabilities of entry and under-

weighting high equilibrium probabilities. This systematic deviation disappears when the 

assumption of common risk-neutrality is replaced by the assumption of common risk-

aversion. However, the mixed strategy equilibrium solution does not account for the behavior 

of most individual subjects. Rather, most subjects tend to change their location entry choices 

less frequently than predicted, and adjust their decisions from one iteration of a game to 

another along the lines suggested by anticipatory learning models. Evidence in support of 

these claims is presented below. 

Aggregate Decisions. 

The expected payoff per subject under pure strategy equilibrium play is $2.00 per trial 

for a total of $144.00 for the entire experimental session. The expected value and standard 

deviation of the individual payoff for the session under mixed strategy equilibrium play are 

140.46 and 47.04, respectively. The mean individual payoff of Groups 1, 2, 3, and 4 was 

146.00, 147.78, 146.00, and 145.89, respectively. Although in each group the subjects earned 

on the average about 4 percent more that expected, none of the differences is statistically 



 12 

significant (t18 < 1). Nor is there any evidence for differences between groups with respect to 

the mean individual payoff. 

To further test for differences between groups and trends across time, we divided the 

72 rounds of play into six blocks of 12 rounds each. For each round t (t = 1, 2, . . . , 72), we 

computed a root mean square deviation score, RMSDt, between the observed and predicted 

number of entries: 

 RMSD t = 
J
1 ∑

=
−

J

j
jtnqjtn

1

2)( ,  

where njt is the observed number of entries in location j on round t, nqjt is the expected 

number of entrie s in location j on round t under mixed strategy equilibrium play, and J = 3. 

These RMSDt scores (72 for each group) were then subjected to a 4 × 6 group by block 

ANOVA with repeated measures on the block factor. Neither of the two main effects due to 

group and block, nor the group by block two-way interaction effect were significant (F 3, 264 < 

1, F5, 264 < 1, and F15, 264 < 1, respectively).  

To examine the changes across rounds of play more closely, we computed the running 

mean of the RMSD t scores in steps of 12 (rounds 1 - 12, 2 - 13, . . . , 61 - 72). Figure 1 

displays the running means for each group separately and across the four groups (bottom 

panel). There is no indication for changes in the deviation scores across rounds of play for 

each of the four groups, nor is there any evidence for differences among the four groups. The 

running means for individual groups vary between 1.1 and 1.8 and do not exhibit any 

discernible trend. When the data are combined across the four groups, the running means 

exhibit more stability (bottom panel) due to averaging with only minor oscillations between 

1.3 and 1.5. Taken together, these analyses support our claims of no group or learning effects. 

--Insert Fig. 1 about here-- 
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 To test for game effects, the 72 × 4 = 288 RMSDt scores were subjected to a 4 × 6 

group by game ANOVA with repeated measures on the game factor. As expected from the 

previous analysis, the main effect due to group was not significant (F 3, 264 < 1). The group by 

game interaction effect was also not significant (F15, 264 < 1). However, the main effect due to 

game was highly significant (F5, 264 = 4.73, p < 0.001). A post-hoc comparison showed that 

the game main effect was due to the difference between Games 1 and 3 on the one hand and 

Games 5 and 6 on the other hand. The mean RMSD scores for Games 1, 2, 3, 4, 5, and 6 were 

1.06, 1.25, 1.13, 1.24, 1.43, and 1.52, respectively. With one exception, these scores increase 

in the range (∆) of the payoffs. The subjects' behavior is better accounted for by the mixed 

strategy equilibrium solution as the three prizes are closer to one another (and, consequently, 

the equilibrium probabilities are closer to 0.333). 

With no evidence for group differences or changes in aggregate choice of entry 

locations over time, the results were combined across groups and rounds of play. Table 2 

(first row in each of the six panels) shows the means and standard deviations of the observed 

frequency of location entries. The results are presented separately for each game (across the 

12 replications). Table 2 also presents (second row of each panel) the expected values and 

standard deviations of frequency of entry under mixed strategy equilibrium play for risk-

neutral players. (The number of entries for each game under pure strategy equilibrium play 

can be read directly from Table 1.)  

--Insert Table 2 about here-- 

 Our major dependent variable is the mean frequency of entry location. Because the 

group, rather than the individual subject, is the unit of analysis, we present the results 

separately for each group. Figure 2 portrays the observed relative frequencies of entry against 

the mixed strategy equilibrium probabilities of entry. The results are displayed separately by 

group, and then combined across groups in the bottom panel. Figure 2 shows that in each case 
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the observed relative frequencies of entry decisions increase monotonically in the theoretical 

probabilities.  This finding provides strong evidence for tacit coordination. However, there is 

a systematic deviation from equilibrium play with subjects entering too frequently when the 

theoretical probabilities are relatively small and too infrequently when they are relatively 

high. The empirical function in each of the four panels in Fig. 2 crosses the 45 degree 

diagonal line at a point between 0.3 and 0.4. The results displayed in Fig. 2 are consistent 

with the shape of the probability weighting function postulated by Prospect Theory for 

individual decision making under risk (Prelec, 1998; Tversky & Wakker, 1995) and with the 

supportive empirical evidence presented by Lattimore et al. (1992) and Wu and Gonzalez 

(1996, 1998). 

--Insert Fig. 2 about here-- 

Value and Probability Weighting Transformations 

 The systematic deviation between the observed and predicted frequencies of location 

entry may be due to the failure of the expected utility hypothesis, which is invoked by the 

equilibrium solution. We pursue below two alternative explanations for this systematic 

deviation, which are based on the value and probability weighting transformations proposed 

by Prospect theory. It may be recalled that Cumulative Prospect Theory (Tversky & 

Kahneman, 1992), as well as other related non-linear expected utility models, proposes to 

account for the failure of the expected utility hypothesis by representing individual 

preferences by a sign and rank dependent functional V(P), with a value function ν(x) for 

monetary outcomes, and two probability weighting functions, w+(p) for gains (x > 0) and w-

(p) for losses (x < 0). Because our experiment is only concerned with gains, the choice of 

these functions is simplified 

 Following Tversky and Kahneman (1991), Lattimore et al. (1992), and the estimation 

results they present, we assume that ν is a concave power function of the form 
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 ν(x) = xc 0 < c < 1. 

This function has been used extensively in both utility function estimation (e.g., Galanter, 

1962; Fishburn & Kochenberger, 1979) and Prospect theory (Tversky & Kahneman, 1991). 

(for a recent evaluation of the experimental evidence that supports concavity in the domain of 

gains, see Luce, 2000, Ch. 3.) Review of the literature on the shape and properties of the 

probability weighting function (e.g., Camerer & Ho, 1994; Gonzalez & Wu, 1999; Tversky & 

Fox, 1995; Prelec, 1998; Tversky & Kahneman, 1992: Wu & Gonzalez, 1996, 1998) reveals 

several alternative functions. We have chosen to employ the single -parameter probability 

weighting function 

 w+(p) = exp[- (- ln p)α], 0 < α < 1, 

proposed by Prelec (1998). Prelec's function is the identity line when α = 1; it becomes more 

regressive as α  decreases. It has a fixed point at 1/e = 0.368, which agrees with the cross-over 

points in Fig. 2. Like the value function ν , it includes only a single parameter, thereby 

allowing for a straightforward comparison between these two independent transformations. 

 The value transformation applies directly to the prize values gj. The probability 

weighting transformation applies directly to the (endogenously determined) probability of the 

outcome of the lottery chosen by the subject. Our purpose here is to determine whether the 

former or latter transformation (or both) can better account for the systematic deviation from 

equilibrium play that we reported in Fig. 2. To do so, we compute the equilibrium solution 

under either of these two transformations while assuming that the other transformation is kept 

fixed as the identity function.  
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Value Transformation.  Assuming the same value transformation for all the n players, the 

equilibrium solution in mixed strategies consists of the probability values qj(c), that satisfy 

the J + 1 equations 

 
)(cnq

g

j

c
j [1 - (1 - qj(c)) n] = V,  j = 1, 2, . . . , J     (3) 

and 

 ∑
=

J

j
j cq

1

)(  = 1, qj(c) > 0. 

Equation (3) is like Eq. (2) with gj replaced by gj
c and qj by qj(c). The power function can be 

interpreted as a Prospect Theory type of value transformation or, alternatively, as a concave 

utility function. We wish to determine the value of c that minimizes the difference between 

the observed and predicted relative frequencies of entry summed across subjects and games. 

The criterion to be minimized is the root mean square deviation given by 

 RMSD(c) = 
18
1

 ∑∑ −
j

jGjG
G

cqh 2
,, )]([ , 

where hG,j is the observed mean relative frequency of entry in location j in Game G (G = 1, 2, 

. .  , 6) , and qG,j(c) is the corresponding equilibrium probability of entry. 

The best fitting value of the parameter c that minimizes the criterion RMSD(c) across 

all four groups is c = 0.496. The corresponding equilibrium expected frequencies of entry, 

nqj(c = 0. 496), are presented in the third line of each panel in Table 2. The minimum criterion 

value associated with c = 0.496 is RMSD(c = 0.496) = 0.113. This value is about one fourth 

of the value associated with the mixed strategy equilibrium solution under risk-neutrality, 

namely, RMSD(c = 1) = 0.463.  The observed relative frequencies of entry are plotted against 

the equilibrium probabilities qj(c) in Fig. 3 for each group separately and across all the four 

groups. The figure indicates that under the assumption of a common power value function 

(or, alternatively, a power utility function) with parameter value c = 0.496, the mixed strategy 
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equilibrium solution accounts for the aggregate results of each group remarkably well. To 

measure the goodness of fit, we regressed the observed relative frequencies summarized 

across all four groups on the theoretical probabilities. The percentage of variance accounted 

for by the solution was very high (R2 = 0.906). Most importantly for our purpose, and in 

support of the equilibrium solution, we cannot reject the null hypothesis that the slope of the 

regression line (0.994) is equal to unity (t17 < 1) and the intercept is equal to zero.  

--Insert Fig. 3 about here-- 

Probability Weighting Transformation.  Assuming the same probability weighting 

transformation for all the n players, the equilibrium solution in mixed strategies for risk-

neutral players consists of the probability values qj(α), that satisfy the J + 1 equations 

 gjexp[ -(-ln(πj))α] = V,       (4) 

and 

 ∑
=

J

j
jq

1

)(α  = 1,  qj(α ) > 0, 

where 

πj = ∑
−

=

1

0

n

k





 −

k

n 1
(

1
1
+k

)(qj(α))k[1 – qj(α)]n – 1 – k,   j = 1, 2, . . . , J. 

As we did earlier with the value transformation, we wish to determine the value of α  that 

minimize s the difference between the observed relative frequencies and the equilibrium 

probabilities of entry. We use the same root mean square deviation criterion, after replacing qj 

by qj(α ) and c by α . 

 Our results show that the probability weighting function (4) does not improve the 

results in any significant way, and cannot account for the deviation between the observed 

relative frequencies and equilibrium probabilities of entry reported above (Fig. 2). The best 

fitting value of α  is 0.873 and the RMDS(α  = 0.873) score is 0.395, not much better than the 
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reported RMSD for α = 1 (0.463). We conclude that the aggregate results can be accounted 

for by the mixed strategy equilibrium solution under the assumption that all the n players 

share the same attitude to risk expressed by a concave power utility function with the same 

parameter value. 

Joint Probabilities of Entry Location Choice.  

We turn next to test a major implication of mixed strategy play. In doing so, we 

assume that the mixed strategy equilibrium solution for risk-averse (c = 0.496) players holds, 

and employ the equilibrium expected number of entries (and the corresponding probabilities) 

that are displayed in the third row of each panel of Table 2. Under the null hypothesis of 

mixed strategy equilibrium play, the 72 rounds of play of each subject should be considered 

as independent. Consequently, it is possible to compute the joint probabilities of choice of 

entry location j on iteration t of game G and choice of entry location j' (j, j' = 1, 2, 3) on 

iteration t + 1 of the same game.6 These joint probabilities are time invariant, and should 

apply to all 11 pairs of successive iterations (excluding the first time each game was 

presented). Table 3 (right-hand panel) presents the expected  3 × 3 joint probabilities, one for 

each game. When multiplied by n, the marginal probabilities are the expected frequencies of 

entry presented in Table 2 (third row for risk-averse players). Each probability (shaded) to the 

right of the marginal probabilities is the sum of the three entries in the minor diagonal of the 

transition matrix. Therefore, this number is simply the probability of staying on the same 

location that was chosen in the previous iteration of the same game G. Table 3 shows that 

under mixed strategy equilibrium play the probabilities of staying on vary across the six 

games from 0.337 in Game 1 to 0.469 in Game 6, and that they slowly increase in the range 

of the prizes ∆. 

--Insert Table 3 about here-- 
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 We computed the corresponding observed joint relative frequencies of choice of entry 

location in successive iterations of the same game across all the subjects in the four groups 

(six games by 11 iterations, excluding the first presentation of each game on rounds 1 through 

6). This computation was conducted for each game separately. The observed joint relative 

frequencies are presented in the left-hand panel of Table 3. The observed relative frequencies 

of staying on the same location as in the previous iteration of the game are shown to the right 

of the marginal relative frequencies of entry. 

 Although the observed marginal relative frequencies of entry are accounted for quite 

well by the expected marginal equilibrium probabilities (Fig. 3), the observed joint relative 

frequencies of staying on the same location exceed the corresponding theoretical values in 

each of the six games. Thus, although the subjects did not always choose the same location 

on successive iterations of the same game G, they tended to choose the same location more 

often than predicted (i.e., “inertia” effect). These results reject the mixed strategy equilibrium 

solution (allowing for common risk-aversion) as an explanatory concept.  

 This tendency of staying on the same location might be due to some or all of the 

subjects. Turning from the aggregate to individual data, we computed for each subject the 

number of times, out of 11, that he or she chose the same location on successive iterations of 

the same game G. We then added up these six frequencies to obtain for each subject the total 

frequency of staying on, a number between 0 and 66. The actual individual frequencies of 

staying on ranged between 26 and 66 with a mean of 39. Under mixed strategy equilibrium 

play (for risk-averse subjects), the expected value and standard deviation of the number of 

staying on decisions are 27.18 and 4.11, respectively. The null hypothesis that the observed 

number of staying on decisions is not different from the predicted value could not be rejected 

for 32 of the 72 subjects (44.4%). The remaining subjects stayed on the same location 

significantly more often than predicted (p < 0.01). With one exception, all the subjects 
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occasionally changed the location of entry presumably in an attempt to increase their 

expected payoffs. However, more than half of them did not change their choice of location as 

often as predicted by the mixed strategy equilibrium solution.  

Effects of Under- and Over-entry.   

We may turn the issue and ask why, in the first place, did the subjects change the 

location of their entry from one iteration of game G to another? One possible reason is that 

subjects are mixing their strategies and choosing a location in an independent and random 

fashion across iterations (even if the actual choice probabilities are different from the 

expected probabilities based on risk-neutrality or risk-aversion assumptions). Yet another 

hypothesis, that allows for dependencies between iterations, is that subjects attempted to 

increase their expected payoffs by exploiting the deviations between the observed and what 

they considered to be the “appropriate” level of entry in each location of every game. 

 To test the latter hypothesis, we proceeded with the following analysis that focuses on 

the player's decision to either stay on the same location or switch to another location, 

conditional on the outcome of her previous decision. Note that for each game G, the ratio rj = 

gj/(g1 + g2 + g3), j = 1, 2, 3, may be interpreted as the relative attraction of prize (location) j. 

Therefore, nrj may be interpreted by the subject as the expected number of entrants in 

location j. Because of our choice of the game parameters (Table 1), nrj is also the pure 

strategy number of entrants in location j. We assume that subjects used nrj as a benchmark for 

determining whether too many or too few subjects had decided to enter each of the three 

locations. In particular, for each subject i, if she entered location j on iteration t, we classified 

the outcome for this location as "over-entry7" if nj(t) > nrj or "under-entry" if nj(t) < nrj , where 

nj(t) is the number of entrants in location j on iteration t. We also classified subject i's 

decision on the next iteration of the same game G as "staying on" if she entered the same 

location j, "better switching" if she entered some other location j', where j' (j' ≠ j) is the more 
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attractive of the two other locations, and "worse switching" if she entered some other location 

j'', where j'' is the less attractive of the two other locations. The attractiveness of each of the 

other two locations is computed as the magnitude of their over- or under-entry on trial t. For 

example, supposing that subject i entered location 1 of Game 3 (for which g = (18, 10, 8)) 

and that the number of entrants in locations 1, 2, and 3 was 12, 3, and 3, respectively. The 

expected number of entries for this game is 9, 5, and 4, respectively.  Consequently, in this 

case, location 1 is over-entered (12 > 9) and locations 2 and 3 are under -entered (3 < 5 and 3 

< 4).  Of the latter two, location 2 is more attractive since the magnitude of under -entry (5 – 3 

= 2) is higher in location 2 than in location 3 (4 – 3 = 1). In the same example, if the number 

of entrants into locations 1, 2, and 3 is 8, 7, and 5, respectively, this is a case of under-entry in 

location 1 (8 < 9). Of locations 2 and 3, location 3 is the more attractive because it is less 

over-entered (1 vs. 2) 8. 

For each game separately and across all subjects, we computed six conditional 

probabilities. The first, p(stayover), is the conditional probability of staying on the same 

location j as in the previous iteration of the same game G, given that location j was over-

subscribed ("over-entry"). The second, p(stay under), is defined similarly, given that location 

j was under-subscribed ("under-entry"). The third conditional probability, p( better 

switchover), is the probability of switching from location j to the more attractive location j', 

given that location j was over-subscribed, and the fourth, p(better switchunder), is defined 

similarly, given that location j was under-subscribed. The two remaining conditional 

probabilities, namely, p(worse switchover) and p(worse switchunder) were computed in a 

similar way. Table 4 presents the six conditional probabilities (computed across all the 

subjects) separately for each game. 

--Insert Table  4 about here-- 
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 A direct implication of virtually any adaptive learning model is that a subject would 

be more likely to stay on location j on iteration t + 1 than switch to another location, if 

location j was under-subscribed on iteration t. This implication is derived by most theories of 

reinforcement learning (e.g., Roth & Erev, 1995), belief learning (e.g., Fudenberg & Levine, 

1998), direction learning (Selten & Buchta, 1999), and hybrid models like EWA (Camerer & 

Ho, 1999) that combine reinforcement and belief learning. Subjects will be more likely to 

switch if location j was over-subscribed on iteration t9. Further, we also expect that given a 

decision to switch, the more attractive option (vis-à-vis the outcome of the previous iteration) 

will be chosen. The patterns of the results in Table 4 clearly contradict the above reasoning. 

First, in Games 1 to 4 subjects are more likely to stay at the same location after over-entry 

compared to under-entry. The reverse (and expected) trend is only found in Games 5 and 6.  

Second, given a decision to switch after over-entry, in three games (Games 1 - 3) it was 

toward the less attractive location, and in the other 3 games (Games 4 - 6) toward the more 

attractive location. The same decisions after under-entry are even more puzzling when in all 

games (except Game 4) the switching was made toward the less attractive alternative. 

 We interpret these results as evidence for a kind of strategic thinking on the part of 

some of the subjects in which the next move of the remaining players is anticipated. It is as if 

the subject is reasoning as follows: "Because the outcome resulted in under-subscription, the 

tendency of the other players to enter the same location on the next time the same game is 

played will probably increase. As this will result in over -entry, it is therefore better for me to 

switch." And in the case of over -entry, it is as if the subject is reasoning as follows: "Because 

the outcome resulted in over-entry, most entrants will tend to switch to the better alt ernative, 

which consequently may become over-subscribed. Therefore, it is better for me either to stay 

on the same location or switch to the worse of the two locations." This interpretation is 

consistent with formal models that incorporate some kind of “anticipatory learning” (e.g., Ho, 
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Camerer, & Weigelt, 1998). It cannot be tested without first collecting additional data (e.g., 

by using verbal protocols or administrating post-experimental questionnaires) which bear 

directly on the subjects' cognitive processes. 

4. Generalization to Uncertain Group Size  

A major limitation of the CCP game as a model of choice between lotteries is the 

assumption that the values of the prizes and the number of group members are commonly 

known. In reality (e.g., choice of which state lottery to enter) the values of the prizes are 

typically private knowledge and it is only reasonable to assume that the distribution of the 

number of agents, rather than the exact number of agents, is commonly known. To relax the 

latter limitation, we generalize below the CCP game to the case where only the distribution of 

the number of agents is commonly known. We show that if the expected value of this 

distribution is relatively large, the effect of uncertainty is negligible. 

Assume that the group size has a commonly known distribution in which the random 

variable nh takes on the values n1, n2, . . . , nH with respective probabilities p1, p2, . . . , pH. 

Then, the equilibrium solution in mixed strategies for risk-neutral players consists of the 

probabilities q1, q2, . . . , qJ, which satisfy the following J + 1 equations in J + 1 unknowns 

(q1, q2, . . . , qJ, V): 
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 q1 + q2 + . . . + qJ = 1,     qj > 0, j = 1, 2, . . . , J. 

 In the special case examined in the present study, where each location includes a 

single prize only, these equations simplify to 
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and 

 q1 + q2 + . . . + qJ = 1,  qj > 0, j = 1, 2, . . . , J. 

Further simplifying this expression as in Section 2, we obtain the system of equalities 
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[1 - (1 - qj) hn ]) = V,       (5) 

and 

 q1 + q2 + . . . + qJ = 1,  qj > 0, j = 1, 2, . . . , J. 

 We assumed a (discrete) uniform distribution of number of players with p1 = p2 = . . . 

= pH and expected value µn = 18. We then increased systematically the range of the 

distribution (e.g., n + 1 = [17, 18, 19], n + 2 = [16, 17, 18, 19, 20], up to n + 5), and solved 

the system of equations (5) for each of these five cases separately to investigate the effect of 

the range of the distribution of nh on the mixed strategy equilibrium solution. For each of our 

six games (Table 1), the changes in the equilibrium probability qj for the cases n + 1 through 

n + 5 were in the third decimal point. In Game 6, which provides the most extreme case, the 

equilibrium solution for n + 5 was (q1, q2, q3) = (0.896, 0.099, 0.005). In contrast (Table 1), 

the equilibrium solution for the case when n = 18 with certainty is (q1, q2, q3) = (0.891, 0.101, 

0.008). In all other cases, the discrepancy between the uncertain and certain cases was much 

smaller. These results show that the effect of uncertainty about group size decreases as 1) the 

expected value µn increases, and 2) the magnitude of uncertainty decreases. They suggest that 

when µn is relatively large, as in our experiment, the effects of uncertainty about group size 

are negligible. 

5. Discussion 

 Our study was designed to investigate the lottery mechanism for distributing limited 

supply of some indivisible good when demand exceeds supply. We conducted this 
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investigation experimentally in a conflict situation that allows for both strategic and outcome 

uncertainties. The CCP game was introduced to model interactive decision situations in 

which agents have to choose one of several independent lotteries. The standard solution 

concept for this class of interactive decision making situations is the Nash equilibrium, 

namely, a profile of n independent decisions, pure or mixed, from which no player wishes to 

deviate unilaterally. On the aggregate level, our results support the solution concept 

remarkably well under the plausible assumption of common risk-aversion in the domain of 

gains. However, we find no evidence for mixed strategy play on the individual level. Nor do 

we find evidence for learning trends across blocks of trials. We comment on these findings 

below.  

Aggregate Results.  Our analysis shows no evidence that the systematic discrepancy between 

the observed relative frequencies of choice of entry location and the predicted probabilities 

under the assumption of risk-neutrality can be accounted for by a probability weighting 

transformation of the kind proposed by Prospect Theory. We have been quite successful in 

explaining this discrepancy by assuming common risk-aversion. Our results (Fig. 3) show 

that for each of the four groups this discrepancy largely disappears once we assume a 

commonly shared risk attitude captured by a concave power function with a parameter value 

c = 0.496. Because our study is only concerned with the domain of gains, as all the prizes in 

our six games were positive, the alternative interpretations of this power function as a 

Prospect Theory value function or a classical utility function coincide. The two 

interpretations could be compared to each other if we introduced more complicated lotteries 

that allow for both positive and negative prizes. 

 We are uneasy about specifying a Prospect Theory type value (or utility function) 

parameter that has the effect of pushing the equilibrium predictions in the direction of the 

observed data. As Friedman noted, “arbitrary special utility effects could ‘explain’ virtually 
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any sort of data” (1982, p. 1376). We find it reassuring that the value function that we used 

has received considerable support in the extensive literature on Prospect Theory that focuses 

on individual choice behavior. Our risk-aversion parameter estimate is slightly lower than the 

estimates reported by Cox and Oaxaca (1996) and Tversky and Kahneman (1992) in 

completely different contexts. It is very close to the risk aversion coefficient reported by 

Harrison (1990) in the 4-person experiment of Cox, Robertson, and Smith (1982) that he 

considered. And it is almost identical to the estimated risk aversion coefficient (c = 0.52) 

reported in a recent experiment on private -value auctions conducted by Goeree, Holt, and 

Palfrey (1999). Goeree et al. observed overbidding relative to the risk-neutral Nash 

equilibrium prediction in their experiments. Assuming that their subjects exhibit constant risk 

aversion, with estimated (pooled) parameter value of c = 0.52, they succeeded in tracking the 

conditional bid averages quite successfully as well as reproducing the entire frequency 

distributions of bidding decisions. 

Individual Results.  We go beyond Goeree et al. in testing the equilibrium model on the 

individual level. Our results show that although the equilibrium solution organizes the 

aggregate results quite well, it does not account for the individual behavior. With 

communication not allowed and group size being quite large, it was not possible for our 

subjects to achieve coordination through pure strategy equilibrium play. The patterns of joint 

relative frequencies of choice presented in Table 3 and conditional probabilities of staying on 

the same location or switching to another location shown in Table 4 are largely inconsistent 

with mixed strategy play. Rather, our results show marked individual differences. They 

suggest that the orderly aggregate behavior is in fact a product of a variety of individual 

decision rules. Some of our subjects mix their choices, not unlike the predictions of the 

equilibrium solution, whereas others strive to achieve coordination by attempting to increase 
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their expected payoff across trials through some sort of strategic play based on anticipation of 

the other players’ future moves. 

 This strategic play often takes the form of “best reply to anticipated best reply by the 

other players.” It resembles similar conceptualizations of a hierarchy of levels of strategic 

thinking in a model proposed by Stahl and Wilson (1995). Our experimental design is not 

suited for testing the hypothesis of a negative correlation between player i’s tendency to use a 

particular decision rule and the tendency of the other group members to use the same rule. An 

experimental design in which games are presented in a blocked design, similar to the one 

used in the study of tacit coordination in market entry games by Erev and Rapoport (1998), 

rather than a randomized design, as used in the present study, is more suitable. 

Learning.  We observe no major trends across blocks in the level of coordination achieved by 

our subjects (Fig. 1). This result is puzzling because previous experimental studies of tacit 

coordination in large group market entry games (e.g., Erev & Rapoport, 1998; Rapoport, 

Seale, & Parco, in press; Rapoport, Seale, & Winter, 2000) reported steady improvement in 

coordination on the aggregate level for the first fifty trials or so. We hypothesize that the 

difference between “flat” and “non-flat” learning curves is mainly due to two major 

differences between these two classes of studies. First, whereas the previous market entry 

game experiments included only strategic uncertainty, the present study included both 

strategic and outcome uncertainty. Second, the market entry game experiments provided the 

subject with an option to stay out of the market, whereas the present study did not provide 

this option. These differences might have led the subjects to achieve tacit coordination—

remarkable in both cases—through different adjustment processes, namely, slow emergence 

of cutoff decision rules in the market entry games vs. some combination of randomization 

with best reply to anticipated group behavior in the present study. Additional studies of 
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coordination that use other tasks that manipulate both sources of uncertainty and the presence 

or absence of an outside option are needed to test this hypothesis. 
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Table 1 

Parameter Values and Equilibrium Solutions for the Six Games 

 

 Prize Values  No. of Prizes  Pure Strategy 
Equilibrium 

 Mixed Strategy 
Equilibrium 

Game G g1 g2 g3 ∆ m1 m2 m3  n1
* n2

* n3
*  q1 q2 q3 

1 14 12 10 4 1 1 1  7 6 5  .389 .334 .277 

2 16 14 6 10 1 1 1  8 7 3  .447 .392 .161 

3 18 10 8 10 1 1 1  9 5 4  .502 .278 .220 

4 20 14 2 18 1 1 1  10 7 1  .585 .409 .006 

5 24 8 4 20 1 1 1  12 4 2  .681 .225 .094 

6 30 4 2 28 1 1 1  15 2 1  .891 .101 .008 
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Table 2 

Means (and STD) of Observed and Expected Mixed Strategy Equilibrium Number of Entrie s 
 

   j = 1  j = 2  j = 3 
Game   Mean SD  Mean SD  Mean SD 

           
1 Observed  7.312 2.031  5.417 1.916  5.271 2.189 

 Expected Risk-neutral 7.002 2.068  6.012 2.001  4.986 1.899 

 Expected Risk-averse* 6.831 2.059  5.499 1.954  5.670 1.971 
           

2 Observed  8.000 1.888  5.333 1.840  4.667 2.134 

 Expected Risk-neutral 8.046 2.109  7.056 2.071  2.898 1.559 

 Expected Risk-averse 6.995 2.068  6.152 2.012  4.853 1.883 
           

3 Observed  7.542 1.798  5.917 1.991  4.542 1.723 

 Expected Risk-neutral 9.036 2.121  5.004 1.901  3.960 1.757 

 Expected Risk-averse 7.671 2.098  5.347 1.939  4.982 1.898 
           

4 Observed  9.125 2.060  5.875 2.077  3.000 1.545 

 Expected Risk-neutral 10.530 2.090  7.362 2.086  0.108 0.328 

 Expected Risk-averse 8.376 2.116  6.640 2.047  2.984 1.578 
           

5 Observed  9.000 1.534  5.250 1.610  3.750 1.536 

 Expected Risk-neutral 12.258 1.977  4.050 1.772  1.692 1.238 

 Expected Risk-averse 9.393 2.119  5.238 1.927  3.369 1.655 
           

6 Observed  11.563 1.717  3.583 1.738  2.854 1.416 

 Expected Risk-neutral 16.038 1.322  1.818 1.278  0.144 0.378 

 Expected Risk-averse 11.393 2.045  3.775 1.727  2.832 1.545 

 
*  Assuming that ν(x) = x0.496 
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Table 3 

Observed and Predicted Probabilities of Selecting locations on Successive Iterations of the 
Same Game 

 
 

  Observed  Predicted* (Mixed Eq.) 
Game  j = 1 j = 2 j = 3   j = 1 j = 2 j = 3  

1 j = 1 .199 .109 .105   0.144 0.116 0.120  
 j = 2 .095 .121 .085   0.116 0.093 0.096  
 j = 3 .116 .072 .098   0.120 0.096 0.099  
 Sum .410 .302 .288 .418  0.380 0.306 0.315 .337 
           2 j = 1 .253 .102 .092   0.151 0.133 0.105  
 j = 2 .115 .117 .067   0.133 0.117 0.092  
 j = 3 .081 .067 .106   0.105 0.092 0.073  
 Sum .449 .286 .265 .476  0.389 0.342 0.270 .341 
           3 j = 1 .230 .110 .078   0.182 0.127 0.118  
 j = 2 .116 .130 .083   0.127 0.088 0.082  
 j = 3 .066 .091 .096   0.118 0.082 0.077  
 Sum .412 .331 .257 .456  0.426 0.297 0.277 .346 
           4 j = 1 .319 .128 .057   0.217 0.172 0.077  
 j = 2 .133 .158 .039   0.172 0.136 0.061  
 j = 3 .053 .038 .076   0.077 0.061 0.027  
 Sum .505 .324 .172 .553  0.465 0.369 0.166 .380 
           5 j = 1 .326 .122 .062   0.272 0.152 0.098  
 j = 2 .109 .102 .071   0.152 0.085 0.054  
 j = 3 .061 .071 .077   0.098 0.054 0.035  
 Sum .496 .295 .210 .505  0.522 0.291 0.187 .392 
           6 j = 1 .489 .083 .073   0.401 0.133 0.100  
 j = 2 .093 .062 .040   0.133 0.044 0.033  
 j = 3 .057 .053 .049   0.100 0.033 0.025  
 Sum .640 .198 .162 .600  0.633 0.210 0.157 .469 

 
* These are the mixed strategy equilibrium probabilities under the assumption of a common 
power value (utility) function with a parameter c = 0.496. 
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Table 4 

Mean Conditional Probabilities of Staying on and Switching between Successive Iterations of 
the Same Game 

 
 

 Game 

 1 2 3 4 5 6 

p(stay | over) 0.489 0.557 0.530 0.624 0.354 0.222 

p(better switchover) 0.170 0.198 0.205 0.233 0.396 0.542 

p(worse switchover) 0.341 0.245 0.265 0.143 0.250 0.236 

p(stayunder) 0.337 0.355 0.366 0.446 0.456 0.604 

p(better switchunder) 0.294 0.279 0.238 0.328 0.229 0.170 

p(worse switchunder) 0.369 0.366 0.396 0.226 0.315 0.226 
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Figure 1 

 
Running Average of Deviation from Mixed Strategy Equilibrium 
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Figure 2 
 

Observed Frequencies Of Entry Vs. Risk-Neutral Mixed Strategy Equilibrium Probabilities Of 
Entry 
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Figure 3 
 

Observed Frequencies Of Entry Vs. Risk-Averse Mixed Strategy Equilibrium Probabilities Of 
Entry 
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APPENDIX 
Instruction (first twelve screens) 

 

Greetings!

You are about to participate in a decision making study.  At 
the end of the session you will be paid according to your 
performance.  A research foundation has contributed the 
funds to support this research.

Please read the instructions very carefully.

Next Page  

You are going to participate 
in many rounds of basically 

the same game.  The game is 
very simple.If you make 

good decisions, you increase 
your chances of earning a 
considerable amount of 

money.

Next PageBack Page  

The game is played by a group of 18 players 
(all those who are currently present at the PC 
Lab). You will repeatedly play the game (in 
rounds) with the same group of 18 players.

On each round, three lotteries will be 
conducted (called the YELLOW, BLUE and 
RED lotteries).  You can participate in one and 
only one of these lotteries.  You will be asked 
to choose participating in one of these lotteries 
without knowing the lotteries the other players 
in your group have selected.

At the beginning of each round, the 
information about the three lotteries will be 
presented in the following way:

The Game

 

Number of players in the group: 18 (you are one of them)

Example

In this round:
♣ The YELLOW lottery offers 1 prize of $10.
♣ The RED lottery offers 1 prize of $15.
♣ The BLUE lottery offers 1 prize of $20.

Your task is to choose participating in one of these 
lotteries.

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

 

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

Number of players in the group: 18 (you are one of them)

Example

Because the prizes offered in each of the three lotteries may vary 
from round to round, you should pay close attention to them.

After all the members in your group choose which lottery to play, 
the computer will display the number of players who chose each of 

the three lotteries in the following manner:

 

Number of players in the group: 18 (you are one of them)

Example

For example, in this round,  6 players chose to play the 
YELLOW lottery, 8 to play the RED lottery, and 4 to play the 
BLUE lottery (note that 6+8+4=18).

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

6 8 4

 

If only one player chooses to play in a 
given lottery then this player will win 
the prize.

If, however, more than one player 
choose to participate in a given lottery 
then the computer will randomly select 
the winner from those choosing to 
participate in this lottery.

How  
winners are 
chosen in 

each lottery?

 

Number of players in the group: 18 (you are one of them)

Example

For example, if 5 players chose the YELLOW lottery, 1 chose the 
RED lottery, and 12 chose the BLUE lottery, then the one player 
who had chosen the RED lottery wins $15.

One of the 5 players who chose the YELLOW lottery will be 
randomly selected to win $10, and one of the 12 players who chose 
the BLUE lottery will be randomly selected to win $20.

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

5 1 12

 
 

1 2 

3 4 

6 5 

7 8 
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Number of players in the group: 18 (you are one of them)

Example

Each of the 5 players who choose the YELLOW lottery is equally 
likely to be selected as the winner of the $10.  Similarly, each of  the 
12 players who choose the BLUE lottery is equally likely to be 
selected as the winner of the $20.

Naturally, if no one choose any particular  lottery, the prize of this 
lottery is not awarded.

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

5 1 12

 

Number of players in the group: 18 (you are one of them)

Example

On each round, if you are not selected to win the prize in the lottery 
you chose, your payoff  for this round is zero.

Prize

# Prizes 
Offered

# Chosen

$10 $15 $20

1 1 1

5 1 12

 

If you are the only one who choose 
to participate in any particular 
lottery then you will win this lottery 
prize for sure.

On the other hand, the more players 
choose the same lottery as you do 
the smaller your chances of winning 
that lottery prize.

Summary

 

We shall now test your 
understanding of the game.  
If your answers are incorrect, 
the computer will show you 
the correct answers and 
explain them.

 
 

9 10 

11 12 
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Endnotes 

                                                 
1 See, for example, the uproar over the news (in October 1999) that Coca-Cola Co. is studying wireless 

technology that could allow bottlers to raise or lower soda prices by remote control at certain times — say, 

during hot weather. Lower prices during periods of slower sales would presumably bring in more business. 

 
2 Or a probability that is based on an objective criterion such as the number of shares paid for in an IPO. 

 
3 The amount of the cash prize was very attractive to students considering that the hourly wage for an on-

campus job was about HK$50 (US$6.45). 

 
4 In a “browse at a kiosk (full screen)” mode. 

 
5 The full instructions in PowerPoint format  are available in 

http://home.ust.hk/~mkzwick/papers/CCPinstructions.ppt 

 
6 Any two iterations of the same game G are separated on the average by six rounds of play. This number 

changes across blocks because of the independent randomization of the six games in each block. 

 
7 The “over-entry” category includes the cases where nj(t) = nrj. The results are not affected if we exclude these 

cases from this category. 

 
8 If two locations have the same magnitude of over- or under-entry, the one with the higher prize is considered 

to be the more attractive one. 

 
9 The assumption is that even if the subject actually won the prize (when the location he selected was over 

subscribed) he should attribut e a large portion of his success to luck rather than to wise decision making. 

 


